
 

 

 

 

 

DOCTORAL (PhD) DISSERTATION 

 

 

 

 

 

ZSÓFIA ZAVECZ 

 

 

NEUROCOGNITIVE BACKGROUND OF 

PROCEDURAL MEMORY: 

NEURAL OSCILLATIONS AND SLEEP 

 

 

 

 

 

 

 

 

 

2020 

 



 

 

 

 

 

  



 

 

 

 

 

EÖTVÖS LORÁND UNIVERSITY 

FACULTY OF EDUCATION AND PSYCHOLOGY 

 

 

Zsófia Zavecz 

Neurocognitive background of procedural memory: neural oscillations and 

sleep 

 

 

Doctoral School of Psychology 

Head of the School: Zsolt Demetrovics, DSc, professor, Eötvös Loránd University  

 

 

Clinical Psychology and Addiction Program  

Head of the Program: Zsolt Demetrovics, DSc, professor, Eötvös Loránd University 

 

 

Supervisors 

 Dezső Németh, DSc, professor, Eötvös Loránd University  

Karolina Janacsek, PhD, assistant professor, Eötvös Loránd University 

 

 

 

 

 

 

 

 

 

Budapest, 2020 

  



 

 

 

 

 

 



 

 

1 

 

 

 

EÖTVÖS LORÁND TUDOMÁNYEGYETEM 

ADATLAP a doktori értekezés nyilvánosságra hozatalához 

 

I. A doktori értekezés adatai 

A szerző neve: Zavecz Zsófia 

A doktori értekezés címe és alcíme: Neurocognitive background of procedural memory: neural 

oscillations and sleep 

A doktori iskola neve: Pszichológiai Doktori Iskola 

A doktori iskolán belüli doktori program neve: Klinikai pszichológia és addiktológia program 

A témavezető neve és tudományos fokozata: Németh Dezső, PhD, DSc és Janacsek Karolina, 

PhD 

A témavezető munkahelye: ELTE PPK Pszichológiai Intézet 

MTA Adatbázis-azonosító: 10057879 

DOI-azonosító1: 10.15476/ELTE.2020.109 

 

II. Nyilatkozatok 

1. A doktori értekezés szerzőjeként2 

a) hozzájárulok, hogy a doktori fokozat megszerzését követően a doktori értekezésem és a tézisek 

nyilvánosságra kerüljenek az ELTE Digitális Intézményi Tudástárban. Felhatalmazom az ELTE 

PPK Doktori Iskola hivatalának ügyintézőjét Barna Ildikót, hogy az értekezést és a téziseket 

feltöltse az ELTE Digitális Intézményi Tudástárba, és ennek során kitöltse a feltöltéshez 

szükséges nyilatkozatokat. 

 

b) kérem, hogy a mellékelt kérelemben részletezett szabadalmi, illetőleg oltalmi bejelentés 

közzétételéig a doktori értekezést ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az 

ELTE Digitális Intézményi Tudástárban;3 

                                                 
1 A kari hivatal ügyintézője tölti ki. 
2 A megfelelő szöveg aláhúzandó.  
3 A doktori értekezés benyújtásával egyidejűleg be kell adni a tudományági doktori tanácshoz a szabadalmi, illetőleg 

oltalmi bejelentést tanúsító okiratot és a nyilvánosságra hozatal elhalasztása iránti kérelmet. 
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c) kérem, hogy a nemzetbiztonsági okból minősített adatot tartalmazó doktori értekezést a 

minősítés (……………….dátum)-ig tartó időtartama alatt ne bocsássák nyilvánosságra az 

Egyetemi Könyvtárban és az ELTE Digitális Intézményi Tudástárban;4 

 

d) kérem, hogy a mű kiadására vonatkozó mellékelt kiadó szerződésre tekintettel a doktori 

értekezést a könyv megjelenéséig ne bocsássák nyilvánosságra az Egyetemi Könyvtárban, és az 

ELTE Digitális Intézményi Tudástárban csak a könyv bibliográfiai adatait tegyék közzé. Ha a 

könyv a fokozatszerzést követőn egy évig nem jelenik meg, hozzájárulok, hogy a doktori 

értekezésem és a tézisek nyilvánosságra kerüljenek az Egyetemi Könyvtárban és az ELTE 

Digitális Intézményi Tudástárban.5 

 

2. A doktori értekezés szerzőjeként kijelentem, hogy 

a) a ELTE Digitális Intézményi Tudástárba feltöltendő doktori értekezés és a tézisek saját eredeti, 

önálló szellemi munkám és legjobb tudomásom szerint nem sértem vele senki szerzői jogait;  

 

b) a doktori értekezés és a tézisek nyomtatott változatai és az elektronikus adathordozón 

benyújtott tartalmak (szöveg és ábrák) mindenben megegyeznek. 

 

3. A doktori értekezés szerzőjeként hozzájárulok a doktori értekezés és a tézisek szövegének 

plágiumkereső adatbázisba helyezéséhez és plágiumellenőrző vizsgálatok lefuttatásához. 

 

Kelt: Budapest, 2020. július 11. 

a doktori értekezés szerzőjének aláírása 

  

                                                 
4 A doktori értekezés benyújtásával egyidejűleg be kell nyújtani a minősített adatra vonatkozó közokiratot. 
5 A doktori értekezés benyújtásával egyidejűleg be kell nyújtani a mű kiadásáról szóló kiadói szerződést. 
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General introduction 

Growing up we all heard the saying to put a book underneath our pillow to be able 

to remember its content. This age-old saying seems to have some scientific ground to it. 

The relationship between sleep and memory has been studied widely in the last century: 

the beneficial effect of sleep on memory performance has been shown repeatedly 

(Diekelmann & Born, 2010; Stickgold, 2005; Walker & Stickgold, 2004). However, the 

precise mechanisms underlying this relationship remain poorly understood, as well as 

there is no consensus regarding which domains of memory are affected by sleep. The aim 

of my doctoral studies is to provide a deeper understanding of memory processes (in 

particular procedural memory processes) by investigating their behavioral characteristics, 

neural background, and their relationship to sleep. Understanding and improving our 

memory processes is valuable for the healthy population to boost everyday learning or 

consolidation performance. Moreover, it could help to treat clinical disorders, such as 

amnesia, post-traumatic stress disorder or dementia.  

 

Memory systems 

Memory is not a unified construct, therefore it does not serve a single function. 

Within long-term memory, we differentiate multiple memory systems, such as explicit 

and implicit (Graf & Schacter, 1985) or declarative and non-declarative (Squire, 1992b) 

traditionally, but for a more recent alternative classification, see Henke (2010). These two 

traditional distinctions overlap (therefore the terms are often used interchangeably): 

explicit or declarative memories are consciously accessible and are dependent on the 

medial temporal lobe (MTL), whereas non-declarative or implicit memories are defined 

as the lack of consciousness and MTL dependence (P. J. Reber, 2013). These memory 

systems are further divided into subtypes. Declarative (or explicit) memory consists of 

episodic and semantic memory, that can be differentiated based on whether the awareness 

that they require, extends to the self (episodic memory) or is limited to the object of the 

memory (semantic, Endel Tulving, 1972). Non-declarative (or implicit) memory is an 

umbrella-term that consists of a heterogeneous group of memory types, such as 

procedural memory, conditioning, priming, and habituation (Squire & Zola, 1996). In the 

dissertation, I will mainly focus on procedural memory (but see Study 1).  
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Procedural memory  

Procedural learning is a crucial ability that facilitates efficient processing of and 

automatic responses to complex environmental stimuli. It underlies the development of 

perceptual and motor skills and habits through extensive practice (Fiser & Aslin, 2002; 

Kaufman et al., 2010; Saffran, Aslin, & Newport, 1996; Turk-Browne, Scholl, Johnson, 

& Chun, 2010; Ullman, 2004). The acquisition of procedural knowledge is often 

unintentional, requires extended practice and the acquired representations are rigid 

(Kóbor, Janacsek, Takács, & Nemeth, 2017; A. S. Reber, 1967; Szegedi-Hallgató et al., 

2017). Importantly, in complex procedural memory tasks, there could be both explicit and 

implicit processes present. Even if the instruction and knowledge of regularities are 

explicit, skill learning still requires practice. It seems that these explicit and implicit 

processes operate simultaneously in procedural memory tasks (Sanchez & Reber, 2013; 

Song, Howard, & Howard, 2007a). While the behavioral characteristics are also a topic 

in the dissertation, the main focus is the neural background of procedural memory. 

 

Neural background 

The classical memory taxonomies relied heavily on findings of the neural 

background of different memory processes. These findings arose from studies of 

amnesiac patients and human and animal lesions, as well as studies using neuroimaging 

techniques, such as positron emission tomography (PET) or magnetic resonance imaging 

(MRI) (Knowlton, Ramus, & Squire, 1992; Nissen, Nissen, Willingham, & Hartman, 

1989; Nyberg, Cabeza, & Tulving, 1996; Squire, 1992a; E. Tulving & Markowitsch, 

1998; Zola-Morgan & Squire, 1984; Zola-Morgan, Squire, & Amaral, 1986). Based on 

these techniques, procedural memory has been shown to be dependent on the basal 

ganglia and the striatum (Graf & Schacter, 1985; Squire & Zola, 1996). These early 

studies mostly aimed to reveal relevant brain areas underlying memory, with a focus on 

differentiating memory types and phases. However, this approach has a limited 

contribution to the understanding of the precise neural mechanisms underlying memory 

processes.  

More recent studies focus on these neural mechanisms applying two main advances 

in their approach. First, there is an increasing focus on connectivity and pattern analysis 
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of brain activity, rather than identifying specific brain regions underlying memory 

processes (Poldrack, 2012). Second, and relatedly, as these patterns and connections are 

not necessarily captured adequately by neuroimaging techniques, there is increasing 

tendency to study brain activity underlying memory processes with psychophysiological 

techniques, such as magnetoencephalography (MEG) and electroencephalography (EEG) 

(Caplan & Glaholt, 2007; Klimesch, Freunberger, Sauseng, & Gruber, 2008). 

Psychophysiological techniques capture neurophysiological events directly, in contrast to 

neuroimaging techniques, where metabolic changes that we measure can be coupled with 

various underlying neurophysiological events, such as multiple evoked and induced 

oscillatory effects. This oscillatory synchronization is a key mechanism that integrates 

anatomically distributed processing and facilitates neuronal communication, thereby 

supporting synaptic plasticity (Buzsáki & Draguhn, 2004). The spatial scale of oscillatory 

synchronization can range from local (cortical columns or neighboring neurons) to global, 

large-scale synchronization that can connect distinct brain areas (Varela, Lachaux, 

Rodriguez, & Martinerie, 2001). In my doctoral studies I was using EEG to study these 

oscillatory dynamics underlying different procedural memory processes (Study 1 and 3).  

Importantly, inconsistencies seem to occur in the neural background of procedural 

memory due to differences in the specific paradigms used in different studies. Differences 

occur in part because the tasks encompass several different functions, such as acquisition 

of the regularity, sensorimotor integration, model formation, or movement control 

(Hikosaka, Nakamura, Sakai, & Nakahara, 2002; Janacsek et al., 2020; Penhune & Steele, 

2012; Willingham, 1998). Moreover, underlying brain activity in procedural memory 

tasks involving regularities can differ as a function of these regularities being implicit or 

explicit (Fletcher et al., 2005; Schendan, Searl, Melrose, & Stern, 2003; Willingham, 

Salidis, & Gabrieli, 2002). This task-dependent neural background accentuates that 

procedural learning is also not a unitary process, and instead, we have to differentiate 

subprocesses of it. The current studies focusing on the neural mechanisms underlying 

different memory processes can help us to link the characteristics of the tasks to these 

neural mechanisms. This approach could eventually lead to a novel taxonomy of memory 

processes focusing on underlying mechanisms rather than underlying brain areas (see for 

example, Henke, 2010). Furthermore, revealing the precise mechanisms could be the 
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foundation of targeted enhancement that can be used to boost everyday memory 

performance or treat memory-related clinical symptoms.  

 

Subprocesses: Sequence and statistical memory 

At least two processes underlying procedural learning can be distinguished: sequence 

and statistical learning (Kóbor et al., 2018; Nemeth, Janacsek, & Fiser, 2013), which is 

also referred to as rule-based and statistical learning (Maheu, Meyniel, & Dehaene, 2020). 

Sequence learning refers to the acquisition of a series of (usually 5–12) stimuli that 

repeatedly occur in the same order. In contrast, statistical learning refers to the acquisition 

of shorter-range relationships among stimuli that are primarily based on 

frequency/probability information (i.e., differentiating between more frequent/probable 

and less frequent/probable runs (e.g., pairs, triplets, etc.) of stimuli). Majority of the state-

of-the-art studies (and also Study 1 and 2 in the dissertation) however, do not differentiate 

between these (or other) subprocesses and quantify procedural learning with a mixed 

measure of acquiring both frequency/probability and sequential information. In Study 3 

and 4, we set out to better characterize these subprocesses and explore their differences, 

particularly in relation to sleep. For a summary of the types of memory investigated in 

each study of the dissertation, see Table 1. 

 

Measurement: The Alternating Serial Reaction Time task 

To measure procedural learning, we used the Alternating Serial Reaction Time 

(ASRT) task in all of the four studies (J. H. Howard, Jr. & Howard, 1997; Nemeth, 

Janacsek, & Fiser, 2013; Nemeth, Janacsek, Londe, et al., 2010). This task has been 

proven to have good test-retest reliability as well as sensitivity to individual differences 

in performance (Stark-Inbar, Raza, Taylor, & Ivry, 2016). Furthermore, this task enables 

us to separate learning processes that rely on improvements in visuo-motor coordination 

(general skill learning) and those that rely on the extraction of regularities (sequence and 

statistical learning) (J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe, et al., 

2010).   

In Study 1 and 2 we used the original version of the ASRT task (J. H. Howard, Jr. & 

Howard, 1997; Nemeth, Janacsek, Londe, et al., 2010), which measures incidental 
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learning, incorporating however both sequence and statistical learning. In this perceptual-

motor four-choice reaction time task, a stimulus appears in one of four horizontally 

arranged empty circles on the screen, and participants have to press a corresponding 

button on a keyboard or response box. The appearance of stimuli follows a predetermined 

alternating sequence order, such that sequence elements alternate with random ones. Due 

to the sequence structure in the ASRT task, some runs of three consecutive elements 

(referred to as triplets in our studies) occur more frequently and consequently are more 

probable (high-frequency or high-probability triplets) than others (low-frequency or low-

probability triplets). The learning is quantified as the difference in reaction times (RTs) 

and accuracy (ACC) between the high- and low-frequency/probability triplets (note that 

we use the terms frequency and probability in relation to triplets interchangeably). 

Importantly, however, the comparison of RTs and ACC of high- vs. low-frequency 

triplets does not take into account whether the last elements of the high-frequency triplets 

are sequence or random element, and consequently, provides a mixed measure of 

sequence and statistical learning. To measure both of these processes within the same 

behavioral paradigm, we used a modified version of the ASRT task in Study 3 and 4: the 

cued ASRT (referred to as explicit ASRT in Study 3 and 4). 

In contrast to the original (uncued) version of the ASRT task, in the cued version 

(Nemeth, Janacsek, & Fiser, 2013), sequence and random elements are differentiated on 

the stimulus level: sequence elements are marked with a picture of a dog, random ones 

with that of a penguin. Thus, not only high- and low-frequency triplets are well 

distinguished but also triplets with the last element of a sequence or random stimuli. 

Together, these characteristics enable us to measure both sequence and statistical 

learning. Sequence learning is quantified as a difference between responses for triplets 

ending with sequence vs. random elements that were high-frequency. Statistical learning 

is quantified as a difference between responses for those random elements that were the 

last elements of high-frequency triplets vs. those that were the last elements of low-

frequency triplets. Importantly, sequence and statistical learning are also distinguishable 

in the original uncued version of the task, however, it seems to appear only after extended 

practice, over the time course of multiple sessions over several days (D. V. Howard et al., 

2004; J. H. Howard, Jr. & Howard, 1997).  
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Besides the differentiation of the visual cues, participants are informed about the 

underlying structure of the sequence in this version, and their attention is drawn to the 

alternation of sequence and random elements by the different visual cues. Due to this 

modification, the learning could partially become explicit and intentional in this 

paradigm. However, it has been shown, that the explicit instruction does not influence the 

learning performance measured by reaction time and accuracy in this task (Song et al., 

2007a), therefore the explicit instruction does not necessarily change the procedural 

learning itself explicit. For further details of the characteristics of the ASRT tasks, see the 

task descriptions in the respective studies.  

 

Table 1.1 Summary of memory types investigated in the four studies 

Study Memory systems Subtypes Task  

Study 16 Declarative 

Non-declarative 

Episodic memory 

Procedural memory 

(mixed learning index) 

Story recall 

ASRT 

Study 27 Non-declarative Procedural memory 

(mixed learning index) 

ASRT 

Study 38 Non-declarative Procedural memory 

(sequence and statistical 

learning) 

Explicit ASRT 

Study 49 Non-declarative Procedural memory 

(sequence and statistical 

learning) 

Explicit ASRT 

Note: ASRT: Alternating Serial Reaction Time 

 

                                                 
6 Simor, P., Zavecz, Z., Csábi, E., Benedek, P., Janacsek, K., Gombos, F., & Németh, D. (2017). Delta and 

theta activity during slow-wave sleep are associated with declarative but not with non-declarative learning 

in children with sleep-disordered breathing. Sleep Spindles & Cortical Up States, 1(1), 55-66. 
7 Zavecz, Z., Horváth, K., Solymosi, P., Janacsek, K., & Nemeth, D. (2020). Frontal-midline theta 

frequency and probabilistic learning: A transcranial Alternating Current Stimulation study. Behavioural 

Brain Research, 112733. 
8 Simor, P., Zavecz, Z., Horváth, K., Éltető, N., Török, C., Pesthy, O., Gombos, F., Janacsek, K., & Nemeth, 

D. (2019). Deconstructing procedural memory: Different learning trajectories and consolidation of 

sequence and statistical learning. Frontiers in Psychology, 9, 2708. 
9 Zavecz, Z., Nagy, T., Galkó, A., Nemeth, D., & Janacsek, K. (2020). The relationship between subjective 

sleep quality and cognitive performance in healthy young adults: Evidence from three empirical 

studies. Scientific reports, 10(1), 1-12. 
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Phases of memory: learning, consolidation and retrieval 

Investigating the neural background of procedural memory, it is also important to 

differentiate the memory phases, such as learning, consolidation and retrieval. The initial 

phase is learning (also referred to as acquisition in procedural memory studies), i.e., 

encoding of sensory information. Following that, consolidation is the mechanism through 

which the encoded memory representations get stable, less susceptible to future 

interferences. Neuropsychological evidence for the existence of consolidation comes 

from investigating the temporally graded retrograde amnesia (Squire, 2009). 

Furthermore, pharmacological studies in animals also show evidence for the phenomenon 

of consolidation:  certain manipulations are only effective shortly after encoding, but not 

after a period of consolidation (McGaugh & Izquierdo, 2000).  As a synthesis of studies 

from different areas, McGaugh (2000) concluded that probably there are more than one 

processes underlying memory consolidation. He differentiated the cellular stabilization 

(occurring initially after encoding) and the systems consolidation, which involves large-

scale organization of the memory trace. After the successful consolidation, we can 

retrieve (recall or recollect) the memory when needed. These phases sometimes are 

referred to as on-line (during practice) or off-line (between practice sessions) memory 

processes.  

The studies in my dissertation investigate learning (on-line memory process) and 

consolidation (off-line memory process) more closely (Fig. 1): in Study 1, we studied 

brain activity during consolidation, but both in relation to learning capacity and 

consolidation; in Study 2, we studied brain activity during learning in relation to the 

learning performance; in Study 3, we studied brain activity during consolidation in 

relation to consolidation, but we discuss learning performance on the behavioral level 

independently of the brain activity; and finally in Study 4, we studied the effects of sleep 

in general on learning capacity. 

 

Procedural memory and sleep 

Sleep has been suggested as a crucial phenomenon for memory consolidation (sleep-

dependent memory consolidation, Diekelmann, Wilhelm, & Born, 2009; Walker & 

Stickgold, 2004). However, it is not clear, whether sleep per se is necessary for 
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consolidation, or it is just an ideal state for that process, due to lack of interference from 

the environment (Mednick, Cai, Shuman, Anagnostaras, & Wixted, 2011). Researchers 

argue that a quiet resting period (which also lacks interference) is just as beneficial for 

consolidation as sleep (Brokaw et al., 2016; Craig & Dewar, 2018). In Study 3, our aim 

was to test sleep-dependent consolidation of procedural memory, by comparing the 

memory performance of participants sleeping, quietly resting or actively resting 

(watching a movie) during the off-line period.  

Majority of the studies investigating sleep and memory focus on sleep-dependent 

memory consolidation. However, it is also important to note that sleep quality in general 

affects various domains of cognitive performance as well, such as executive functions 

and attention (Jones & Harrison, 2001) and the learning capacity itself (Walker & 

Stickgold, 2004). Long-term insufficiency in sleep duration or quality decreases the 

learning performance (Curcio, Ferrara, & De Gennaro, 2006). Study 1 and 4 target these 

long-term effects of sleep on memory performance. The studies on sleep and memory 

have led to mixed findings: again, different memory systems/types seem to have different 

relations to sleep (see Study 1, and for a review Stickgold, 2005).  

Some studies investigating the relationship between sleep and procedural memory 

have shown associations (Fenn, Nusbaum, & Margoliash, 2003; Fischer, Hallschmid, 

Elsner, & Born, 2002; Stickgold, James, & Hobson, 2000; Walker, Brakefield, Morgan, 

Hobson, & Stickgold, 2002), whereas others did not (Csabi et al., 2015; Nemeth, Csábi, 

Janacsek, Varszegi, & Mari, 2012; Wilhelm, Diekelmann, & Born, 2008). However, these 

studies not only did not use the same task to measure procedural memory (which could 

influence this relationship, see Procedural memory section in this Introduction) but also 

used different methods to study the relationship of sleep with memory. 

 

Methods of sleep and memory research 

There are two main types of sleep and memory research: 1) comparing memory 

performance after a certain amount of time spent either sleeping or awake and 2) 

investigating the effect of insufficient sleep time or quality on memory (i.e., sleep 

deprivation, and sleep disorder studies). Both types of memory research can incorporate 

comparing groups (e.g., participants with or without sleep disorder) and studying 

associations between sleep parameters (sleep duration, time spent in certain sleep stages, 
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arousals, etc.) and memory performance. Study 1 in the dissertation falls in the second 

category by investigating memory performance in a sleep-disordered population in 

relation to brain activity during sleep. Study 3 falls in the first category, by investigating 

the effect of alertness state (i.e., wake/quiet rest/active rest) during the off-line period 

after learning on memory performance.  

 

Objective and subjective sleep parameters 

Moreover, we also have to differentiate sleep and memory studies relying on 

objective (measured by actigraph or EEG) and subjective (self-reported) sleep 

measurements. Previous studies have shown that subjective and objective sleep 

parameters could differ (Armitage, Trivedi, Hoffmann, & Rush, 1997; Guedes et al., 

2016; Landry, Best, & Liu-Ambrose, 2015a). A widely used sleep parameter that is 

assessed subjectively (i.e., participants judging their own sleep) is sleep quality. 

Subjective sleep quality can vary from the objective sleep quality because it is estimated 

introspectively by a combination of instinctive parameters, including the initiation of 

sleep, sleep continuity (number of awakenings), and/or depth of sleep. While Study 1 and 

Study 3 were investigating the relationship between objective sleep measures and 

procedural memory, Study 4 aims to explore how subjective measures of sleep are 

associated with procedural memory.  

Considering objective sleep parameters, there are several parameters that are 

commonly assessed. Sleep has different stages, that can be divided into two main classes: 

non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. NREM 

sleep can be further divided into three substages (1–3) corresponding in that order to 

increasing depth of sleep (Berry et al., 2012). The deepest sleep stage, i.e., NREM 3 is 

also referred to as slow-wave sleep (SWS). The duration and the proportion of these sleep 

stages (i.e., the macrostructure of sleep) are commonly used to characterize sleep. 

However, each of these stages has their distinct neural characteristics, with different 

dominant oscillatory activity and other phenomena, such as spindles and K-complexes in 

NREM 2 (microstructure of sleep). In both Study 1 and 3 where we assessed objective 

sleep parameters, we investigated both macro- and microstructure of sleep in relation to 

memory performance. For an outline of the complex relationship we were aiming to 

explore, see Figure 1.  
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Figure 1.1 Outline of the studied components in the four studies. In all four studies our aim was to 

provide a deeper understanding of non-declarative (procedural) memory by investigating its neural 

background, and its relationship to sleep. In the first study (green lines) we investigated the differential 

association of declarative and non-declarative memory to sleep parameters in a sleep-disordered population. 

In the second study (yellow lines) we investigated the neural background of non-declarative memory by 

brain stimulation. In the third study (purple lines) we investigated the effect of sleep vs. wakefulness after 

learning on non-declarative memory consolidation. In the fourth study (blue lines) we investigated the 

association of subjective sleep quality and non-declarative memory performance. 

 

Research questions 

How declarative and non-declarative memory are related to sleep in a sleep-disordered 

population? 

In Study 1, we investigated the differential association of declarative and non-

declarative memory with sleep in a sleep-disordered population. More precisely, we 

explored how sleep disruptions affect memory performance in pediatric Sleep-disordered 

breathing (SDB), a prevalent sleep disorder. SDB comprises a broad spectrum of 

breathing-related sleep problems from primary snoring to the most severe forms of 

obstructive sleep apnea (Marcus, 2001). Several studies showed that SDB has a 
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detrimental impact on children’s behavior, affect, and cognitive performance, including 

memory (Beebe & Gozal, 2002; Blunden, Lushington, Lorenzen, Martin, & Kennedy, 

2005; Csábi, Benedek, Janacsek, Katona, & Nemeth, 2013; Gottlieb et al., 2004; Gottlieb 

et al., 2003; Halbower et al., 2006; Kohler et al., 2009; O'Brien et al., 2004). However, 

the precise mechanism that is leading to cognitive impairment and behavioral problems 

is unknown. A possible candidate for such disrupted but crucial mechanism is slow-wave 

sleep. Slow-wave sleep seems to play an important role in memory consolidation (Ferri 

et al., 2008; Mander et al., 2013; Marshall, Helgadottir, Molle, & Born, 2006; Rasch & 

Born, 2013) and appears to be altered in case of insufficient sleep (Cajochen, Foy, & Dijk, 

1999; Munch et al., 2004). In light of previous studies that reported attenuated SWS-

specific slow frequency oscillations in children with SDB (Jussila et al., 2016; 

Kheirandish-Gozal et al., 2007), our aim was to investigate whether SWS spectral power 

is associated with learning capacity and overnight memory consolidation within a group 

of children with SDB. Moreover, we applied both a declarative and a non-declarative 

memory task in order to further explore the specificity of sleep-related memory 

impairments in SDB. 

 

Is theta oscillation crucial for procedural memory? 

In Study 2, we investigated the neural background of procedural memory by directly 

manipulating oscillatory activity during learning. Identification of critical brain dynamics 

and manipulation together give an opportunity to influence memory performance, that 

can be used in treating clinical symptoms or boost everyday memory performance.  

Previous studies showed competition between neural networks related to executive 

function/working memory vs. procedural learning (Albouy et al., 2015; Albouy et al., 

2008; Ashby & O'Brien, 2005; Daw, Niv, & Dayan, 2005; Poldrack et al., 2001). Theta 

synchronization has been associated with the former (Gevins, Smith, McEvoy, & Yu, 

1997; Hsieh & Ranganath, 2014; Jensen & Tesche, 2002; Meyer, Grigutsch, Schmuck, 

Gaston, & Friederici, 2015; Onton, Delorme, & Makeig, 2005; Scheeringa et al., 2009; 

Summerfield & Mangels, 2005; Tóth et al., 2014) while desynchronization with the latter 

(Tóth et al., 2017) in correlational studies. In this study, our aim was to test the causal 
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relationship between theta synchronization and procedural learning with non-invasive 

transcranial alternating current (tACS) stimulation.  

 

Is sleep essential for the consolidation of different subprocesses of procedural memory? 

In Study 3, we investigated the consolidation of sequence and statistical knowledge 

in case of sleep, quiet rest or active rest. Our primary goal was to test whether sleep has 

a beneficial effect on procedural memory consolidation compared to wakefulness. Based 

on more recent evidence, sleep and rest without interferences can have similar beneficial 

effects on memory consolidation (Brokaw et al., 2016; Craig & Dewar, 2018; Mednick 

et al., 2011). Therefore, we compared the consolidation performance of groups of 

participants who, after learning, either slept, rested quietly or watched a movie. As several 

studies indicate that not sleep per se, but specific oscillations during sleep facilitate post-

sleep improvements in behavioral performance (Rasch and Born, 2013), we also recorded 

EEG during the consolidation period. We explored associations between the spectral 

composition of brain activity and the consolidation performance within each off-line 

activity group. Furthermore, we wanted to test whether different subprocesses of 

procedural memory, sequence and statistical learning differ in their benefit from sleep. 

Studies on sequence learning showed enhanced behavioral performance after an off-line 

period spent asleep compared to an equivalent period spent awake, especially if 

individuals acquired an explicit, abstract or complex representation of the sequence 

(Robertson et al., 2004; Spencer et al., 2006; King et al., 2017). While the sleep-dependent 

memory consolidation of statistical information is largely unexplored, studies with a 

mixed measure of sequence and statistical learning did not find benefit of post-learning 

sleep on consolidation (Nemeth, Janacsek, Londe, et al., 2010; Song, Howard, & Howard, 

2007b). Thus, in this study, our aim was to fill this gap by investigating whether sleep in 

the post-learning period has differential associations with sequence and statistical 

learning.  
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Are subjective measures of sleep associated with different subprocesses of procedural 

memory? 

In Study 4, we investigated whether subjective sleep quality is associated with 

procedural memory. Previous studies have shown that subjective and objective sleep 

parameters, such as sleep duration or sleep efficiency differ (Armitage et al., 1997; 

Guedes et al., 2016; Landry, Best, & Liu-Ambrose, 2015b). Extreme deviations can occur 

between subjective and objective measures in sleep disorders, such as insomnia or sleep-

state misperception. According to Zhang and Zhao (2007) and Stepanski et al. (1989), 

subjective sleep quality of insomniac patients determines both seeking medication and 

type of effective treatment. Furthermore, one’s belief about their own sleep quality induce 

placebo and nocebo effects both in insomniac patients and healthy individuals (Draganich 

& Erdal, 2014; Gavriloff et al., 2018). Thus, subjective sleep quality has therapeutic 

importance, as well as further explanatory value for cognitive performance compared to 

objective measures. However, scientific evidence on the relationship between subjective 

sleep quality and cognition is still inconclusive, and memory, in particular, procedural 

memory has been scarcely investigated in relation to subjective sleep quality. In this 

study, we aimed to fill this gap by providing an extensive investigation on the relationship 

between subjective sleep quality and cognitive performance including procedural 

memory in healthy young adults.  

 

Together, the studies in the dissertation will provide a deeper understanding of 

procedural memory on two levels: on the 1) behavioral and 2) neural level. On the 

behavioral level, the aim is to dissect and characterize subprocesses of procedural 

learning, namely sequence and statistical learning. On the neural level, the aim is to reveal 

crucial bran dynamics underlying procedural memory and to clarify its relationship with 

sleep by investigating brain activity both during wake and sleep in relation to both 

learning and consolidation.  
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Delta and theta activity during slow-wave sleep are associated with 

declarative, but not with non-declarative learning in children with sleep-

disordered breathing10 

 

Abstract  

Sleep-disordered breathing (SDB) is a prevalent sleep disorder among young children and 

is associated with daytime impairments, such as behavioral dysregulation, affective 

symptoms, and reduced cognitive performance. Microstructural changes of non-rapid eye 

movement sleep, particularly the reduction of slow frequency oscillations during slow-

wave sleep (SWS) might be associated with impaired learning among children with SDB. 

In this study, we investigated the associations between learning capacity, overnight 

memory retention, and post-learning, spectral power density of SWS within a clinical 

sample of children (n = 27) with SDB. Participants performed a declarative (the “War of 

the Ghosts”) and a non-declarative (the “Alternating Serial Reaction Time”) memory task 

at night, before their clinical (night-time polysomnographic) evaluation. Memory 

retention was assessed in the morning. Overnight changes in performance in the 

declarative and non-declarative task were not related to relative spectral power measures 

of SWS. Nevertheless, declarative learning capacity was positively correlated with 

relative delta (1.254 Hz) and negatively with relative theta (4.258 Hz) power. 

Although, statistical learning was not associated with spectral power, general skill 

learning was positively associated with delta and negatively associated with theta power. 

Associations in case of declarative learning remained significant beyond the influence of 

age; however, in case of general skill learning the associations with delta and theta power 

were explained by age. These findings indicate that among children with SDB, 

oscillations within the delta and theta band during SWS are associated with declarative 

learning capacity, but are independent from non-declarative, statistical learning.  

 

Keywords: sleep disordered breathing (SDB); declarative learning; implicit learning; 

statistical learning; EEG; oscillations  

                                                 
10 Simor, P., Zavecz, Z., Csábi, E., Benedek, P., Janacsek, K., Gombos, F., & Németh, D. (2017). Delta and 

theta activity during slow-wave sleep are associated with declarative but not with non-declarative learning 

in children with sleep-disordered breathing. Sleep Spindles & Cortical Up States, 1(1), 55-66. 
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Introduction 

Sleep-disordered breathing (SDB) is a highly common complaint in prepubertal 

children with prevalence rates between 7-12 % (Brunetti et al., 2001; Castronovo et al., 

2003; Ersu et al., 2004; Ferreira et al., 2000), but in some cases reported up to 34.5 

% (Castronovo et al., 2003). SDB comprises a broad spectrum of breathing-related sleep 

problems from primary snoring to the most severe forms of obstructive sleep apnea 

(OSA) (Marcus, 2001). Whereas OSA, that is characterized by apnea, hypopnea, transient 

hypoxia, hypercarbia and related arousals during sleep is diagnosed in 1-3% of 

children (Ali, Pitson, & Stradling, 1993; Bixler et al., 2009), milder forms of SDB, in 

which sleep disruptions and impaired gas exchange are not detected, are largely under-

diagnosed (Blunden et al., 2005). Here we investigate how sleep disruptions affect 

cognitive functioning in SDB. 

A growing number of studies indicate that moderate to severe OSA has a detrimental 

impact on children’s behavior, affect, and cognitive performance (Beebe & Gozal, 2002; 

Blunden et al., 2005; Gottlieb et al., 2003; O'Brien et al., 2004). The latter is corroborated 

by findings linking symptoms of SDB to behavioral dysregulation (Rosen et al., 2004), 

inattention/hyperactivity (Chervin et al., 2002), as well as to impaired learning, attention, 

and executive function (Csábi et al., 2013; Gottlieb et al., 2004; Halbower et al., 2006; 

Kohler et al., 2009). These adverse effects might be driven by disrupted restorative 

functions of night-time sleep and reduced oxygen delivery resulting in neuronal 

damage (Beebe & Gozal, 2002; Blunden & Beebe, 2006). Although a recent 

study (Hunter & Gozal, 2016) involving a large number of pre-school aged children 

showed that the clinical severity of SDB symptoms [e.g., apnea/hypopnea index (AHI), 

arousals, oxygen desaturation] is associated with poorer cognitive abilities in a dose-

dependent manner (i.e. the more severe the symptoms are, the worse the performance is); 

converging evidence indicates that compared with healthy, non-snoring controls even 

milder forms of SDB, such as habitual snoring, are predictive of impaired cognitive and 

behavioral profile (Archbold, Giordani, Ruzicka, & Chervin, 2004; Bourke et al., 2011a; 

Csabi et al., 2015). For instance, intellectual abilities and academic functions (Bourke et 

al., 2011a), declarative memory performance, and executive skills (Gottlieb et al., 2004), 

as well as parent-rated neurobehavioral functions (Bourke et al., 2011b) were similarly 

impaired in school-aged children with moderate-to-severe or mild SDB symptoms. 
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Nevertheless, it is not clear, whether in children with mild SDB, poorer behavioral 

and cognitive profiles are associated with abnormal nocturnal respiratory patterns, since 

studies have provided inconclusive results in this regard (Bourke et al., 2011a, 2011b; 

Hunter & Gozal, 2016). Although sleep fragmentation provoked by apneic events is 

considered to be another important mechanism that might lead to daytime cognitive 

impairments (Beebe & Gozal, 2002; Blunden & Beebe, 2006), data regarding the link 

between disrupted sleep and cognitive performance in mild SDB is scarce. 

Sleep macrostructure seems to be unaltered in children with SDB, but more subtle indices 

of homeostatic sleep regulation suggest that abnormal respiration might interfere with 

cortical, slow frequency oscillations during deep sleep, specifically during slow wave 

sleep (SWS) (Jussila et al., 2016; Kheirandish-Gozal et al., 2007), albeit findings are not 

absolutely conclusive (Yang et al., 2010). The lower rate of A1 subtype arousals as 

quantified by the Cyclic Alternating Pattern (CAP) (Kheirandish-Gozal et al., 2007), and 

frontally reduced activity in slower frequencies (< 4 Hz) during deep sleep (Jussila et al., 

2016) suggest that specific neural oscillations are relatively attenuated in children with 

SDB.  

The frontally localized A1 subtype of CAP (Ferri et al., 2008) such as low-frequency 

oscillations, indexed by delta (1-4 Hz) power (Cajochen et al., 1999; Munch et al., 2004), 

reflect the restorative capacity of the brain (Mander et al., 2010) and seem to play an 

important role in memory consolidation (Ferri et al., 2008; Mander et al., 2013; Marshall 

et al., 2006; Rasch & Born, 2013). In line with the role of SWS in memory consolidation, 

(Guo, Igue, Malhotra, Stickgold, & Djonlagic, 2013) that adults suffering from OSA are 

characterized by diminished SWS and reduced overnight improvement in a verbal-

associates task, compared to a healthy control group. Interestingly, the OSA group 

showed reduced SWS during the experimental night only, when pre-sleep learning 

occurred. According to the authors, diminished post-training increase in slow wave 

activity might have contributed to impaired memory consolidation during sleep.  

The expression of slow frequency oscillations (more frequently quantified by EEG 

spectral power) during SWS is strongly dependent on the integrity of the prefrontal 

cortex (Mander et al., 2013), and seems to be critical for the efficiency of cognitive 

functions that rely mainly on prefrontal and related (e.g. hippocampus) brain regions 

(Ferrara & De Gennaro, 2011; Mander et al., 2013; Mander et al., 2010). As a matter of 
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fact, SDB in children seems to impinge specifically on tasks that involve sustained 

attention, executive functions or declarative learning (Archbold et al., 2004; Bourke et 

al., 2011a; Csábi et al., 2013; Gottlieb et al., 2003). On the other hand, in case of an 

implicit, non-declarative learning task that does not require (or might even benefit from 

the reduction of) cognitive control functions (Nemeth, Janacsek, Polner, & Kovacs, 

2013) children with SDB showed equivalent performance to controls (Csábi et al., 2013; 

Csabi et al., 2015). More specifically, Csábi and colleagues (Csábi et al., 2013; Csabi et 

al., 2015) reported impaired declarative learning, but intact non-declarative learning in 

children with SDB. Furthermore, the patient and the control group showed similar 

overnight memory retention in both tasks, indicating intact consolidation in children with 

SDB (Csabi et al., 2015). Nevertheless, in this study the association between task 

performance and polysomnographic measures was not examined.  

In light of previous studies that reported attenuated SWS-specific slow frequency 

oscillations in children with SDB (Jussila et al., 2016; Kheirandish-Gozal et al., 2007), 

our aim was to investigate the associations between SWS spectral power, learning 

performance, and overnight memory retention within a group of children with SDB. To 

further explore the specificity of sleep-related cognitive impairments in SDB, we applied 

a declarative, verbal memory task and an implicit, non-declarative statistical learning 

task. We hypothesize that SWS spectral power is associated with memory retention in 

SDB. To the best of our knowledge, this is the first study investigating the relationship 

between SWS, learning performance, and memory retention in children with SDB. 

  

Methods 

Participants 

Twenty-seven children participated in the experiment. Age, breathing events during 

sleep, body mass index, and sleep parameters are listed in Table 1. All participants were 

reported to snore by their parents and underwent an overnight polysomnography (PSG) 

for clinical evaluation at the Sleep Disorders Laboratory of Heim Pál Children’s Hospital, 

Budapest, Hungary. All these patients met the International Classification of Sleep 

Disorders criteria’s (Darien, 2014) for primary snoring (N = 23) or OSA (N = 4). The 

diagnostic criteria for Primary Snoring are complaint of snoring made by and observer 
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(e.g., the parent). Polysomnographic monitoring in case of this disease demonstrates 

inspiratory or expiratory sounds often occurring for prolonged episodes during the total 

sleep time (this can be measured by snoring index), but no associated abrupt arousals, 

arterial oxygen desaturation, or cardiac disturbances. The diagnostic criteria of OSA are 

frequent episodes of obstructed breathing occur during sleep, and complaint of excessive 

sleepiness or insomnia. Polysomnographic monitoring demonstrates obstructive apneas 

(this is measured by the AHI), frequent arousals from sleep and arterial oxygen 

desaturation associated with the apneic episodes.  

The snore index of the snoring patients (M = 25.52, SD = 44.16, range: 0–155) 

significantly differed from zero [t(22) = 2.77, p = .01]. The AHI of the participants who 

had been diagnosed with OSA (M = 23.05, SD = 37.60, range: 1–79) did not significantly 

differ from zero [t(3)= 1.27, p = .31], probably due to the low number of patients (N = 4). 

Given that the neurobehavioral deficits characterizing children with primary snoring seem 

to be similar to those found in children with OSA (Gozal & O'Brien, 2004), we did not 

intend to examine the OSA and snoring subgroups separately. Nevertheless, apart from 

the main analyses, we performed a separate analysis for the primary snoring subgroup 

only (these analyses are presented in the Supplementary Material). The data of one subject 

was removed from the analyses in relation to the declarative task, and of another subject 

from the analyses of the non-declarative task, due to lack of motivation to perform the 

specific task. All SDB patients were untreated prior to and during the experimental night. 

Informed written parental consent and verbal assent of the children were provided. 

Participants did not receive any financial compensation for their participation. Ethics 

approval was obtained by the Ethics Committee at Heim Pál Children’s Hospital, 

Budapest. 
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Table 2.1 Age, breathing events during sleep, body mass index (BMI), and sleep 

parameters of participants 

Variable Mean (Std. 

Deviation) 

Age (years) 8.52 (2.12) 

Gender (male, %) 59.25% 

BMI 18.28 (4.72) 

Sleep efficiency (%) 87.44 (6.99) 

Relative wake duration 

(%) 
12.22 (6.64) 

Relative S1 duration (%) 2.96 (2.34) 

Relative S2 duration (%) 42.04 (9.26) 

Relative S3 duration (%) 33.41 (9.86) 

Relative REM duration 

(%) 
21.74 (5.52) 

AHI 3.48 (15.24) 

Maximum desaturation 

(%) 
5.29 (7.16) 

Desaturation index 6.33 (21.04) 

Snore index 25.61 (42.05) 

Note: BMI=body-mass index, kg m2, AHI: apnea/hypopnea index, measured as number of events per hour; 

desaturation index: measured as number of desaturations per hour; snore index: measured as snoring 

events per hour. 

 

Tasks 

Declarative memory task 

Declarative memory performance was measured by the classical “The War of the 

Ghosts” test (Bartlett, 1932; Bergman & Roediger, 1999). This is a story recall test, which 

is widely used to measure declarative, episodic memory (Andreano & Cahill, 2006; 

Bartlett, 1932; Bergman & Roediger, 1999; Schwabe et al., 2009). In this test, children 

are asked to listen and repeat a story which consists of 36 information chunks. Based on 

the standardized scoring, 1 point is given if an information chunk is correctly recalled, 
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and 0.5 point is given if it is only partly correct (capturing the gist of the sentences) 

(Bartlett, 1932; Csábi et al., 2013; Gauld & Stephenson, 1967). 

 

Non-declarative memory task 

We used the Alternating Serial Reaction Time (ASRT) Task in order to assess non-

declarative learning performance. In this task, a stimulus (a dog’s head) appears in one of 

the four empty circles displayed in the middle of the screen and participants have to press 

the corresponding button as quickly and accurately as possible (Nemeth, Janacsek, Londe, 

et al., 2010). The computer used was equipped with a special keyboard with four marked 

keys (Z, C, B and M on a QWERTY keyboard), each corresponding to one of the 

horizontally aligned circles. The task consisted of two sessions, the first session (Learning 

Phase) consisted of 25 blocks, and the second session (Testing Phase) consisted of 5 

blocks. Each block consisted 85 key presses — the first 5 stimuli were random for practice 

purposes, then an eight-element alternating sequence (e.g., 1r4r3r1r, where numbers 

represent the four places on the screen, and r represents an event randomly selected from 

the four possible places) repeated 10 times. A different ASRT sequence was selected for 

each participant based on a permutation rule so that each of the six unique permutations 

of the four repeating events occurred. Consequently, six different sequences were used 

across participants. Similarly to earlier studies (Nemeth, Janacsek, Londe, et al., 2010), 

stimuli were presented 120 ms after the previous response (response-to-stimulus interval, 

RSI). Each block required about 1.5-2 min and the entire Learning Phase took 

approximately 40–50 minutes, and the Testing Phase took approximately 10-15 minutes. 

Between blocks, participants received feedback about their overall reaction time (RT) and 

accuracy (ACC) on the screen and then rested 10–20 s before starting a new block.  

Due to the structure of the sequences in the ASRT task, some triplets or runs of three 

consecutive events occur more frequently (high-frequency triplets) than others (low-

frequency triplets). For example, in the above illustration, 1_4, 2_3, 3_1 and 4_2 (where 

“_” indicates the middle element of the triplet) would occur often because the third 

element (bold numbers) could be derived from the sequence or could also be a random 

element. In contrast, 1_3 or 4_1 would occur less frequently because in this case, the third 

element could only be random. Note that the final event of high-frequency triplets is 

therefore more predictable from the initial event when compared with the low-frequency 
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triplets [also known as non-adjacent second-order dependency, (Remillard, 2008)]. 

Therefore, before analyzing the data we determined whether each item was the last 

element of a high-frequency or low-frequency triplet. Out of the 64 possible triplets, the 

16 high-frequency triplets occurred 62.5% of the time and the 48 low-frequency triplets 

occurred 37.5% of the time. Note that the final event of high-frequency triplets is 

therefore more predictable from the initial event compared with the low-frequency 

triplets. 

Previous studies have shown that as people practice the ASRT task, they come to 

respond more quickly and more accurately to the high-frequency triplets than low-

frequency triplets, revealing statistical learning (D. V. Howard et al., 2004; J. H. Howard, 

Jr. & Howard, 1997; Janacsek, Fiser, & Nemeth, 2012; Nemeth, Janacsek, Londe, et al., 

2010; Song et al., 2007b). In addition, general skill learning is revealed in the ASRT task 

by the overall speed-up due to practice, irrespective of the triplet types. Thus, the ASRT 

task enables to measure both statistical and general skill learning. 

Finally, it is important to note that the task remained implicit for the participants 

throughout the experiment. According to previous experiments with the ASRT task, even 

after an extended practice of 10 days, participants are not able to recognize the hidden 

sequence (D. V. Howard et al., 2004). 

 

Procedure 

PSG recordings were performed in the Sleep Disorders Laboratory of Heim Pál 

Children’s Hospital, Budapest, Hungary. All children accomplished first the declarative 

and then the non-declarative task in two separate sessions, prior to sleep, and after sleep. 

The order of the tasks was fixed. Memory performance was assessed at 7-9 p.m. in the 

evening (Learning Phase), and 12 hours later after night-time sleep, at 7-9 a.m. in the 

morning (Testing Phase). This study was performed within the frames of the clinical 

evaluation, therefore children spent only one night in the laboratory, and no adaptation 

night was applied. 
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Polysomnography  

The PSG was performed with the Somnomedics Somnoscreen plus device and 

software (Randersacker, Germany). PSG was configured to record EEG leads C4, C3 

referenced to the mathematically linked mastoids (A2, A1) as well as bipolar EOG, chin 

EMG, ECG, snoring (by nasal cannula), respiratory effort signals, SpO2, pulse rate, and 

body position. EEG electrodes (C4, C3, A2, A1) were placed in accordance with the 10–

20 electrode placement system (Jasper, 1958). Children were also fitted with two EOG 

electrodes (left and right EOG channels), monitoring vertical and horizontal eye-

movements; two EMG electrodes (bipolar channels) for the chin, bipolar ECG electrodes; 

in addition to internal body position sensors, a pulse oximeter, a nasal flow thermistor 

(for measuring snoring), and thoracic and abdominal respiration sensors. Ag/AgCl EEG 

cup electrodes were fixed with Ten20 EEG conductive paste (Weaver and Company, 

Aurora, CO, USA). Hardware filters (-6 dB filters) were set between 0.3 Hz (high-pass) 

and 100 Hz (low-pass), signals were collected and digitized with 256 Hz/channel 

sampling rate (synchronous) with 8 bits resolution. Impedances were kept below 6 

kOhms.  

 

Spectral analyses 

Sleep stages and conventional parameters of sleep macrostructure were scored in 

accordance with standardized criteria (Silber et al., 2007) by two experienced sleep 

researchers. Spectral analyses were performed by a custom-made software tool for full 

night sleep EEG analysis (FerciosEEGPlus, © Ferenc Gombos 2008-2016). Overlapping 

(50%), artifact-free four-second-epochs of all EEG derivations were Hanning-tapered and 

Fourier transformed by using the FFT (fast Fourier transformation) algorithm in order to 

calculate the average power spectral densities for whole night SWS [non-rapid eye 

movement (NREM) Stage3 sleep] between 1 and 25 Hz. Since the absolute power values 

may be biased due to age-dependent differences of the thickness and conductivity of the 

skull, (Carrier, Land, Buysse, Kupfer, & Monk, 2001), we applied the relative spectral 

power values. Relative spectral power values were obtained for each frequency bin 

(width: 0.25 Hz) by dividing the absolute power of the given frequency bin with the total 

spectral power (the sum of the absolute power of the whole range of analysis between 1 
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Hz and 25 Hz). The relative power values reflect the relative contribution of a given 

frequency range to the total spectrum. To reduce the number of parameters, we summed 

up frequency bins to generate five frequency band windows: delta (1.25-4 Hz), theta 

(4.25-8), alpha (8.25-11), sigma (11.25-15), and beta (15.25-25 Hz) frequency bands. We 

have extracted these measures from SWS, because slow frequency oscillations are 

predominant during the deepest stage of sleep. Moreover, due to technical artefacts 

occurring in some participants during the last third of the night (comprising mainly Stage 

2 and REM sleep), we have decided to exclude the analyses of Stage 2 periods and focus 

exclusively on SWS.  

 

Statistical Analysis 

Statistical analyses were carried out with the Statistical Package for the Social 

Sciences version 22.0 (SPSS, IBM) and MATLAB (version 7.10.0.499, R2010a, The 

MathWorks, Inc., Natick, MA). In case of the declarative learning task, we used three 

measures: evening score, morning score, and memory consolidation. The latter was 

obtained by subtracting the evening score from the morning score (higher scores 

indicating reduced forgetting). In case of the non-declarative learning task, to facilitate 

data processing, the blocks of ASRT were organized into epochs of five blocks. The first 

epoch contained blocks 1–5, the second epoch contained blocks 6–10, etc. We calculated 

mean accuracy scores (ACCs) for all responses and median reaction times (RTs) for 

correct responses only; separately for high- and low-frequency triplets and for each 

subject and each epoch. Note that for each response (n), we defined whether it was a high- 

or a low-frequency triplet by considering whether it was more or less predictable from 

the event n-2. For the analyses reported below, as in previous research (J. H. Howard, Jr. 

& Howard, 1997; Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b), two kinds 

of low-frequency triplets were eliminated: repetitions (e.g., 222 and 333) and trills (e.g., 

212 and 343). Repetitions and trills were low frequency for all participants and people 

often showed pre-existing response tendencies to them (D. V. Howard et al., 2004; J. H. 

Howard, Jr. & Howard, 1997). By eliminating them we attempted to ensure that any high- 

vs. low-frequency differences are due to learning and not to pre-existing response 

tendencies. 
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For each epoch, a learning score was also calculated as the difference between triplet 

types in RT (RT for low-probability triplets minus RT for high-probability triplets) and 

ACCs (ACC for high-probability triplets minus ACC for low-probability triplets). To 

evaluate performance changes due to statistical learning, we conducted repeated measures 

analyses of variance (ANOVAs – see detailed description below) separately for accuracy 

and RT. Greenhouse-Geisser epsilon (ε) correction was used if necessary. Original df 

values and corrected p values (if applicable) are reported together with partial eta-squared 

(ηp
2) as the measure of effect size. To investigate the offline (overnight) changes of 

statistical learning, we compared the ACCs and RTs from the last epoch of Session 1 

(Epoch 5) and the epoch of Session 2 (Epoch 6 assessed in the morning). These variables 

were submitted to a repeated measures design ANOVA with TRIPLET (high- vs. low-

frequency) and EPOCH (last epoch of Session 1 and the epoch of Session 2) as within-

subject factors. Additionally, we subtracted the learning index of last epoch (fifth) of the 

evening session from the first epoch of the morning session (sixth epoch) (this way, the 

positive value shows overnight learning, and the negative shows forgetting) indexing 

memory consolidation in terms of ACC and RT.  

Normality of data distribution was verified based on the kurtosis and skewness of the 

data as well as the Kolmogorov-Smirnov test. To study the associations between learning 

performance, overnight change (memory consolidation) and SWS spectral power, 

Pearson’s correlation analyses were conducted. Spearman’ s correlation coefficient was 

used when normality was violated. To control for the confounding factor of age (that 

might affect learning as well as SWS spectral power), we applied a hierarchical linear 

regression analysis including age as a predictor in our models.  

 

Results 

Behavioral data 

Declarative memory (story recall) 

First, we verified whether immediate recall (at the evening) significantly differed 

from morning recall. According to the paired sample t-test a significant difference 

emerged reflecting forgetting from evening to morning (mean evening score = 6.68, SD 

= 4.32; mean morning score = 5.46, SD = 4.36; t(25) = 2.721, p = .011).  
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Non-declarative memory (ASRT) 

We conducted a repeated measure ANOVA on the 5 epochs of the first session with 

TRIPLET (high- vs. low-frequency) and EPOCH (1-5) as within subject factors and 

ACCs as the dependent variable. The main effect of TRIPLET was significant [F(1, 24) 

= 43.96, η2p = .65, p < .001] indicating statistical learning, that is, higher ACCs for the 

high frequency triplets compared with the low-frequency ones (90.10% vs. 87.40%, 

respectively). The main effect of EPOCH was also significant [F(4, 96) = 4.17, η2p = 

.15, p = .004], indicating that accuracy decreased across epochs (Fig. 1/A). The TRIPLET 

x EPOCH interaction showed a trend [F(4, 96) = 2.17, η2p = .08, p = .077]: the ACC for 

high frequency triplets decreased less, than for low frequency triplets.   

Regarding RT, we conducted a similar repeated measure ANOVA on the 5 epochs 

of the first session with TRIPLET (high- vs. low-frequency) and EPOCH (1-5) as within 

subject factors and RTs as the dependent variable. The main effect of TRIPLET was 

significant [F(1,24) = 61.20, η2p = .72, p < .001], indicating statistical learning, that is, 

shorter RTs for high-frequency triplets compared with the low-frequency ones. The main 

effect of EPOCH was also significant [F(1.98,46.78) = 73.04, η2p = .75, p < .001], due 

to reduced RTs across epochs, that reflects general skill learning. The TRIPLET x 

EPOCH interaction was not significant [F(2.67,63.53) = 1.93, η2p = .07, p = .14], 

indicating that statistical learning was similar across the epochs(Fig. 1/B).  

To investigate the offline changes of statistical learning we compared the ACCs of 

the last epoch of Session 1 (Epoch 5) with the ACCs of the epoch of Session 2 (Epoch 6). 

These variables were submitted to a repeated measures ANOVA with TRIPLET (high- 

vs. low-frequency) and EPOCH (last epoch of Session 1 and epoch of Session 2) as 

within-subject factors. The ANOVA yielded a significant main effect of TRIPLET 

(F(1,22) = 56.28, η2p = .72, p < .001), indicating that, overall, participants were more 

accurate on high frequency triplets compared to the low frequency ones. The main effect 

of EPOCH was also significant (F(1,22) = 17.80, η2p = .45, p < .001), due to more 

accurate responses in the morning compared to the evening session. The TRIPLET x 

EPOCH interaction was not significant (F(1,22) = .12, η2p = .005, p = .74) indicating that 

statistical learning measured by accuracy, remained unchanged from the evening to the 

morning (Fig. 1/A).  
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Regarding overnight changes in RTs, we compared the RTs from the last epoch of 

Session 1 (Epoch 5) with the RTs of the epoch of Session 2 (Epoch 6) by a similar 

repeated measures ANOVA. A significant main effect of TRIPLET (F(1,22) = 

55.08, η2p = .72, p < .001) was found, indicating statistical learning, that is, RTs were 

shorter for high frequency triplets compared to the low frequency ones. The main effect 

of EPOCH was also significant (F(1,22) = 17.18, η2p = .44, p < .001), such that RTs 

decreased across epochs. The TRIPLET x EPOCH interaction was not significant 

(F(1,22) = 1.72, η2p = .07, p = .20), indicating that statistical learning as measured by 

RT, remained unchanged from the evening to the morning (Fig. 1/B).  

 

Figure 2.1 The results of statistical learning on accuracy (A) and reaction time (B) measures. 

Accuracy (A) and RT for correct responses (B) can be seen as a function of epoch (1-6) and trial type (high- 

vs. low-frequency triplets). Black circles: high-frequency triplets. White squares: low-frequency triplets. 

The gap between the curves indicates the statistical learning performance. Error bars indicate standard error 

of mean (SEM). 

 

Associations between behavioral performance and SWS spectral power 

Declarative Memory (story recall) 

SWS spectral power in the delta range showed a positive correlation with the evening 

story recall score (r = .59, p = .001, Fig. 2A), whereas a negative correlation was found 

with the theta band (r = -.65, p < .001, Fig. 2B). All other frequency bands showed non-

significant (ps > .68) correlations with the evening score. Similar correlations were found 

between the morning story recall score and band-wise spectral power measures (delta: r 

= .472, p = .02, theta: r = -.52, p = .006), all other ps > .38. No significant correlations 

were found between spectral power measures (all ps > .59) and overnight memory 

consolidation (i.e., the change in performance from evening to morning). 
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Figure 2.2 Correlation between slow wave sleep delta (A) and theta (B) power spectrum and 

immediate (evening) story recall performance. 

 

To control for the confounding factor of age that might influence both memory 

performance and SWS, we conducted a regression analysis with evening (immediate) 

story recall performance as the dependent factor, and age and SWS delta spectral power 

as separately entered independent variables. In the first model, performance in story recall 

was significantly associated with age (Std. beta = .57, p = .002). In the second model 

where both age and delta spectral power were entered, age (Std. beta = .40, p = .018), and 

delta power (Std.beta = .46, p = .009) were both significant predictors of immediate story 

recall. We conducted the same regression analysis with evening story recall performance 

as dependent variable, and age and SWS theta power as separately entered independent 

variables. In the final model, age was not significantly associated with story recall 

performance (Std. beta = .29, p = .11), but theta power remained a significant predictor 

(Std.beta = .-53, p = .006). Both delta and theta power increased the explained variance 

of evening recall beyond the explained variance of age. Model parameters are detailed in 

Table 2.  

 

Table 2.2 Linear regression models with evening story recall performance as dependent 

variable 

Entered variables in linear regression 

models 

Std. beta t value p value Model Summary 

Model 1 

Age 

 

.57 

 

3.41 

 

.002 

Adj. R2 = .30, p = .002  
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Model 2 

Age 

SWS delta power 

 

.40 

.46 

 

2.54 

2.88 

 

.018 

.009 

Adj. R2 = .46, p = .009 

Model 3 

Age 

SWS theta power 

 

.29 

-.53 

 

1.67 

-3.06 

 

.11 

.006 

Adj. R2 = .48, p = .006 

 

Bin-wise correlations between story recall performance and power spectrum 

To explore in more detail the oscillatory activity associated with declarative learning, 

we performed a post-hoc, bin-wise analyses within the delta and theta range in relation to 

evening memory performance. As plotted in Fig. 3, the spectral power in 1.25-1.5 Hz 

frequencies was positively, whereas frequency bins between 4-7 Hz were negatively 

associated to evening recall. 

 

Figure 2.3 Bin-wise correlation coefficients between 1 and 8 Hz spectral power and evening story 

recall performance. Gray background illustrates statistically significant (p < .05) correlations, light gray 

background illustrates trend (p < .1).  
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Non-declarative memory (ASRT) 

SWS spectral power measures were not associated with the statistical learning score 

in the evening (based on the last, fifth epoch) (all ps > .22), or in the morning session (all 

ps > .41) in terms of ACC. Moreover, spectral power measures were not associated with 

overnight consolidation (all ps > .25) of statistical learning (overnight change in ACC). 

Similarly, no significant correlations emerged between statistical learning performance 

in the evening (all ps > .25), or in the morning session (all ps > .11) in terms of RT, and 

spectral power measures were not associated with overnight consolidation (all ps > .28) 

(overnight change in RT). 

Unlike statistical learning, SWS spectral power measures were associated with 

general skill learning in case of ACCs. Similarly to story recall, SWS spectral power in 

the delta range showed a positive correlation with the average ACCs (averaged across 

high- and low-frequency triplets) assessed in the evening (based on the last, fifth epoch, 

r = .44, p = .028), whereas a negative correlation was found with theta band power (r = - 

.433, p = .03). All other frequency bands showed non-significant (ps > .45) correlations 

with the average ACCs in the evening. Similarly, although stronger correlations were 

found between the morning ACCs and band-wise spectral power measures (delta: r = 

.658, p = .001; theta: r = -.668, p < .001, all other ps > .47). No significant correlations 

were found between spectral power measures (all ps > .25) and overnight change in 

average ACCs (i.e., consolidation of general skill learning).     

In case of general skill learning indexed by averaged RTs for high- and low- 

frequency triplets, no significant correlations emerged between skill learning and spectral 

power (all ps > .10). Neither we found significant correlations between the overnight RTs 

change and spectral power measures, although theta band power correlated with overnight 

change on a trend level (r = -.391, p = .07, all other ps > .12). 

Similarly to story recall, we controlled for the confounding factor of age that might 

influence both memory performance and SWS. First, we conducted a regression analysis 

with average evening ACCs as the dependent factor, and age and SWS delta spectral 

power as separately entered independent variables. In the first model, ACCs was 

significantly associated with age [Std. beta = .51, p = .009; Adj. R2 = .23, F(1,23) = 8.24 

p = .009].  In the second model, the influence of age remained significant [Std. beta = .38, 

p = .05], but delta power was not a significant predictor [Std.beta = .29, p = .14] of ACCs. 
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This model was also significant [Adj. R2 = .27, F(2,24) = 5.51 p = .011], but the R2 change 

(.07) was not significant [F(1,22) = 2.31, p = .14] indicating that the inclusion of delta 

power as a predictor did not significantly improve the model. We conducted the same 

regression analysis with average evening ACCs as dependent variable, and age and SWS 

theta power as separately entered independent variables. In the third model where both 

age and theta spectral power were entered, neither age (Std. beta = .36, p = .11), nor theta 

power (Std.beta = -.26, p = .24) were significant predictors of ACCs. This model was also 

significant (Adj. R2 = .25, F (2,24) = 4.93  p = .017), but the R2 change (.05) was not 

significant (F (1,22) = 1.46, p = .24), indicating that the inclusion of theta power as a 

predictor did not significantly improve the model. 

 

Analysis of the primary snoring subjects 

 To verify whether the above correlations were not produced due to impaired 

learning specifically within the OSA (n = 4) subgroup, we performed the same analyses 

based on the data of the primary snoring subgroup only (n = 23). The exclusion of the 

OSA patients did not modify our results in case of the declarative and the non-declarative 

learning task. Delta power positively (r = .62, p = .002) and theta power negatively (r = -

.67 p = .001) correlated with declarative learning capacity and general skill learning (delta 

range: r = .59, p = .004; theta range: r = - .47, p = .03). Whereas the associations in case 

of declarative learning were significant beyond the influence of age, the correlations 

between SWS spectral power and skill learning were not significant after controlling for 

age. (see the Supplemental Material for a detailed description).      

 

Discussion 

The principal aim of this study was to examine the associations between SWS-

specific oscillatory activity and memory consolidation within a group of children with 

SDB. Inter-individual variability of post-learning, night-time SWS spectral power did not 

predict overnight changes in performance either in case of a declarative or in a non-

declarative learning task. Whereas no associations were found between SWS spectral 

power and indices of memory consolidation, delta and theta power were associated with 

declarative learning capacity. Delta power during post-learning SWS was positively 
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associated with short- and long-term memory retention, assessed immediately after 

encoding, and after a night-time sleep, respectively. On the other hand, faster oscillatory 

activity, indexed by the theta range was a negative correlate of short-and long-term 

memory performance. Given that both memory performance and SWS spectral power 

might be substantially influenced by cortical maturation, we also considered the effects 

of age. The associations between SWS power and declarative memory performance 

remained significant and accounted for a large portion of the variance (16 % for delta and 

18 % for theta) beyond the effects of age. In contrast, non-declarative statistical learning 

was not associated with SWS spectral power measures.  

Our results indicate that slow frequency activity, in particular oscillations around 1 

Hz are associated with better declarative learning capacity, whereas higher frequency 

activity between 4 and 7 Hz correlate with poorer performance among children with SDB. 

Two earlier studies (Jussila et al., 2016; Kheirandish-Gozal et al., 2007) reported 

attenuated slow frequency activity in children with SDB. Abnormal respiratory patterns 

could result in subtle changes in sleep physiology that might not be revealed by 

conventional macrostructural measures. Our findings suggest that the predominance of 

slow frequency (~ 1 Hz) activity, as well as the reduction of faster (4-7 Hz) theta 

oscillations during SWS reflect better memory performance in children with SDB. Slow 

frequency activity of NREM sleep, quantified by the CAP A1 was consistently linked to 

better cognitive outcomes in healthy adults (Arico et al., 2010; Drago et al., 2011; Ferri 

et al., 2010) and children (Bruni et al., 2012). Given that slow frequency oscillations (with 

spectral power between 0.25 and 2.5 Hz) are the main contributors of the visually detected 

CAP A1 subtypes (Ferri, Bruni, Miano, & Terzano, 2005), our findings indicating better 

declarative memory performance in relation to slower, and worse performance associated 

with faster frequencies, are in line with the concept of slow oscillations during SWS as 

sensitive biomarkers of healthy cognition (Tononi & Cirelli, 2006) or even 

neurodegeneration (Maestri et al., 2015). A large number of studies linked slow 

oscillations (~ 1 Hz) to sleep-dependent memory consolidation (for an extensive review 

see (Rasch & Born, 2013); moreover, reduced increase in post-training SWS seems to be 

associated with impaired declarative memory consolidation in adults with OSA (Guo et 

al., 2013).   
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Nevertheless, in our sample SWS spectral power was not associated with overnight 

changes in performance, but only with general learning capacity. This finding might 

suggest that the associations between SWS spectral power and declarative learning are 

driven by trait-dependent variance, instead of state-like effects of sleep on memory 

reprocessing. Such trait-dependent associations between cognitive measures and sleep-

specific oscillations were mainly reported for sleep spindles (Bódizs et al., 2005; 

Lustenberger, Maric, Durr, Achermann, & Huber, 2012; Ujma et al., 2014) but also for 

slow oscillations in case of parahippocampal-hippocampal recordings (Bódizs, Békésy, 

Szűcs, Barsi, & Halász, 2002). Although trait-dependent aspects might account for our 

findings, associations between SWS power and memory performance could also be 

driven by learning-induced changes in EEG oscillations, as the expression of nocturnal 

slow frequency activity is particularly sensitive to previous learning experience (Molle, 

Marshall, Gais, & Born, 2004; Tononi & Cirelli, 2006). Therefore, state-like and trait-

like effects in this study cannot be clearly discerned and should be explored in further 

investigations.  

Whereas declarative learning was related to spectral power measures of SWS, non-

declarative statistical learning and overnight change in performance were not associated 

with SWS-specific oscillations. This finding coheres with earlier studies indicating that 

non-declarative statistical learning assessed by the ASRT does not benefit from sleep 

(Nemeth et al., 2012; Nemeth, Janacsek, Londe, et al., 2010). More specifically, statistical 

learning did not produce off-line improvements in young and old participants and was not 

influenced by sleep (Nemeth, Janacsek, Londe, et al., 2010). Furthermore, adults 

diagnosed with OSA (Csabi, Varszegi-Schulz, Janacsek, Malecek, & Nemeth, 2014; 

Nemeth et al., 2012) as well as children with SDB (Csábi et al., 2013) does not seem to 

exhibit impaired non-declarative learning, suggesting that statistical learning captured by 

the ASRT is independent of the influence that sleep might have on cognitive functions. 

Although others reported sleep-dependent behavioural and neurophysiological effects 

(sleep-dependent memory consolidation) in case of similar probabilistic learning tasks 

(Durrant, Cairney, & Lewis, 2013; Durrant, Taylor, Cairney, & Lewis, 2011; Urbain et 

al., 2013), these tasks differ in their methodology and presumably, also in the underlying 

neural networks (Durrant et al., 2013; Durrant et al., 2011; Janacsek, Ambrus, Paulus, 
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Antal, & Nemeth, 2015; Nemeth, Janacsek, Király, et al., 2013; Urbain et al., 2013) that 

subtend them. 

Moreover, statistical learning within the ASRT task is implicit, and occurs without 

explicit awareness (Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b). Several 

studies indicate, that sleep-related benefits of memory consolidation are restricted to skill-

learning paradigms that require attention, intentional learning (Wilhelm et al., 2011), 

explicit (verbally accessible) representations of the sequence structure (Robertson, 

Pascual-Leone, & Press, 2004; Song & Cohen, 2014), that are clearly not present in the 

ASRT task (J. H. Howard, Jr. & Howard, 1997).  

General skill learning in terms of accuracy, but not consolidation of skill learning 

was positively related to delta and negatively to theta power in SWS (see Supplementary 

Material), resembling the association found in case of declarative learning. This finding 

might be explained by at least partly overlapping cognitive processes underlying 

declarative learning and ACC performance measures. It has been previously shown that 

declarative learning is highly reliant on controlled, attention-dependent cognitive 

processes (Eichenbaum, 2000). Similarly, accuracy performance measures have been 

suggested to rely on controlled, selective attentional processes to some extent 

(Prinzmetal, McCool, & Park, 2005). Nevertheless, the association between general skill 

learning and SWS spectra was explained by age, indicating that both ACC-related 

processes (Janacsek et al., 2012) and SWS activities (Buchmann et al., 2011) undergo 

robust age-related changes within this age range. 

Some limitations of this study should be considered. First of all, although slow 

frequency oscillations were associated with declarative learning in our sample, we do not 

know if this correlation is specific to children with SDB, since we did not have a healthy 

control group. Given that we performed this study within the frames of a clinical 

evaluation, due to ethical and technical reasons, we did not include a baseline night 

without pre-sleep learning experience. Although the associations between delta/theta 

power and learning capacity suggest a trait-like effect, trait-dependent and state-

dependent effects cannot be differentiated since learning experience might also influence 

oscillatory activity of post-learning SWS. Our analyses focused on spectral power 

specifically during SWS, due to the predominance such oscillations during that sleep 

stage. Spectral activity during Stage 2 sleep might have also contributed to our analyses, 
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however, due to a large number of technical artefacts in some participants during the last 

third of the night (comprising mainly Stage 2 and REM sleep), we have decided to focus 

exclusively on SWS sleep.  

 In spite of these limitations, this study indicates that among children with SDB, 

slow frequency oscillations within the delta and theta band during SWS are related to 

declarative learning capacity, but are independent of non-declarative, statistical learning. 

These preliminary findings emphasize the relevance of oscillatory activity of SWS on 

specific cognitive processes, and contribute to the characterization of cognitive functions 

and deficits of children with SDB. Future studies should further characterize which 

memory systems are specifically affected by fragmented sleep, and disentangle trait-

dependent and state-dependent aspects of the interrelations between sleep and cognitive 

performance.  
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Frontal-midline theta frequency and probabilistic learning: A 

transcranial Alternating Current Stimulation study11 

 

Abstract 

Probabilistic learning is a fundamental cognitive ability that extracts and represents 

regularities of our environment enabling predictive processing during perception and 

acquisition of perceptual, motor, cognitive, and social skills. Previous studies show 

competition between neural networks related to executive function/working memory vs. 

probabilistic learning. Theta synchronization has been associated with the former while 

desynchronization with the latter in correlational studies. In the present paper our aim was 

to test causal relationship between fronto-parietal midline theta synchronization and 

probabilistic learning with non-invasive transcranial alternating current (tACS) 

stimulation. We hypothesize that theta synchronization disrupts probabilistic learning 

performance by modulating the competitive relationship. Twenty-six young adults 

performed the Alternating Serial Reaction Time (ASRT) task to assess probabilistic 

learning in two sessions that took place one week apart. Stimulation was applied in a 

double-blind cross-over within-subject design with an active theta tACS and a sham 

stimulation in a counter-balanced order between participants. Sinusoidal current was 

administered with 1 mA peak-to-peak intensity throughout the task (approximately 20 

minutes) for the active stimulation and 30 seconds for the sham. We did not find an effect 

of fronto-parietal midline theta tACS on probabilistic learning comparing performance 

during active and sham stimulation. To influence probabilistic learning, we suggest 

applying higher current intensity and stimulation parameters more precisely aligned to 

endogenous brain activity for future studies. 

 

Keywords: statistical learning, transcranial electric stimulation, procedural learning, 

neural oscillations, competition   

                                                 
11 Zavecz, Z., Horváth, K., Solymosi, P., Janacsek, K., & Nemeth, D. (2020). Frontal-midline theta 

frequency and probabilistic learning: A transcranial Alternating Current Stimulation study. Behavioural 

Brain Research, 112733. 
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Introduction 

Probabilistic learning (often referred to as statistical learning as well) is a 

fundamental cognitive ability that underlies automatic behaviors and skills, such as 

motor, linguistic or social skills and habits (C. Conway, Bauernschmidt, Huang, & Pisoni, 

2010; Fiser & Aslin, 2001; Frost, Armstrong, & Christiansen, 2019; Lieberman, 2000; 

Poldrack & Foerde, 2008; Pothos, 2007; Ullman, 2015). It facilitates the extraction of 

statistical regularities from the environment and enables predictions of environmental 

events. Several studies discussed the neural background of probabilistic learning using 

functional magnetic resonance imaging (fMRI) (Schapiro, Kustner, & Turk-Browne, 

2012; Stillman et al., 2013; Turk-Browne, Scholl, Chun, & Johnson, 2009), 

magnetoencephalography (MEG) (Paraskevopoulos, Chalas, & Bamidis, 2017), 

electroencephalography (EEG) (Kóbor et al., 2018; Tóth et al., 2017) or neuropsychology 

(Janacsek, Borbély-Ipkovich, Nemeth, & Gonda, 2018; Nemeth, Janacsek, Balogh, et al., 

2010; P. J. Reber, 2013; Takács et al., 2018). However, these studies used correlational 

methods only. In the present paper our aim was to test the causal relationship between 

brain activity and probabilistic learning by directly manipulating oscillatory activity with 

non-invasive electric brain stimulation.  

Oscillatory synchronization is a fundamental mechanism for information 

transmission between neural populations and for forming larger networks (Fries, 2005; 

Salinas & Sejnowski, 2001; Singer, 1993). For instance, theta (4-7 Hz) activity was 

consistently observed particularly within the fronto-midline areas during working 

memory and declarative memory tasks (Gevins et al., 1997; Hsieh & Ranganath, 2014; 

Jensen & Tesche, 2002; Meyer et al., 2015; Onton et al., 2005; Scheeringa et al., 2009; 

Summerfield & Mangels, 2005; Tóth et al., 2014). Tóth et al. (Tóth et al., 2017) showed 

in an EEG study that theta activity was correlated with probabilistic learning as well: 

weaker phase synchronization in theta frequency was associated with better learning 

performance. Thus, in contrast to declarative and working memory, in theta frequency, 

desynchronization, and not synchronization seems to be beneficial for probabilistic 

learning. This is in line with the competition framework in which there is an antagonistic 

relationship between fronto-hippocampal and striatal networks and related functions such 

as working and declarative memory vs. probabilistic and sequence learning (Albouy et 
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al., 2015; Albouy et al., 2008; Ashby & O'Brien, 2005; Daw et al., 2005; Poldrack et al., 

2001).   

A possible method to test causal relationships between brain networks and cognitive 

performance is brain stimulation. Transcranial Alternating Current Stimulation (tACS) is 

a suitable method to influence oscillatory brain activity (Antal et al., 2008; Antal & 

Paulus, 2013). Based on the above presented evidence for the role of theta frequency in 

prefrontal-dependent processes (including working memory) and the antagonistic 

relationship of these processes with probabilistic learning (Ambrus et al., 2019; Filoteo, 

Lauritzen, & Maddox, 2010; Janacsek et al., 2012; Nemeth, Janacsek, Polner, et al., 2013; 

Virag et al., 2015), we hypothesized that induced theta synchronization is detrimental for 

probabilistic learning. Thus, in the present paper, we used a frontal-midline theta 

frequency tACS stimulation to disrupt probabilistic learning.  

 

Methods 

Participants 

Twenty-six young adults (19 females) were selected from a large pool of 

undergraduate students from the Eötvös Loránd University in Budapest 

(MAge = 21.38 years, SD = 1.52 years; MYears of education = 14.46 years, SD = 1.45 years). 

Participants had no previous history of neurological, psychiatric or cardiovascular 

disorders, brain injuries and they had no metal implants in the head or neck area. They 

reported not taking any substances that affect the nervous system. All participants 

completed all sessions: two sessions with different stimulation conditions (sham vs. active 

stimulation) during the probabilistic learning task and an additional session for other 

neuropsychological tests. They were naïve regarding the exact purpose of the study and 

did not know in which session they were assigned to receive active or sham stimulation. 

Participants gave written and verbal informed consent before participating and received 

course credits for taking part in the experiment. The experiment was in accordance with 

the guidelines of the Declaration of Helsinki, and was approved by the ethics committee 

of the Eötvös Loránd University, Budapest, Hungary (identifier: 2016/120). 
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Experimental Design 

This study utilized a within-subject, cross-over design consisting of two stimulation 

sessions: 1 mA active tACS stimulation and sham stimulation (Fig. 1). These sessions 

took place one week apart from each other, starting at the same time of the day to 

eliminate time-of-day effects. The order of the sessions was counterbalanced across 

participants, and the stimulation was double-blinded. Therefore, neither the main 

investigator nor the participant was aware of the current stimulation condition. A second 

investigator who was not involved in the interaction with participants was responsible for 

setting the stimulation only. The stimulation was administered simultaneously with the 

probabilistic learning task (Alternating Serial Reaction Time, ASRT task). In the two 

sessions, participants learned two different, partly overlapping sequences. The overlap 

was controlled across participants (see Probabilistic learning section in Tasks for details).  

 

Figure 3.1 Overview of the experimental design and stimulation parameters. A) Task and experimental 

design. The stimulation was carried out in a double-blind, placebo-controlled crossover design. Healthy 

young adults participated in two sessions (one week apart) during which they received 1 mA active theta 

frequency tACS stimulation, or sham stimulation in a counterbalanced order. Active tACS stimulation was 

administered throughout the task (approximately 20 minutes), while sham stimulation lasted only 30 

seconds. In both cases there were 30 seconds ramp up and ramp down periods. Participants completed the 

Alternating Serial Reaction Time (ASRT) task both times to assess probabilistic learning performance. In 

this task, pattern elements alternate with random ones, constituting a probabilistic sequence, in which some 

runs of three consecutive trials (“triplets”) occur more frequently than others. We refer to probabilistic 

learning as a performance difference between high-probability compared to low-probability triplets. 

Participants learned two different probabilistic sequences during the two sessions. B) Electrode setup and 

current simulation.  A battery driven constant current stimulator delivered a sinusoidal alternating current 
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stimulation to the participant’s scalp via two 5 cm × 5 cm electrodes placed over positions Fpz and Pz 

according to the international 10-20 system. TACS was applied at a peak-to-peak current intensity of 1 mA 

oscillating at 6 Hz. To model tACS, we performed a simulation on a template head model by using a free 

software package called Simulation of Non-invasive Brain Stimulation (for details, see section 

‘Transcranial Alternating Current Stimulation (tACS)’ in the main text). The spatial distribution of the 

absolute electric field magnitudes in the gray-matter compartment is in mV/mm. We used a robust 

maximum (99.9th percentile) of the absolute values for the scale limit. Lateral (top), top (bottom left) and 

superior lateral (bottom right) views are presented. The mean and maximal electric field strength of the 

robust maximum in the frontal, paracentral (pre- and post-central and central gyri and sulci) and parietal 

(superior gyri and sulci) regions were 0.088, 0.096, 0.083, 0.093, 0.072, 0.074 V/m respectively. 

 

Tasks 

Probabilistic learning - The Alternating Serial Reaction Time (ASRT) task (J. H. 

Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe, et al., 2010) was used to measure 

probabilistic sequence learning. In this task, a stimulus (a dog’s head) appeared in one of 

the four empty circles on the screen, and participants had to press the corresponding 

button as fast and as accurately as possible (Fig. 1A). The target remained on the screen 

until the participant pressed the correct button. The response-to-stimulus interval (RSI) 

was 120 ms. The computer was equipped with a special keyboard with four marked keys 

(Z, C, B and M on a QWERTY keyboard), each corresponding to one of the horizontally 

aligned circles. The ASRT task consisted of 20 blocks, with 85 trials per block. The first 

five stimuli were random for practice purposes, then an eight-element alternating 

sequence was repeated ten times. The alternating sequence was composed of fixed 

sequence (pattern) and random elements (e.g., 2-R-4-R-3-R-1-R, where each number 

represents one of the four circles on the screen and “R” represents a randomly selected 

circle out of the four possible ones). As one block took 1-1.5 min, the whole task took 

approximately 20-25 min. 

Due to the alternating sequence in the ASRT task, some triplets or runs of three 

consecutive events are more probable (high-probability triplets) than others (low-

probability triplets). For example, in the abovementioned sequence (2-R-4-R-3-R-1-R), 

2-X-4 is a high-probability triplet (where X denotes to any of the four possible positions), 

since the first and the third elements can either be a pattern or a random stimulus. 

However, 2-X-1, 2-X-2, and 2-X-3 are low-probability triplets, since the first and the 
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third elements can only be a random stimulus. Therefore, for analyzing the data we 

determined whether each trial was the last element of a high-probability or a low-

probability triplet. Note that in this way, we determine the probability of each triplet 

throughout the task in a sliding window manner (i.e., one stimulus is the last element of 

a triplet, but also the middle and the first element of the consecutive triplets). The high-

probability triplets are five times more predictable than the low-probability triplets. 

Therefore, the last element of a triplet is more predictable in high-probability triplets 

compared to low-probability ones. Previous studies have shown that as people practice 

the ASRT task, they come to respond more quickly and more accurately to the high-

probability triplets compared to low-probability triplets, revealing probabilistic learning 

(Howard et al., 2004; Howard and Howard, 1997b; Janacsek, Fiser, and Nemeth, 2012; 

Nemeth et al., 2010; Song, Howard, and Howard, 2007).  

The ASRT task was performed in two sessions during the experiment, with 20 blocks 

in each session. For this, pairs of sequences were created, where the two sequences shared 

2 position orders out of the 4 (e.g., 2-R-4-R-3-R-1-R and 2-R-4-R-1-R-3-R, see Fig. 1A) 

which results in a 25% overlap in high-probability triplets between the sequences. One of 

these pairs of sequences was randomly assigned to each participant to keep constant the 

overlap in the two sequences amongst participants.  

Finally, it is important to note that participants were unaware of the underlying 

alternating sequence structure, thus they acquired the probabilistic regularities 

incidentally and that knowledge remained implicit throughout the task. This was 

confirmed using a short questionnaire (Nemeth, Janacsek, Londe, et al., 2010; Song et al., 

2007b) after the second stimulation session. The questionnaire included the following two 

increasingly specific questions: “Have you noticed anything special regarding the task?”, 

“Have you noticed some regularity in the sequence of stimuli?”. The experimenter rated 

subjects' answers on a 5-point scale where 1 denoted “Nothing noticed” and 5 denoted 

“Total awareness”.  None of the participants reported noticing regularities in the ASRT 

task. 

 

Transcranial Alternating Current Stimulation (tACS) 

A commercial, battery driven constant current stimulator (DC-Stimulator Plus, 

NeuroConn, Ilmenau, Germany) delivered a sinusoidal alternating current stimulation to 
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the participant’s scalp via two 5 cm × 5 cm electrodes. The electrodes were covered with 

a thin layer of electrode gel and were placed over positions Fpz and Pz according to the 

international 10-20 system (Fig. 1B). This frontal-midline electrode montage choice was 

based on a previously reported stimulation design (Chander et al., 2016). Impedances 

were kept below 30 kΩ (average impedance was 8.25±3.83 kΩ). TACS was applied at a 

peak-to-peak current intensity of 1 mA oscillating at 6 Hz. While recent papers suggest 

using higher current intensity (Vöröslakos et al., 2018), these intensities can cause intense 

discomfort. In our study, to ensure that all participants complete both sessions and to 

maintain blindness of the participants to the stimulation settings, we decided to use a 

smaller current intensity that was proven successful in previous studies (Ambrus et al., 

2015; Polanía, Nitsche, Korman, Batsikadze, & Paulus, 2012; Wischnewski, Zerr, & 

Schutter, 2016). To avoid possible discomfort during the onset of tACS, the stimulation 

current was gradually ramped up from 0 to 1.0 mA over a period of 30 s. After the 30 s 

ramp up, the stimulation intensity was maintained for the length of the task 

(approximately 20 minutes) in case of the active stimulation condition. To control for 

tACS-unspecific effects (such as fatigue and beliefs of the participant), there was a sham 

(placebo) stimulation condition, consisting of 30 s of stimulation following the 30 s ramp 

up.  In both conditions there was a 30 s ramp down period after the stimulation.  

To model tACS, we performed a simulation on a template head model by using a free 

software package called Simulation of Non-invasive Brain Stimulation (SimNIBS; 

version 2.1.2, Fig. 1B). SimNIBS generates anatomically realistic, multi-compartment 

head models from structural magnetic resonance imaging by using the finite element 

method. The head mesh entailed ca. 3,500,000 tetrahedral elements and five 

compartments. We used standard, isotropic conductivity values for the compartments, all 

values are expressed in S/m: white matter = 0.126; gray matter = 0.275; cerebrospinal 

fluid = 1.654; bone = 0.01; scalp = 0.465; eyes = 0.5; silicon rubber electrode = 29.4; 

conductive medium = 1.0. The physical dimensions of both electrodes were 50 × 50 mm 

and 4 mm thick. The thickness of the conductive medium was set to 2 mm. The electric 

field was modeled by using 0.5 mA peak to baseline intensities. To quantify the strength 

of the induced electric field in particular brain areas, we used the parcellation of human 

cortical gyri and sulci proposed by Destrieux, Fischl, Dale, and Halgren (2010). We 

computed the mean and maximal electric field strength of the robust maximum (99.9th 
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percentile) in the following regions of interest (ROIs): frontal (superior, middle and 

orbital gyri and sulci), paracentral (pre- and post-central and central gyri and sulci), and 

parietal (superior gyri and sulci). The electric field strength was Meanmax = 0.088 V/m, 

Maxmax = 0.096 V/m in the frontal, Meanmax = 0.083 V/m, Maxmax = 0.093 V/m in the 

paracentral and Meanmax = 0.072 V/m, Maxmax = 0.074 V/m in the parietal regions. 

 

Statistical analysis 

Statistical analyses were carried out with the Statistical Package for the Social 

Sciences version 22.0 (SPSS, IBM) and JASP Version 0.11.1 (Team, 2019). To facilitate 

data processing, the blocks of ASRT were organized into four epochs of five blocks in 

each session. The first epoch contained blocks 1–5, the second epoch contained blocks 

6–10, etc. We calculated mean accuracy scores (ACCs) for all responses and median 

reaction times (RTs) for correct responses only, separately for high- and low-probability 

triplets and for each subject and each epoch. Note that for each trial we defined whether 

it was the last element of a high- or a low-probability triplet. Two kinds of low-probability 

triplets were eliminated from the analysis: repetitions (e.g., 222 and 333) and trills (e.g., 

212 and 343), as people often showed pre-existing response tendencies to them (Howard 

and Howard, 1997a; Howard et al., 2004, Howard and Howard, 1997a; Nemeth et al., 

2010; Song et al., 2007). 

Overall RTs significantly differed between the two sessions (as revealed by the 

significant main effect of SESSION in the repeated-measures ANOVA on RTs with 

SESSION (First vs. Second), EPOCH (1-4) and TRIPLET TYPE (High vs. Low) as 

within-subject factors: F(1, 25) = 39.510, p < .0001, η²P = .612): participants were faster 

when completing the task for the second time (MRT = 369.70, SEM = 5.31, MRT = 336.20, 

SEM = 5.29 for the first and the second session, respectively). Therefore, we calculated 

z-scores within each subject in each session to eliminate the effects of different baseline 

speeds when comparing performance between the two sessions. A similar ANOVA 

computed on accuracy data revealed no significant difference between the two sessions 

(main effect of SESSION: F(1, 25) = 0.376, p = .545, η²P = .015). 

For each epoch, we calculated learning scores both for RT and ACC data. For RT, 

the learning score was calculated as the difference between the z-transformed RTs for 

low-probability triplets minus the z-transformed RTs for high-probability triplets. For 
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ACC, the learning score was calculated as the raw ACCs for high-probability triplets 

minus the raw ACCs for low-probability triplets. In both cases higher learning scores 

indicated better learning. To evaluate changes in probabilistic learning as a function of 

stimulation, we conducted mixed-design analyses of variance (ANOVAs) separately for 

the RT and ACC learning scores with STIMULATION (Sham vs. Active) and EPOCH 

(1-4) as within-subject factors and ORDER (Sham first vs. Stimulation first) as a 

between-subject factor. We included the ORDER between-subject factor to ensure that 

the order in which participants received sham and active stimulation did not influence the 

effects of stimulation. Greenhouse–Geisser epsilon (ε) correction was used when 

necessary. Original df values and corrected p-values (if applicable) are reported together 

with partial eta-squared (η²P) as the measure of effect size.  

Furthermore, as suggested by Biel and Friedrich (2018) we conducted the same 

mixed-design ANOVAs separately for the RT and ACC learning scores with 

STIMULATION and EPOCH as within-subject factors and ORDER as a between-subject 

factor with a Bayesian approach as well. The Bayesian ANOVA contrasts the predictive 

performance of competing models instead of F-tests of main effects and interactions 

(Rouder, Engelhardt, McCabe, & Morey, 2016). Models were compared using BF10, 

which quantifies the evidence in favor of each model relative to the best model in the 

respective comparison. To summarize the importance of the within-subject factors across 

all models, we also performed model averaging, which provides us with evidence for 

inclusion for main effects and interactions (BFinclusion). The inclusion Bayes factor 

quantifies the change from prior inclusion odds to posterior inclusion odds and can be 

interpreted as the evidence in the data for including a predictor.  

To ensure that the partially overlapping sequence in the task between the two sessions 

did not distort the effects of the stimulation, we recomputed learning scores excluding the 

responses (RT and ACC) to those triplets that were high-probability in both sessions and 

ran frequentist and Bayesian repeated-measures ANOVAs on these modified RT and 

ACC learning scores over time and stimulation (see section ‘Does the partial overlap 

between the sequences practiced during the two stimulation sessions influence the effects 

of the stimulation?’ and Fig. S1 in the Supplementary results). Importantly, the results 

after the elimination of the overlapping high-probability triplets are identical to the results 

without the elimination of these triplets and are not discussed further in the main text. 



 

 

58 

 

 

Lastly, as a post-hoc analysis we investigated the effects of baseline performance on 

the stimulation. We ran four additional mixed-design ANOVAs (both frequentist and 

Bayesian) including a between-subject factor for good vs. poor initial/baseline 

performance in four measures of ASRT (average reaction times, reaction time learning 

scores, average accuracy, accuracy learning scores) on the learning scores over time and 

stimulation (see section ‘Does baseline performance influence the effects of the 

stimulation?’ in the Supplementary results). We did not find a differential effect of the 

stimulation in good vs. poor performers based on initial speed, accuracy, RT or ACC 

probabilistic learning.  

 

Results 

Do RT learning scores differ between stimulation conditions? 

The frequentist mixed-design ANOVA on the z-transformed RT learning scores 

revealed a significant Intercept (F(1, 24) = 66.277, p < .001, η²P = .734), suggesting that 

learning occurred in the ASRT task. The main effect of EPOCH was also significant (F(3, 

72) = 6.663, p < .001, η²P = .217), indicating that the learning scores increased throughout 

the task, independent of the stimulation condition (Fig. 2A). However, we did not find 

any significant differences between the active stimulation and sham conditions either in 

overall learning (main effect of STIMULATION: F(1, 24) = 0.093, p = .763, η²P = .004) 

or in the time course of learning (STIMULATION * EPOCH interaction: F(3, 72) = 

0.637, p = .593, η²P = .026). The order of the stimulation sessions did not seem to affect 

the overall learning scores (main effect of ORDER: F(1, 24) = 2.345, p = .139, η²P = 

.089), the trajectory of the learning scores (ORDER x EPOCH interaction: F(3, 72) = 

0.048, p = .986, η²P = .002), the effect of stimulation (ORDER x STIMULATION 

interaction: F(1, 24) = 0.974, p = .333, η²P = .039) or the trajectory of the learning scores 

during the two stimulation conditions (ORDER x EPOCH x STIMULATION interaction: 

F(3, 72) = 0.627, p = .600, η²P = .025).  
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Figure 3.2 Probabilistic learning in terms of reaction times (A) and accuracy (B) in the active 

stimulation vs. sham conditions across the four epochs of the ASRT task. There was no significant 

difference between the active stimulation in theta frequency (grey squares) and sham (black triangles) 

conditions either in overall learning or in the time course of learning. Error bars indicate the Standard Error 

of Mean (SEM).  

 

The analysis of effects (model-averaged results) of the Bayesian mixed-design 

ANOVA on the z-transformed RT learning scores showed that the main effect of Epoch 

should be included in the model (BFinclusion = 74.684), while the effects related to the 

Stimulation and the Session order should not (all BFinclusion < 1, Table 1). Thus, based on 

the Bayesian analysis of effects, the learning scores changed throughout the task, but they 

were independent of the stimulation condition or the order of the stimulation.  

 

Table 3.1 Model-averaged results of Bayesian ANOVA for RT learning scores  

Effects  P(incl) P(incl|data) BF inclusion 

Stimulation  0.737   0.170  0.073   

Epoch   0.737   0.995  74.684   

Order  0.737   0.437  0.278   

Stimulation  ✻  Epoch  0.316   0.014  0.030   

Stimulation ✻ Order  0.316   0.030  0.067   

Epoch  ✻  Order   0.316   0.023  0.051   

Stimulation  ✻  Epoch  ✻ Order  0.053   1.564e -5  2.816e -4   
Note: The Effects column denotes predictors of interest, the column P(incl) shows the prior inclusion 

probability, P(incl | D) shows the posterior inclusion probability, and BFInclusion shows the inclusion Bayes 

factor. 
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As our primary interest was the effect of the stimulation on probabilistic learning and 

the number of models was too high with the ORDER between-subject factor, as well as 

there was no evidence to include that factor, we recomputed the Bayesian ANOVA with 

only the STIMULATION and EPOCH as within-subject factors. Based on this Bayesian 

ANOVA, the best model for our data was with only the main effect of Epoch (Table 2). 

This model with the main effect of Epoch was ~6.5 times more likely than any model 

including the effect of the Simulation. Altogether the Bayesian ANOVA for the RT 

learning scores provides evidence for the model with only the main effect EPOCH to 

explain best our data. This suggests that while the learning scores changed during the 

task, this was independent of the stimulation condition and the order of the stimulation 

condition. 

 

Table 3.2 Bayesian model comparisons for RT learning scores 

Models  P(M) P(M|data) BF M BF 10 error % 

Epoch   0.200  0.853   23.178   1.000     

Stimulation + Epoch   0.200  0.129   0.595   0.152   1.559   

Null model   0.200  0.013   0.052   0.015   2.618   

Stimulation + Epoch + Stim.  ✻  Epoch   0.200  0.004   0.017   0.005   0.610   

Stimulation   0.200  0.0006   0.003   0.0008   0.978   

Note: All models include Subject. The Model column shows the predictors included in each model, the 

P(M) column the prior model probability, the P(M | D) column the posterior model probability, the BFM 

column the posterior model odds, and the BF10 column the Bayes factors of all models compared to the best 

model. The final column, ‘error’ is an estimate of the numerical error in the computation of the Bayes 

factor. All models are compared to the best model and are sorted from highest Bayes factor to lowest. 

 

Do ACC learning scores differ between stimulation conditions? 

The frequentist mixed-design ANOVA on the ACC learning scores revealed a 

significant Intercept (F(1, 24) = 62.307, p < .001, η²P = .722), suggesting that learning 

occurred in the ASRT task. The main effect of EPOCH showed a trend (F(3, 72) = 2.237, 

p = .091, η²P = .085), indicating that the learning scores increased throughout the task, 

independent of the stimulation condition (Fig. 2B). We did not find significant differences 

between the active stimulation and sham conditions either in overall learning (main effect 
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of STIMULATION: F(1, 24) = 0.054, p = .819, η²P = .002) or in the time course of 

learning (STIMULATION * EPOCH interaction: F(3, 72) = 1.065, p = .359, η²P =.042). 

The order of the stimulation sessions did not seem to affect the overall learning scores 

(main effect of ORDER: F(1, 24) = 1.874, p = .184, η²P = .072), the trajectory of the 

learning scores (ORDER x EPOCH interaction: F(3, 72) = 0.249, p = .862, η²P = .010), 

the stimulation (ORDER x STIMULATION interaction: F(1, 24) = 1.831, p = .189, η²P 

= .071) or the trajectory of the learning scores during the two different stimulation 

condition (ORDER x EPOCH x STIMULATION interaction: F(3, 72) = 1.731, p = .182, 

η²P = .067). 

The analysis of effects (model-averaged results) of the Bayesian mixed-design 

ANOVA on the ACC learning scores showed that none of the effects related to Epoch, 

Stimulation or Session order should be included in the model (all BFinclusion < 1, Table 3). 

Thus, based on the Bayesian analysis of effects, the learning scores were stable 

throughout the task and they were independent of the stimulation condition or the order 

of the stimulation.  

 

Table 3.3 Model-averaged results of Bayesian ANOVA for ACC learning scores 

Effects  P(incl) P(incl|data) BF inclusion 

Stimulation  0.737   0.089  0.035   

Epoch   0.737   0.220  0.101   

Order  0.737   0.618  0.578   

Stimulation  ✻  Epoch  0.316   0.005  0.011   

Stimulation  ✻  Order  0.316   0.014  0.031   

Epoch  ✻  Order  0.316   0.005  0.012   

Stimulaltion  ✻  Epoch  ✻  Order  0.053   2.526e -5  4.547e -4   
Note: The Effects column denotes predictors of interest, the column P(incl) shows the prior inclusion 

probability, P(incl | D) shows the posterior inclusion probability, and BFInclusion shows the inclusion Bayes 

factor. 

 

Again, as our primary interest was the effect of the stimulation on probabilistic 

learning and the number of models was too high with the ORDER between-subject factor, 

as well as there was no evidence to include that factor, we recomputed the ANOVA with 

only the STIMULATION and EPOCH within-subject factors. This Bayesian ANOVA 

showed that the best model for our data is the Null model (Table 4). This Null model is 

~6 times more likely than any model including the Stimulation factor. Altogether the 
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Bayesian ANOVA for the ACC learning scores provides evidence for the Null model to 

explain best our data. This suggests that learning scores were stable throughout the task 

and were independent of epochs, the stimulation condition and the order of the stimulation 

condition.  

 

Table 3. 4 Bayesian model comparisons for ACC learning scores 

Models  P(M) P(M|data) BF M BF 10 error % 

Null model   0.200  0.533   4.566   1.000     

Epoch   0.200  0.328   1.956   0.616   0.523   

Stimulation   0.200  0.081   0.353   0.152   1.680   

Stimulation + Epoch   0.200  0.050   0.210   0.093   2.373   

Stimulation + Epoch + Stim.  ✻  Epoch   0.200  0.008   0.031   0.014   1.860   

Note: All models include Subject. The Model column shows the predictors included in each model, the 

P(M) column the prior model probability, the P(M | D) column the posterior model probability, the BFM 

column the posterior model odds, and the BF10 column the Bayes factors of all models compared to the best 

model. The final column, ‘error’ is an estimate of the numerical error in the computation of the Bayes 

factor. All models are compared to the best model and are sorted from highest Bayes factor to lowest. 

 

To reveal possible patterns in the stimulation effects, we visualized individual 

learning score trajectories for both stimulation conditions separately for RT and ACC 

learning scores (see section ‘Are there any obvious patterns in the stimulation effects for 

different individuals?’ and Fig. S2-S3 in Supplementary materials). Furthermore, to 

explore visually whether the order of the conditions influenced the effect of stimulation, 

we grouped the participants based on whether they completed the sham condition (Fig. 

S2A and S3A), or the active stimulation condition first (Fig. S2B and S3B). Altogether, 

the plots did not unravel obvious subgroups based on the difference between the active 

stimulation and sham conditions either in overall learning or in the time course of 

learning. Furthermore, the order of the stimulation did not seem to interact with the effects 

of the stimulation, further supporting the findings reported above. 
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Discussion 

In the current study, our aim was to alter probabilistic learning by applying theta 

tACS during learning in a double-blinded cross-over within-subject design. We did not 

find differences either in overall learning performance or the time course of learning 

between the active stimulation and sham conditions. Moreover, Bayesian model 

comparisons provided evidence for no effect of stimulation on the learning performance. 

Contrary to our expectations, we did not find an effect of the tACS on probabilistic 

learning. It is possible that the chosen parameters for the tACS stimulation, such as the 

fronto-parietal midline montage, the relatively weak (1 mA) current intensity, and/or the 

chosen theta frequency were not appropriate to influence probabilistic learning. 

Importantly, however, previous studies successfully influenced other cognitive functions 

(such as short term and working memory, or decision making) with stimulation 

parameters similar to ours (Chander et al., 2016; Polanía, Moisa, Opitz, Grueschow, & 

Ruff, 2015; Violante et al., 2017; Vosskuhl, Huster, & Herrmann, 2015), suggesting that 

these stimulation parameters might be effective for altering some cognitive functions but 

not others. Specifically, these studies aimed to influence prefrontal-network dependent, 

expectation/hypothesis-driven (top-down) cognitive processes. It is possible that 

stimulus-driven, bottom-up processes such as probabilistic learning can be successfully 

influenced by different frequency and/or electrode positions. Previous studies using 

similar, bottom-up tasks with deterministic sequential regularities (Serial Reaction Time 

Task, SRTT) reported alpha and beta frequencies to be successful for stimulation (Antal 

et al., 2008; Pollok, Boysen, & Krause, 2015). Antal et al. (2008) showed that alpha 

frequency tACS specifically improved motor sequence learning in contrast to beta or 

gamma frequencies over the primary motor cortex. Pollok et al. (2015) successfully 

applied both alpha and beta frequency tACS over the left primary motor cortex to improve 

motor sequence learning. Note that while these studies tested multiple frequencies to 

influence sequence learning, neither of them applied theta frequency. Importantly, these 

tasks were deterministic sequence learning tasks, which potentially rely more on motor 

representations as opposed to the ASRT task that we used in the current study, therefore 

we did not rely on these results when determining our stimulation parameters. To the best 

of our knowledge, our study was the first to test if probabilistic learning can be influenced 

by tACS and we chose theta frequency stimulation as it has been proven successful in 
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several studies investigating working memory and it has not been studied in tasks with 

acquiring regularities of stimuli. Future studies are needed to investigate whether different 

frequency bands (in particular alpha or beta) or different electrode montages (targeting 

motor cortex, or frontal or parietal areas selectively) are more suitable to influence 

probabilistic learning. 

It is also possible that desynchronization instead of synchronization with the same 

parameters would have a bigger impact on probabilistic learning (although opposite 

effect). In support of this, Alekseichuk, Pabel, Antal, and Paulus (2017) found that fronto-

parietal synchronization induced by 0° tACS did not significantly influence brain 

connectivity (measured via EEG) and working memory performance. In contrast, fronto-

parietal desynchronization induced by 180° tACS affected both connectivity and 

performance. We did not have the appropriate equipment to induce desynchronization in 

the current study, but based on the finding of Tóth et al. (Tóth et al., 2017), that 

desynchronization in theta frequency is associated with better probabilistic learning, it 

would worth testing this stimulation design in case of a probabilistic learning paradigm 

(see for example the design in (Violante et al., 2017)).  

Picking the appropriate stimulation parameters enables electrical stimulation to 

induce changes in brain activity and, therefore, possibly behavior. Thut, Schyns, and 

Gross (2011) claim that the entrainment of endogenous brain oscillations by tACS is 

possible if there is phase-alignment between the stimulation and internal oscillators. For 

this, an internal oscillator is needed, namely entrainment can occur only if there is a neural 

population that exhibits oscillations at the stimulation frequency under natural conditions. 

Moreover, the closer the external rhythm is to the internal one, the smaller the force 

needed to entrain endogenous oscillations (Pikovsky, Kurths, Rosenblum, & Kurths, 

2003). Antal and Herrmann (2016) showed that the electrical current intensity with the 

standard stimulation strengths of 1-2 mA can be sufficient to induce changes in the brain 

activity but the induced voltage gradients in the brain are small. Based on our simulation, 

the induced electric field was up to 0.1 V/m, in particular in frontal and paracentral brain 

regions in our study. Altogether, tACS with 1 mA stimulation strength (as in our study) 

will likely influence brain activity only if the chosen stimulation frequency and stimulated 

brain areas match the patterns of naturally occurring brain activity during the given task. 

Thut et al. (2017) suggested several approaches to increase the alignment between the 



 

 

65 

 

 

brain stimulation and the ongoing endogenous activity, for example, setting the 

stimulation parameters by obtaining instantaneous phase or power of oscillatory brain 

activity from simultaneous EEG/MEG recording, or using EEG/MEG recordings prior to 

interventions to detect the individual frequency of the oscillation of interest. Further 

studies with more precise alignment could clarify if fronto-parietal theta entrainment can 

influence probabilistic learning.   

Beyond the stimulation parameters, other factors could also influence the effects of 

the stimulation. We studied healthy young adults who generally perform well in cognitive 

tasks (Craik & Bialystok, 2006; Zwart, Vissers, Kessels, & Maes, 2017) and therefore 

their performance may be less susceptible to the effect of the stimulation. However, this 

is unlikely the case in our study as we also tested the effects of baseline performance on 

stimulation (see section ‘Does baseline performance influence the effects of the 

stimulation?’ in Supplementary results) and did not find differential effects of the 

stimulation in participants performing worse at the beginning of the task. Nevertheless, 

the effect of theta tACS stimulation on probabilistic learning in a population with poorer 

cognitive performance remains to be explored.  

 

 

Limitations 

Similarly to most of the previous tACS studies, we did not monitor the brain activity 

during the stimulation, therefore there is no evidence that the stimulation induced changes 

in the endogenous activity. Furthermore, offline monitoring of brain activity preceding 

the stimulation is also lacking. This design would have enabled us to pick an individual 

theta frequency for each participant. Stimulating with the frequency matching the 

participant’s dominant frequency could promote stronger stimulation effects (Antal & 

Herrmann, 2016). However, previous studies used similar tACS stimulation successfully 

to alter behavior. Lastly, as our stimulation parameters relied on previous studies that 

targeted working memory performance, a working memory control task could have been 

used to validate these parameters within the current sample. However, as our aim was not 

replication but to test the effect of simulation on probabilistic learning, we decided not to 

include other tasks in the stimulation conditions. 
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Conclusions 

To the best of our knowledge, our study was the first to apply tACS to influence 

probabilistic learning. We did not find statistically significant effects of fronto-parietal 

midline theta tACS (with ~0.1 V/m electrical field strength) on probabilistic learning 

comparing behavior during active and sham stimulation. Our results draw attention to 

possible methodological flaws in electrical stimulation experiments. It is possible that 

with greater current intensity and/or with stimulation parameters more precisely aligned 

to endogenous brain activity during probabilistic learning, stimulation effects could be 

observed.   



 

 

67 

 

 

Deconstructing Procedural Memory: Different Learning Trajectories 

and Consolidation of Sequence and Statistical Learning12 

 

Abstract 

Procedural learning is a fundamental cognitive function that facilitates efficient 

processing of and automatic responses to complex environmental stimuli. Here, we 

examined training-dependent and off-line changes of two sub-processes of procedural 

learning: namely, sequence learning and statistical learning. Whereas sequence learning 

requires the acquisition of order-based relationships between the elements of a sequence, 

statistical learning is based on the acquisition of probabilistic associations between 

elements. Seventy-eight healthy young adults (58 females and 20 males) completed the 

modified version of the Alternating Serial Reaction Time task that was designed to 

measure Sequence and Statistical Learning simultaneously. After training, participants 

were randomly assigned to one of three conditions: active wakefulness, quiet rest, or 

daytime sleep. We examined off-line changes in Sequence and Statistical Learning as 

well as further improvements after extended practice. Performance in Sequence Learning 

increased during training, while Statistical Learning plateaued relatively rapidly. After 

the off-line period, both the acquired sequence and statistical knowledge was preserved, 

irrespective of the vigilance state (awake, quiet rest or sleep). Sequence Learning further 

improved during extended practice, while Statistical Learning did not. Moreover, within 

the sleep group, cortical oscillations and sleep spindle parameters showed differential 

associations with Sequence and Statistical Learning. Our findings can contribute to a 

deeper understanding of the dynamic changes of multiple parallel learning and 

consolidation processes that occur during procedural memory formation.  

 

Keywords: Procedural learning, sequence learning, statistical learning, sleep, EEG, 

consolidation   

                                                 
12 Simor, P., Zavecz, Z., Horváth, K., Éltető, N., Török, C., Pesthy, O., Gombos, F., Janacsek, K., & 

Nemeth, D. (2019). Deconstructing procedural memory: Different learning trajectories and consolidation 

of sequence and statistical learning. Frontiers in Psychology, 9, 2708. 



 

 

68 

 

 

Introduction 

Procedural learning, the development of perceptual and motor skills through 

extensive practice is a crucial ability that facilitates efficient processing of and automatic 

responses to complex environmental stimuli. Procedural learning is evidenced by 

enhanced performance as well as functional changes in the neural network underlying 

behavior (Fletcher et al., 2005; D. V. Howard et al., 2004). Learning performance does 

not only depend on training during acquisition but also on the post-learning period 

(Doyon et al., 2009; Durrant et al., 2011; Karni et al., 1998). Nevertheless, there are 

intensive debates questioning whether the acquired memories are stabilized or enhanced 

during post-learning, off-line periods (Doyon et al., 2009; Krakauer & Shadmehr, 2006; 

Mantua, 2018; Maquet et al., 2000; Nemeth, Janacsek, Londe, et al., 2010; Pan & Rickard, 

2015; Philippe Peigneux et al., 2006; Rickard, Cai, Rieth, Jones, & Ard, 2008). Mixed 

findings emerging in this field suggest that different processes within the procedural 

learning domain may show different trajectories during learning and off-line periods. At 

least two processes underlying procedural learning can be distinguished: sequence 

learning and statistical learning (Nemeth et al., 2013; Kóbor et al., 2018). Sequence 

learning refers to the acquisition of a series of (usually 5-12) stimuli that repeatedly occur 

in the same order (with no embedded noise in deterministic sequences, or with some 

embedded noise in probabilistic sequences). In contrast, statistical learning refers to the 

acquisition of shorter-range relationships among stimuli that is primarily based on 

frequency information (i.e., differentiating between more frequent and less frequent runs 

(e.g., pairs, triplets, etc.) of stimuli. Previous research has not directly contrasted the 

consolidation of these two processes. Here, we show - using a visuomotor probabilistic 

sequence learning task - that performance in sequence learning compared to statistical 

learning (acquisition of order vs. frequency information) shows marked practice-

dependent improvements before and after off-line periods.  

Studies on sequence learning showed enhanced behavioral performance after an off-

line period spent asleep compared to an equivalent period spent awake, especially if 

individuals acquired an explicit, abstract or complex representation of the sequence 

(King, Hoedlmoser, Hirschauer, Dolfen, & Albouy, 2017; Robertson et al., 2004; 

Spencer, Sunm, & Ivry, 2006). On the other hand, learning probabilistic sequences (Song 

et al., 2007a, Nemeth et al., 2010), in contrast to deterministic ones, does not seem to 
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benefit from post-learning sleep on the behavioral level, while on a neural level, it has 

been shown that post-learning sleep is involved in the reprocessing and optimization of 

the acquired probabilistic sequential information (Peigneux et al., 2003). Importantly, in 

these probabilistic sequence learning studies the behavioral index of learning 

encompassed the acquisition of both order- and frequency-based information, thus, the 

consolidation of sequence learning and statistical learning was not examined separately 

(Song et al., 2007a, 2007b; Nemeth et al., 2010). There are several studies that 

investigated the long term retention of statistical learning (Kim, Seitz, Feenstra, & Shams, 

2009; Kobor, Janacsek, Takacs, & Nemeth, 2017; Nemeth & Janacsek, 2011), and there 

is  limited  evidence  that  statistical  learning  in  the  auditory  domain  benefits  from  

sleep (Durrant et al., 2011, 2013). Nevertheless, the consolidation, and more specifically, 

the role of sleep in statistical learning within the visuomotor domain remains largely 

unexplored.  

The Alternating Serial Reaction Time (ASRT) task is a unique tool to investigate 

statistical and sequence learning within the same experiment (Howard and Howard, 1997; 

Nemeth et al., 2013). In this perceptual-motor four-choice reaction time (RT) task, 

participants are required to respond to visual stimuli appearing on the screen. In this task, 

predetermined sequential (termed as pattern) trials alternate with random ones (e.g., 

2R4R3R1R, where numbers correspond to the four locations on the screen presented in 

the same sequential order during the entire task, and the letter R represents randomly 

chosen locations) that results in some chunks of stimuli being more frequent than others 

(see Figure 1) and enables us to measure the acquisition of both order and frequency 

information. Namely, sequence learning is defined as acquiring order information, in that 

consecutive elements in the sequence (denoted with numbers in the above example) can 

be predicted with 100% certainty based on the previous sequence element (i.e., the 2nd 

order transitional probability for the sequence trials is equal to one), while random trials 

are unpredictable (random stimuli can occur at any of the four possible locations with the 

same probability). However, as mentioned above, the alternating stimulus structure also 

results in some chunks of stimuli (three consecutive trials, called triplets) occurring more 

frequently than others (62.5% vs. 12.5%, respectively). For instance, the triplet 2X4 

(where X denotes any location out of the four possible ones) would occur more frequently 

as its first and third item can originate either from sequential/pattern or random stimuli. 
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In contrast, the triplet 2X1 would occur less frequently as this combination can originate 

only from random stimuli (for more details see Figure 1 and the section “Materials and 

Methods”). Statistical learning is defined as acquiring this frequency information [which 

also represents a 2nd order regularity, where the transitional probability is less than one; 

for more detailed explanation see (Kóbor et al., 2018)]. To disentangle sequence and 

statistical learning in the ASRT task, sequence learning is assessed by contrasting 

sequential/pattern and random stimuli, while controlling for frequency information (i.e., 

analyzing only high-frequency trials). In contrast, statistical learning is assessed by 

contrasting high- vs. low-frequency trials while controlling for order information (i.e., 

analyzing only the random trials) (Nemeth et al., 2013; Kóbor et al., 2018). The learning 

trajectories for both sequence and statistical learning can be tracked by how different 

behavioral indices, such as RT and accuracy, change over the course of the task (Howard 

et al., 2004; Nemeth et al., 2013). To the best of our knowledge, no study has yet tracked 

the temporal dynamics of learning sequential structures (order information) as well as 

statistical probabilities (frequency information) within the same experimental design 

focusing not only on the learning phase but also on consolidation and on further 

performance changes in a post-consolidation testing phase. 

Although sequence learning and statistical learning seem to require different 

cognitive mechanisms (Nemeth et al., 2013) in everyday learning scenarios, humans 

might rely simultaneously on both forms of learning. Nevertheless, previous studies 

investigated the consolidation of these processes in separate task conditions. Therefore, 

the first aim of our study was to examine the consolidation of sequence learning and 

statistical learning simultaneously, in the same experimental context. Previous studies 

suggest that sequence learning may, whereas statistical learning may not benefit from 

post-learning sleep or more specific oscillatory activity (slow wave activity and spindles); 

however, these studies applied awake control groups engaged in daytime activities during 

the off-line periods (King et al., 2017).  

As the amount of interference might influence off-line memory processing (Mednick 

et al., 2011), our second aim was to examine the off-line change of sequence learning and 

statistical learning after three different post-learning conditions: active wakefulness, quiet 

rest, and daytime sleep. We hypothesized that sequence learning would be enhanced after 

sleep and quiet rest (i.e., due to low interference) compared to active wakefulness, 
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whereas off-line change in statistical learning would be independent from the post-

learning condition.  

Although post-learning sleep seem to facilitate learning capacity in different 

cognitive domains (Feld & Diekelmann, 2015), several studies indicate that not sleep per 

se, but specific oscillations during sleep facilitate post-sleep improvements in behavioral 

performance (Rasch and Born, 2013). Among these oscillations, slow waves and sleep 

spindles emerge as important candidates that reflect processes of memory consolidation 

and synaptic plasticity (Diekelmann & Born, 2010; Fogel & Smith, 2011; Ulrich, 2016). 

Slow waves around 1 Hz and especially fast sleep spindles (13-16 Hz) are considered as 

hallmarks of the reactivation and neocortical redistribution of hippocampus-dependent 

memories (Diekelmann and Born, 2010). In addition, slow frequency oscillations ranging 

between 1 and 8 Hz were linked to the restorative (homeostatic) function of sleep 

(Achermann, Dijk, Brunner, & Borbély, 1993; Marzano, Ferrara, Curcio, & Gennaro, 

2010). In order to examine the associations between cortical oscillations and behavioral 

performance, we explored the EEG correlates of off-line changes in sequence and 

statistical learning. We hypothesized that slow frequency oscillations and fast sleep 

spindles within the sleep group would be positively associated with the post-sleep gains 

in sequence learning, but not with those of statistical learning.       

 

Materials and Methods 

Participants 

Participants (all native Hungarians) were selected from a large pool of undergraduate 

students from the Eötvös Loránd University in Budapest. The first step of the selection 

procedure consisted of the completion of an online questionnaire assessing sleep quality 

and mental health status. Sleep-related questionnaires included the Pittsburgh Sleep 

Quality Index (PSQI, Buysse et al., 1989; Takács et al., 2016), and Athens Insomnia Scale 

(AIS, Novak, Mucsi, Shapiro, Rethelyi, & Kopp, 2004; Soldatos, Dikeos, & 

Paparrigopoulos, 2000). Participants that showed poor sleep quality based on previous 

normative measurements were not included. The Hungarian version of the short (nine 

item) Beck Depression Inventory (BDI, Rózsa, Szádóczky, & Furedi, 2001) was used to 

exclude participants with signs of mild to moderate/severe depression, therefore, 
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participants only with a score less than 10 were included. Respondents reporting current 

or prior chronic somatic, psychiatric or neurological disorders, or the regular consumption 

of pills other than contraceptives were also excluded. In addition, individuals reporting 

the occurrence of any kind of extreme life event (e.g., accident) during the last 3 months 

that might have had an impact on their mood, affect and daily rhythms were not included 

in the study. Only right-handed individuals as verified by the Edinburgh handedness 

inventory (Oldfield, 1971) were invited to the laboratory. At the first encounter with the 

assistant, participants were instructed to follow their usual sleep-wake schedules during 

the week prior to the experiment and to refrain from consuming alcohol and all kinds of 

stimulants 24 h before the day of the experiment. Sleep schedules were monitored by 

sleep agendas, as well as by the adapted version of the Groningen Sleep Quality Scale 

(Simor et al., 2009) in order to assess individuals’ sleep quality the night before the 

experiment. The data of participants reporting poor sleep quality the night before the 

experiment (> 7 points) were not considered in the analyses.  

After the above selection procedure, 96 right-handed (28 males, Mage = 21.66±1.98) 

participants with normal or corrected-to-normal vision were included in the study. 

Participants were randomly assigned to one of three groups: an Active Wake, a Quiet 

Rest, or a Nap group. Individuals unable to fall asleep in the Nap group (N = 10) as well 

as those falling asleep in the awake groups (N = 5) were excluded from the final analyses. 

Furthermore, 3 additional participants were excluded due to the absence of learning in the 

training session. Therefore, the final behavioral analyses were based on the data of 78 

participants (20 males, Mage = 21.71±1.97), with 25, 26, and 27 participants in the Active 

Wake, Quiet Rest, and Nap group, respectively (see Table 1). In case of the EEG 

analyses, the data of 12 participants was excluded due to technical artifacts rendering 

EEG recordings less reliable. Therefore, physiological analyses were restricted to EEG 

data with sufficient quality (Active Wake, N = 20; Quiet Rest, N = 21, Nap, N = 25). All 

participants provided written informed consent before enrollment and received course 

credits for taking part in the experiment. The study was approved by the research ethics 

committee of the Eötvös Loránd University, Budapest, Hungary (2015/279). The study 

was conducted in accordance with the Declaration of Helsinki. 
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Task 

Behavioral performance was measured by the explicit version of the Alternating 

Serial Reaction Time (ASRT) task (Figure 1, Nemeth et al., 2013). In this task, a stimulus 

(a dog's head, or a penguin) appeared in one of four horizontally arranged empty circles 

on the screen, and participants had to press the corresponding button (of a response box) 

when it occurred. Participants were instructed to respond as fast and accurate as they 

could. The task was presented in blocks with 85 stimuli. A block started with five random 

stimuli for practice purposes, followed by an 8-element alternating sequence that was 

repeated 10 times. The alternating sequence was composed of fixed sequence (pattern) 

and random elements (e.g., 2-R-4-R-3-R-1-R, where each number represents one of the 

four circles on the screen and “R” represents a randomly selected circle out of the four 

possible ones). The response to stimulus interval was set to 120 ms (Song et al., 2007a; 

Nemeth et al., 2010). In the explicit ASRT task participants are informed about the 

underlying structure of the sequence, and their attention is drawn to the alternation of 

sequence and random elements by different visual cues. In our case, a dog always 

corresponded to sequence elements, and a picture of a penguin indicated random elements 

(Figure 1A). Participants were informed that penguin targets had randomly chosen 

locations whereas dog targets always followed a predetermined pattern. They were 

instructed to find the hidden pattern defined by the dog in order to improve their 

performance. For each participant, one of the six unique permutations of the four possible 

ASRT sequence stimuli was selected in a pseudo-random manner, so that the six different 

sequences were used equally often across participants (Howard and Howard, 1997; 

Nemeth et al., 2010).  

The task consisted of a total of 40 blocks. Participants completed 25 blocks during 

the training phase. As the relatively long training phase can introduce fatigue leading to 

a general decline in performance measures (e.g., slower reaction times at the end of the 

training phase that do not reflect the acquired knowledge but the effect of fatigue), a 

retesting session after a long delay (spent asleep or in wakefulness) can result in a spurious 

increase in performance because of the release from fatigue. This way, the measure of 

off-line consolidation is confounded by the effect of fatigue (or more specifically, the 

release from fatigue) (Pan and Rickard, 2015). In order to control for this factor, the 

training session was followed by a short (3 min long) break in order to minimize the 
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fatigue effect due to massed practice (Rickard et al., 2008; Rieth, Cai, McDevitt, & 

Mednick, 2010). After the break, participants were tested on the task for 5 more blocks 

that constituted the testing phase. Subsequently, participants spent an approximately 1-h 

long off-line period in one of the three conditions (Active Wake, Quiet Rest, and Nap). 

Finally, they completed a retesting phase: 10 more blocks of the same task.  

The training phase lasted approximately 30 min, the testing phase 5 min, and the 

retesting phase 10 min. Awareness of the sequence (pattern elements) was measured after 

each block. Participants had to type in the regularities they noticed during the task using 

the same response buttons they used during the ASRT blocks. This method allowed us to 

determine the duration (in terms of the number of blocks) participants needed to learn the 

sequence correctly as defined by consistently reporting the same sequence from that point 

on in the remaining blocks. 

 

Figure 4.1 The modified Alternating Serial Reaction Time (ASRT) task. A) Pattern and random trials 

are presented in an alternating fashion. Pattern trials are marked with a picture of a dog, random ones with 
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that of a penguin. Pattern trials always appear in a given location with high probability. Random trials 

include trials that appear in a given location with high probability and trials that appear in a given location 

with low probability. B) As the ASRT task contains an alternating sequence structure (e.g., 2R4R3R1R, 

where numbers correspond to the four locations on the screen and the letter R represents randomly chosen 

locations), some runs of three consecutive elements (called triplets) occur more frequently than others. For 

subsequent analyses, we determined for each stimulus whether it was the last element of a high-frequency 

triplet (black frames) or the last element of a low-frequency triplet (purple frames). C) We 

assessed Statistical Learning by comparing the responses for those random elements that were the last 

elements of a high frequency triplet, opposite to those that were the last of a low frequency triplet. In 

contrast, Sequence Learning was quantified as the difference between responses for pattern elements 

(which were always high frequency triplets) vs. random-high frequency triplet elements. D) Study Design. 

The training phase consisted of five epochs (25 blocks). The testing and retesting phases comprised one 

and two (that is, 5 and 10 blocks), respectively. 

 

Trial Types and Learning Indices 

The alternating sequence of the ASRT task forms a sequence structure in which some 

of the runs of three successive elements (henceforth referred to as triplets) appear more 

frequently than others. In the above example, triplets such as 2X4, 4X3, 3X1, and 1X2 

(X indicates the middle element of the triplet) occur frequently since the first and the third 

elements can either be pattern or random stimuli. However, 3X2 and 4X2 occur less 

frequently since the first and the third elements can only be random stimuli. Figure 1B,C 

illustrate this phenomenon with the triplet 2-1-4 occurring more often than other triplets 

such as 2-1-3, 2-1-1, and 2-1-2. The former triplet types are labeled as high-frequency 

triplets whereas the latter types are termed as low-frequency triplets (see Figure 1C and 

Nemeth et al., 2013).  

The third element of a high-frequency triplet is highly predictable (with 62.5% 

probability) from the first element of the triplet. In contrast, in low-frequency triplets the 

predictability of the third element is much lower (based on a probability of 12.5%). 

According to this principle, each stimulus was categorized as either the third element of 

a high- or a low-frequency triplet. Moreover, trials are differentiated by the cues (dog and 

penguin) indicating whether the stimulus belongs to the pattern or the random elements. 

In case of pattern trials, participants can use their explicit knowledge of the sequence to 

predict the trial, thus we differentiate high-frequency triplets with the last element being 
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a pattern from those triplets in which the last one is a random element. This way, the task 

consists of three trial types: (1) elements that belong to the explicit sequence and at the 

same time appear as the last element of a high-frequency triplet are called pattern trials; 

(2) random elements that appear as the last element of a high-frequency triplet are called 

random high trials; and (3) random elements that appear as the last element of a low-

frequency triplet are termed random low trials (see the example in Figure 1C).  

To disentangle the two key learning processes underlying performance on the explicit 

ASRT task, we differentiate Sequence Learning and Statistical Learning (Figure 1C). 

Sequence Learning is measured by the difference in reaction times (RT) between random 

high and pattern elements (the average RT for random high elements minus the average 

RT for pattern elements). These elements share the same statistical properties (both 

correspond to the third element of high-frequency triplets), but have different sequence 

properties (i.e., pattern vs. random elements). Thus, greater Sequence Learning is 

determined as faster responses to pattern in contrast to random high trials. Statistical 

Learning is assessed by comparing the responses for those random elements that were the 

last elements of a high-frequency triplet, opposite to those that were the last of a low-

frequency triplet (the average RT for random low elements minus the average RT for 

random high elements). These elements share the same sequence properties (both are 

random) but differ in statistical properties (i.e., they correspond to the third element of a 

high or a low-frequency triplet). Hence, faster responses to random high compared to 

random low trials yields greater Statistical Learning. In sum, Sequence Learning 

quantifies the advantage (in terms of RT) due to the awareness of the sequential pattern, 

whereas Statistical Learning captures purely frequency-based learning (Nemeth et al., 

2013).  

 

Procedure 

One to two weeks prior the experiment, participants were invited to the laboratory in 

order to familiarize them with the environment, and to assess their working memory and 

executive functions based on the Wisconsin Card Sorting Test (PEBL's Berg Card Sorting 

Test, Fox, Mueller, Gray, Raber, & Piper, 2013) and the Digit Span (Racsmány et al., 

2005) and Counting Span (Conway et al., 2005) tasks, respectively. Participants were 

instructed to complete sleep agendas reporting the schedules, duration and subjective 
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quality of their sleep. On the day of the experiment, participants arrived at the laboratory 

at 10.00 AM. They completed the GSQS assessing previous nights’ sleep quality. 

Additionally, their subjective stress levels scored on a 10-point Likert scale (“On a scale 

from 0 to 10 how stressed are you feeling now?”), as well as an item of the Hungarian 

version of the Karolinska Sleepiness Scale (KSS, Åkerstedt & Gillberg, 1990) to measure 

subjective sleepiness were administered. In the Hungarian version of the scale higher 

scores indicate a more refreshed state, that is, lower sleepiness. Subsequently, EEG caps 

with 64 electrodes were fitted by two assistants. Testing started at 11.30 AM and took 

place in a quiet room equipped with a large computer screen, a response box and EEG 

recording device. After listening to the instructions, participants had the opportunity to 

practice the task in order to get familiar with the stimuli and the response box; however, 

all stimuli appeared in a random fashion during the practice session.  

This was followed by the explicit ASRT task composed of the training phase, testing 

phase, off-line period, and retesting phase (Figure 1D). In the ASRT task, short breaks 

were introduced between blocks in the following way: first, at the end of each block, 

participants were instructed to report the sequence they encountered in that block (which 

took approximately 6 s on average). Second, they received feedback for their accuracy 

and RT performance on pattern trials (fixed 3 s). Third, participants were notified (for a 

fixed 1 s) that the next block can be started by pressing a response button when they are 

ready; on average, participants continued the next block after approximately 4 s. These 

breaks were somewhat longer for every fifth blocks (i.e., Block 5, 10, 15, etc.), where 

participants were instructed to continue the next block after EEG data were saved by the 

experimenter (which took approximately 20 s on average). Thus, altogether, for the 

majority of blocks the between-block break was ~ 14 s, and for every fifth block it was ~ 

29 s. Additionally, a 3-min long break was inserted between the learning and the testing 

phases during which the fitting of the EEG caps were monitored and impedances were 

reset under 10 kΩ.  

The off-line period extended from 12.30 to 13.30. Participants assigned to the Active 

Wake group were instructed to watch an approximately 1-h long documentary (They were 

allowed to select from documentaries of different topics such as natural sciences, nature 

or history). Participants of the Quiet Rest group were asked to sit quietly with eyes closed 

in a comfortable chair. They were instructed by the assistant to open their eyes for 1 
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minute, every 5 min or in case the EEG recording showed any sign of sleep onset (slow 

eye movements, attenuation of alpha waves and presence of theta oscillations). 

Participants in the Nap group had the opportunity to spend a daytime nap in the 

laboratory. The off-line period took place (in all groups) at the same room in which 

learning, testing and retesting occurred, and was monitored by EEG. Before the retesting 

phase, participants were asked to complete again the KSS and the scale assessing the level 

of stress.     

 

EEG Recording 

The EEG activity was measured by using a 64-channel recording system (BrainAmp 

amplifier and BrainVision Recorder software, BrainProducts GmbH, Gilching, 

Germany). The Ag/AgCl sintered ring electrodes were mounted in an electrode cap 

(EasyCap GmbH, Herrsching, Germany) on the scalp according to the 10% equidistant 

system. During acquisition, electrodes were referenced to a scalp electrode placed 

between Fz and Cz electrodes. Horizontal and vertical eye movements were monitored 

by EOG channels. Three EMG electrodes to record muscle activity, and one ECG 

electrode to record cardiac activity were placed on the chin and the chest, respectively. 

All electrode contact impedances were kept below 10 kΩ. EEG data was recorded with a 

sampling rate of 500 Hz, band pass filtered between (0.3 and 70 Hz). 

In order to remove muscle and eye movement related artifact from the awake EEG 

data (Active Wake and Quiet Rest groups), EEG preprocessing was performed using the 

Fully Automated Statistical Thresholding for EEG artifact Rejection (FASTER) toolbox 

(http://sourceforge.net/projects/faster, Nolan, Whelan, & Reilly, 2010) implemented in 

EEGLAB (Delorme & Makeig, 2004) under Matlab (The Mathworks). The data was first 

re-referenced to the Fz electrode, notch filtered at 50 Hz, and band-pass filtered between 

0.5 and 45 Hz. Using a predefined z-score threshold of ±3 for each parameter, artifacts 

were detected and corrected regarding single channels, epochs, and independent 

components (based on the infomax algorithm (Bell & Sejnowski, 1995). This way, data 

was cleared from eye-movement, muscle and heartbeat artifacts. The data was then re-

referenced to the average of the mastoid electrodes (M1 and M2). Remaining epochs 

containing artifacts were removed after visual inspection on a 4-s long basis. In case of 

the sleep recordings (Nap group), data was re-referenced to the average of the mastoid 
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electrodes, and sleep stages as well as conventional parameters of sleep macrostructure 

were scored according to standardized criteria (Berry et al., 2012) by two experienced 

sleep researchers. Periods of NREM sleep (Stage 2 and SWS) were considered for 

subsequent analyses. Epochs containing artifacts were visually inspected and removed on 

a 4-s basis. Wrong channels (N = 6 in the dataset of the Nap group) were replaced by the 

average of the neighboring channels.   

Spectral power and sleep spindle analyses of artifact-free segments were performed 

by a custom made software tool for EEG analysis (FerciosEEGPlus, © Ferenc Gombos 

2008-2017). Overlapping (50%), artifact-free, four-second-epochs of all EEG derivations 

were Hanning-tapered and Fourier transformed by using the FFT (Fast Fourier 

Transformation) algorithm in order to calculate the average power spectral densities. The 

analyzed frequencies spanned between 0.75 and 31 Hz in the Nap group, and between 1.5 

and 25 Hz in the awake groups. Low frequencies (0.75-1.5 Hz) were not considered in 

the awake conditions due to the negligible and unreliable contribution of measurable 

cortical activity at this frequency range during wakefulness. In addition, frequencies 

above 25 Hz were unreliable in the awake data due to technical and movement-related 

artifacts. We summed up frequency bins to generate five frequency bands for the wake 

groups: delta (1.5-4 Hz), theta (4.25-8), alpha (8.25-13), sigma (13.25-16), and beta 

(16.25-25 Hz) frequency bands, and five frequency domains for the sleep group: delta 

(0.75-4 Hz), theta (4.25-8), alpha (8.25-13), sigma (13.25-16), and beta (16.25-31 Hz) 

frequency ranges. In order to reduce the number of parameters, we averaged bandwise 

spectral power measures of Frontal (frontal: Fp1, Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, 

Fz, F2, F4, F6, F8, frontocentral and frontotemporal: FT7, FC5, FC3, FC1, FC2, FC4, 

FC6, FT8), Central (central, centrotemporal and centroparietal: T7, C5, C3, C1, Cz, C2, 

C4, C6, T8, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8), and Posterior (parietal, 

parietotemporal and occipital: P7, P5, P3, Pz, P2, P4, P6, P8, POz, O1, Oz, O2) electrode 

derivations.  

We quantified sleep spindling activity by the Individual Adjustment Method (IAM, 

Bódizs, Körmendi, Rigó, & Lázár, 2009; Ujma et al., 2015) that considers individual 

spectral peaks to detect spindles in each participant. This method defines frequency 

boundaries for slow and fast spindles based on the spectral power of NREM sleep. These 

individualized boundaries are used as frequency limits for slow and fast spindle bandpass 
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filtering (FFT-based, Gaussian filter, 16 s windows) of the EEGs. Thresholding of the 

envelopes of the band-pass filtered recordings are performed by individual and 

derivation-specific amplitude criteria (see the description of the method in more detail in 

Bódizs et al., 2009; Ujma et al., 2015). We used spindle density (spindles/min) and the 

average amplitude (μV) of slow and fast spindles as different measures of spindling 

activity. To reduce the number of statistical comparisons, we averaged spindle measures 

of Frontal, Central, and Posterior electrode derivations similarly to spectral power 

measures. 

 

Statistical Analyses 

Statistical analyses were carried out with the Statistical Package for the Social 

Sciences version 22.0 (SPSS, IBM) and R (R Core Team, 2014). The blocks of the explicit 

ASRT task were collapsed into epochs of five blocks to facilitate data processing and to 

reduce intra-individual variability. The first epoch contained blocks 1–5, the second 

epoch contained blocks 6–10, etc. We calculated median reaction times (RTs) for all 

correct responses, separately for pattern, random high and random low trials for each 

epoch and each participant. Note that for each response (n), we defined whether it was 

the last element of a high- or a low-frequency triplet. Two kinds of low-frequency triplets 

were eliminated: repetitions (e.g., 222, 333) and trills (e.g., 212, 343). Repetitions and 

trills corresponded to low frequency triplets for all participants and individuals often show 

pre-existing response tendencies to such triplets (Howard et al., 2004). By eliminating 

these triplets, we attempted to ensure that differences between high vs. low-frequency 

triplet elements emerged due to learning and not to pre-existing response tendencies.  

To show the performance trajectories of RTs for different trial types, and to explore 

their differences, we performed a mixed design analyses of variance (ANOVA) with 

EPOCH (1-8) and TRIAL TYPE (pattern, random high, random low) as within-subject 

factors, and GROUP (Active Wake, Quiet Rest, Nap) as a between-subject factor. To 

evaluate the effect of epoch and trial type we performed post-hoc comparisons (Fisher’s 

LSD).  

In order to examine the changes in Statistical and Sequence Learning that occur 

during the training phase, we applied a mixed-design ANOVA with EPOCH (1 -5) and 

LEARNING TYPE (Statistical Learning, Sequence Learning) as within-subject factors, 
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and GROUP (Active Wake, Quiet Rest, and Nap) as a between-subject factor. Post-hoc 

comparisons were applied to evaluate changes in performance during the training phase 

in case of Sequence and Statistical Learning. 

To examine off-line changes occurring between testing and retesting sessions we 

used a similar mixed-design ANOVA with EPOCH (6-8) and LEARNING TYPE 

(Statistical Learning, Sequence Learning) as within-subject factors, and GROUP (Active 

Wake, Quiet Rest, and Nap) as a between-subject factor. Post-hoc comparisons were run 

to contrast performances of the testing phase (6th epoch) and the retesting phases (7th and 

8th epochs). 

Greenhouse-Geisser epsilon (ε) correction was used if necessary. Original df values 

and corrected p-values (if applicable) are reported together with partial eta-squared (η2) 

as a measure of effect size.  

Finally, we aimed to examine the associations between EEG spectral power 

measured during the off-line period and change in learning performance across the testing 

and retesting phase, in each group separately. Off-line changes in Sequence and Statistical 

Learning were defined as the difference between the learning scores of the first retesting 

(7th epoch) session and the testing session (6th epoch). Thus, a positive value indicated 

improvement in learning performance after the off-line period. Furthermore, we aimed to 

examine whether EEG spectral power measured during off-line periods predicted 

additional performance change after longer re-learning, therefore, we calculated a 

secondary off-line change score contrasting learning scores of the 8th (2nd half of the 

retesting session) with those of the 6th epoch (testing session).  

The associations between sleep spindles and off-line changes of the above measures 

were also examined (within the sleep group only). Pearson correlation coefficients or (if 

normality was violated) Spearman rank correlations were run between spectral power 

values (of each region and band) and off-line changes in learning scores. The issue of 

multiple comparisons was addressed by the False Discovery Rate correcting for type 1 

error (Benjamini & Hochberg, 1995).  
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Results 

Group Characteristics 

Groups were matched in age, gender, working memory, executive function, and 

initial sleepiness and stress level (Table 1). However, after the 1 h long off-line period, 

the groups differed in sleepiness (F2,75 = 3.19, p = 0.05). Post-hoc test showed that the 

Nap group scored significantly higher on the KSS (indicating lower sleepiness on the 

Hungarian version of the KSS scale where higher scores indicate a more refreshed state, 

that is, lower sleepiness) than the Active Wake group (p = 0.02), however, the difference 

was not significant after FDR correction. 

 

Table 4.1 Descriptive characteristics of groups 

 

Variable 

Active Wake 

group (N = 25) 

Mean (SD) 

Quiet Rest 

group (N = 26) 

Mean (SD) 

Nap group  

(N = 27) 

Mean (SD) 

 

p-value 

Age (years) 22.08 (2.04) 22.00 (1.94) 21.15 (1.83) p = 0.16 

Gender (male, %) 28% 22% 27% p = 0.88 

GSQS 1.96 (1.72) 2.31(2.13) 2.33 (1.96) p = 0.75 

Stress scale (before the 

Learning phase) 
2.65 (2.09) 2.55 (1.43) 3.33 (1.98) p = 0.35 

Stress scale (after the 

Learning phase) 
2.59 (1.28) 2.00 (1.33) 1.77 (1.41) p = 0.17 

KSS (before the Learning 

phase) 
6.44 (1.26) 6.81 (1.13) 6.19 (1.52) p = 0.24 

KSS (after the Learning 

phase) 
5.64 (1.19) 5.96 (1.70) 6.62 (1.30) p = 0.05 

Digit span 6.32 (1.31) 5.88 (1.14) 6.26 (1.06) p = 0.36 

Counting span 3.91 (1.50) 3.59 (0.72) 3.48 (0.81) p = 0.33 

WCST – number of 

perseverative errors 
15.67 (9.23) 14.31 (3.23) 13.19(5.86) p = 0.40 

Note GSQS – Groningen Sleep Quality Scale, KSS - Karolinska Sleepiness Scale, WCST - Wisconsin Card 

Sorting Test. Higher scores in the KSS indicate lower sleepiness. 

 

 Sleep parameters of the Nap group are listed in Table 2. In the Nap group, only 

one participant reached REM phase during sleep, thus we only report the characteristics 

of Non-REM sleep.  
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Table 4.2 Descriptive characteristics of sleep parameters in the Nap group 

Variable Mean (SD) 

Sleep duration (min) 41.16 (12.35) 

Sleep efficiency (%) 70.28 (16.27) 

Wake duration (min) 16.53 (7.77) 

S1 duration (min) 6.02 (3.62) 

S2 duration (min) 17.93 (6.59) 

SWS duration (min) 16.89 (12.82) 

Fr. fast spindle density              6.37 (0.96) 

Cent. fast spindle density 7.45 (0.83) 

Post. fast spindle density   7.35 (0.93) 

Fr. fast spindle amp.  4.56 (1.32) 

Cent. fast spindle amp. 6.01 (1.56) 

Post. fast spindle amp. 5.38 (1.38) 

Fr. slow spindle density              7.31 (1.12) 

Cent. slow spindle density 7.33 (1.19) 

Post. slow spindle density   7.4 (1.16) 

Fr. slow spindle amp.  3.91 (1.85) 

Cent. slow spindle amp. 3.28 (1.49) 

Post. slow spindle amp. 2.54 (0.96) 

Note S1 – Stage 1, S2 – Stage 2, SWS – Slow Wave Sleep 

 

Are Performance Trajectories of Responses to Different Trial Types Different Between 

Groups? 

 Overall, participants in the different groups responded with similar RTs (main 

effect of GROUP: F2,75 = 0.80, p = 0.46, η²P = 0.02). Irrespectively of trial types, RTs 

significantly decreased across epochs (main effect of EPOCH: F7,525 = 175.26, p < 0.0001, 

η²P = 0.70), indicating general skill improvements due to practice (Figure 2). The GROUP 

x EPOCH interaction was not significant (F14,525 = 1.18 p = 0.32, η²P =0.03), suggesting 

that general skill improvements were similar in the groups. Furthermore, participants 

showed significant Sequence and Statistical Learning (main effect of TRIAL TYPE: 
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F2,150 = 52.04, p < 0.0001, η²P = 0.41): they responded faster to pattern than random high 

trials (p < 0.0001), and faster to random high compared to random low trials (p < 0.0001). 

The GROUP x TRIAL TYPE interaction was not significant (F4,150 = 0.80, p = 0.46, η²P 

=0.02) indicating that there was no difference between the groups in performance for 

different trial types. In addition to that, the EPOCH x TRIAL TYPE interaction was 

significant (F14,1050 = 11.93, p < 0.0001, η²P = 0.14), indicating different learning 

trajectories in case of the three trial types (see Figure 2). Although participants became 

faster for all trial types during the course of the task, responses to pattern trials showed 

greater gains in comparison to both random trials: Average reaction times of pattern trials 

decreased from 357.89 to 257.56 ms (p < 0.0001), of random high trials from 370.98 to 

326.14 ms (p < 0.0001), and of random low trials from 388.26 to 349.65 ms (p < 0.0001). 

Practice-dependent improvement in response to pattern trials was significantly higher 

than the improvement in case of random high (t77 = 4.81, p < 0.0001) and random low (t77 

= 5.45, p < 0.0001) trials. The improvement in responses to random high and random low 

trials was only marginally different (t77 = 1.84, p = 0.07). The GROUP x EPOCH x 

TRIAL TYPE interaction was not significant (F28,1050 = 0.66, p = 0.68, η²P =0.02), 

suggesting that performance trajectories to the different trial types were similar among 

the groups.  

 

 

Figure 4.2 Performance during the training (Epochs 1-5), testing (Epoch 6) and retesting (Epochs 7-

8) sessions. Mean reaction times and standard errors are visualized in response to pattern (P), random high 

(RH), and random low (RH) trials during each epoch.  
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Do Sequence and Statistical Learning During Training Differ Between Groups? 

Sequence and Statistical Learning during the training phase were similar across the 

groups (main effect of GROUP: F2,75 = 1.10, p = 0.34, η²P = 0.03). Irrespectively of 

learning type, performance improved across epochs of training (main effect of EPOCH: 

F4,300 = 10.92, p < 0.0001, η²P = 0.13). The GROUP x EPOCH interaction was not 

significant (F8,300 = 0.59, p = 0.68, η²P =0.02), suggesting that improvement during 

training was similar between the groups. In addition, the main effect of LEARNING 

TYPE was significant (F1,75 = 3.93, p = 0.05, η²P = 0.05): participants showed greater 

Sequence Learning compared to Statistical Learning (M = 32.50 vs. M = 19.64, p < 

0.0001). The GROUP x LEARNING TYPE interaction was not significant (F2,75 = 0.81, 

p = 0.45, η²P = 0.02), suggesting that the difference between Sequence and Statistical 

Learning were similar among the groups. Furthermore, a significant interaction between 

EPOCH and LEARNING TYPE emerged (F4,300 = 5.52, p = 0.002, η²P = 0.07): as 

illustrated in Figure 3, participants, on average, exhibited a steep increase in Sequence 

Learning during the training phase (the average learning score increased from 13.09 to 

53.31 from the 1st epoch to the 5th (p < 0.001), whereas Statistical learning occurred in 

the beginning of the task and remained unchanged by the end of the training phase (the 

average learning score increased from 17.28 to 18.64 from the 1st epoch to the 5th, p = 

0.68). The GROUP x EPOCH x LEARNING TYPE interaction was not significant (F8,300 

= 0.58, p = 0.72, η²P =0.02), suggesting that training-dependent patterns of Sequence 

Learning and Statistical Learning were similar across the groups.  
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Figure 4.3 Learning and off-line changes in Sequence and Statistical Learning. Sequence Learning is 

quantified as the difference in reaction times to random high elements vs. pattern elements. Statistical 

Learning is quantified as the difference in reaction times to random low elements vs. random high elements. 

Means and standard errors of Sequence Learning and Statistical Learning during each epoch. Sequence 

Learning exhibited a steep increase during training and additional practice after the off-line periods, 

whereas Statistical Learning remained unchanged throughout the sessions. 

 

Beyond the group-level results presented in the previous paragraph, we performed 

an additional analysis to reveal learning trajectories on a subject-by-subject basis. We 

categorized each subject's learning trajectory during training by a combination of curve 

fitting and visual inspection. For comparability, we performed the same steps for 

Sequence and Statistical learning (see Figures 4A,B, respectively) and found that ~33% 

of participants showed gradually increasing Sequence learning during training, while the 

trajectory for Statistical learning was gradually increasing only in ~16% of participants 

[χ2(1) = 3.80, p = 0.05]. Compared to these percentages, a relatively smaller number of 

participants exhibited a step-like increase in learning performance: ~10% of participants 

for Sequence learning and ~4% of participants of Statistical learning (p = 0.15). 

Additionally, a small portion of participants exhibited a decreasing pattern, with the best 

performance at the beginning of the task (~5% of participants for Sequence learning, and 

~13% of participants for Statistical learning; p = 0.42). The learning trajectory of the 

majority of participants did not clearly follow any of the patterns described above. These 

learning trajectories were categorized as 'Other pattern' (~53% of participants for 
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Sequence learning, and ~66% of participants for Statistical learning; p = 0.81). These 

participants exhibited relatively large changes in performance from one epoch to another 

and then returned to the previous performance level. The timing of these larger changes 

in performance was evenly distributed across epochs. It is plausible that these participants 

explored different (explicit or implicit) strategies over the course of learning that may 

have resulted in large changes in some epochs compared to their overall learning 

performance. Note, however, that the primary focus of our study was not to test these 

possible strategies but to compare Sequence and Statistical learning trajectories across 

the three experimental groups (Quiet Rest, Active Wake, and Nap). Importantly, the 

distribution of subgroups exhibiting different learning trajectories was similar across the 

three experimental groups both for Sequence learning [χ2(6) = 0.91, p = 0.99] and for 

Statistical learning [χ2(6) = 1.98, p = 0.92].   

 

 

Figure 4.4 Sequence (A) and Statistical (B) learning trajectories for individual subjects. Each 

participant's learning trajectory is presented in a light grey color, while the average learning trajectory for 

that subgroup is presented in a darker gray color for the 'Gradual learning', 'Decreasing pattern' and 'Other 

pattern' panels. For the 'Stepwise learning' panel, the light and dark gray colors represent subgroups of 

participants depending on the timing of their performance increase (no average learning trajectory is 

presented).  
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Early Statistical Learning Effects During Training 

To provide further insights into the trajectory of Statistical learning, we performed 

additional analyses by focusing on block-level and below block-level data. The first set 

of analyses aimed to determine the time point when participants successfully extracted 

the statistical regularities from the stimulus stream. First, we computed Statistical 

learning scores for each block of Epoch 1, and tested if these Statistical learning scores 

were significantly different from zero. We found significant Statistical learning effect 

already in Block 1 of the ASRT task [t(73) = 2.12, p = 0.04, Cohen’s d = 0.25]. Next, we 

zoomed into Block 1 to further test this learning effect. In this analysis, we split Block 1 

into two halves and computed Statistical learning scores for each participant, for each 

half. This level of granularity seemed the most appropriate so that all participants had at 

least a few random-high trials (~ 4 trials on average, ranging from 2 to 9), enabling us to 

compute learning scores for all participants. These Statistical learning scores were 

submitted into one sample t-tests, which showed that Statistical learning scores did not 

reach significance in the first half of Block 1 [t(73) = 1.11, p = 0.269, Cohen’s d = 0.13], 

while they were significant in the second half of Block 1 [t(73) = 1.99, p = 0.05, Cohen’s 

d = 0.2]. This analysis thus demonstrates that statistical regularities are learned (albeit 

very quickly) and the observed significant Statistical learning scores at the very early 

phase of the task are not due to other (not learning-related) preexisting tendencies.  

This rapid learning effect is in fact not surprising if we consider that 80 trials are 

presented in the first block, and ~ 50 of those trials can be categorized as high frequency 

triplets (occurring in pattern or random positions). As there are 16 individual triplets that 

are high frequency, that means that participants encounter each individual triplet 

approximately four times in the first block already. In contrast, there are 48 individual 

triplets that are low frequency, and participants encounter these individual triplets 

approximately (or less than) once in a block. Thus, the observed significant Statistical 

learning scores (i.e., the difference between the random-high and random-low frequency 

trials) suggests that participants are so sensitive to the frequency statistics that as little as, 

on average, four presentations of the same trials are sufficient to show speeded responses 

to them. 

Nevertheless, it is important to highlight that significant learning does not necessarily 

mean that participants have a stable knowledge about the statistical regularities. Thus, 
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even though the Statistical learning scores are already significant at the early phase of 

learning and these scores numerically do not change as the task progresses, it is reasonable 

to assume that more practice can help strengthen the acquired knowledge. We ran an 

additional analysis to test this assumption. In this analysis, we focused on block-level data 

and computed Cohen’s d effect sizes for the block-level Statistical learning scores. These 

effect sizes were substantially smaller in the first five blocks of the ASRT task (0.27 on 

average for Blocks 1-5, i.e., Epoch 1) compared to the later blocks (blocks of Epoch 2: 

0.45, Epoch 3: 0.51, Epoch 4: 0.53, Epoch 5: 0.50). This difference in the effect sizes 

suggests that, although participants were able to extract the statistical regularities from 

the stimulus stream very early in the task, additional training helped them strengthen the 

acquired statistical knowledge. 

 

Are Off-line Changes in Sequence and Statistical Learning Different Across the Groups? 

The three groups did not show different patterns of Sequence and Statistical Learning 

from the testing to the retesting sessions, as neither the main effect of GROUP (F2,75 = 

0.65, p = 0.53, η²P = 0.02), nor the interactions GROUP x EPOCH (F4,150 = 0.52, p = 0.67, 

η²P = 0.01), GROUP x LEARNING TYPE (F2,75 = 0.65, p = 0.53, η²P = 0.02), and 

GROUP x EPOCH x LEARNING TYPE (F4,150 = 0.73, p = 0.55, η²P = 0.02) emerged as 

significant predictors. The lack of a group effect is shown in Figure 5 that illustrates off-

line changes (7th minus the 6th epoch) in Sequence and Statistical Learning separately for 

each group. Similarly to the training phase, participants exhibited higher scores in 

Sequence Learning than in Statistical Learning (main effect of LEARNING TYPE: F1,75 

= 10.72, p = 0.002, η²P = 0.13). Moreover, learning indices produced robust changes 

across epochs as indicated by a significant main effect EPOCH (F2,150 = 18.99, p < 0.0001, 

η²P = 0.20). More specifically, overall performances (regardless of learning type) were 

unchanged from the testing phase (6th epoch) to the first retesting epoch (7th) (p = 0.86), 

but improved (p < 0.0001) from the testing phase to the end of the retesting session (8th 

epoch), and from the first retesting epoch to the second (7th epoch vs 8th epoch) (p < 

0.0001). Furthermore, Sequence Learning and Statistical Learning scores showed 

different patterns after the off-line period (see Epoch 7 and 8 in Figure 3), as indicated by 

the significant EPOCH x LEARNING TYPE interaction (F2,150 = 5.31, p = 0.009, η²P = 

0.07). Neither Sequence Learning nor Statistical Learning seemed to show immediate 
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(early) gains after the off-line period. Sequence Learning scores did not significantly 

change from the testing phase to the first epoch of retesting (6th epoch, M = 47.02 vs. 7th 

epoch, M = 47.69, p = 0.85). Similarly, Statistical Learning remained unchanged from 

testing to the first retesting (6th epoch, M = 21.39 vs. 7th epoch, M = 19.96, p = 0.56).  

Nevertheless, additional practice produced robust changes in Sequence Learning, that 

increased significantly from the testing phase to the second epoch of the retesting phase 

(8th epoch, M = 68.19, p = 0.001), whereas Statistical Learning did not show any 

significant changes by the end of the retesting phase (8th epoch: M = 23.51, p = 0.41).  

To further explore potential group differences during the off-line period we ran 

additional ANOVAs separately for Sequence and Statistical learning scores considering 

their different learning curves. Based on these ANOVAs, we found no group differences 

in the consolidation (6th epoch vs. 7th epoch) of the acquired knowledge (Sequence 

learning: p = 0.35, Statistical learning: p = 0.78). Similarly, no group differences emerged 

in the additional increase between 7th epoch and 8th epoch (Sequence learning: p = 0.65, 

Statistical learning: p = 0.36). 

 

Figure 4.5 Off-line changes in learning indices within the three groups. Off-line changes were 

calculated by the learning scores of the 7th epoch minus the respective learning scores of the 6th epoch. Dots 

show individual data points, the vertical line within the boxes show the medians, boxes represent the first 

and third quartiles, whiskers indicate the interquartile range of 1.5.  
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Awareness of the Sequence in the Groups 

For the analysis of sequence awareness, two participants' data had to be excluded due 

the technical issues during collection of sequence reports (one data from the active wake 

and one data from the nap group). Additionally, eleven participants could not report the 

correct sequence consistently during training (N = 3 in the active wake, N = 3 in the nap, 

and N = 5 in the quiet rest group), and therefore they were also excluded from the 

following analyses. Importantly, there were no group differences in the number of 

participants who could or could not report the correct sequence consistently and were 

excluded (chi-square = 1.77, p = 0.78).  

On average, participants could report the correct sequence consistently from the 6th 

block (M = 6.58, SD = 7.04), with no differences across the groups (F2,64 = 1.53, p = 0.23). 

Overall, the block number from which participants could consistently report the correct 

sequence showed a significant negative correlation with the Sequence learning scores (r 

= -0.28, p = 0.02). Thus, the earlier participants could find the correct sequence and report 

consistently thereafter, the better their overall Sequence learning was. No association was 

observed between the block number and the Statistical learning scores (r = -0.06, p = 

0.63), suggesting that sequence awareness primarily affected Sequence learning but not 

Statistical learning. 

Finally, we conducted an ANOVA for the Sequence learning scores of the training 

phase (Epoch 1 to 5), including the block number from which participants could 

consistently report the correct sequence as a covariate to check how sequence awareness 

affected the time course of learning across groups. The ANOVA revealed a significant 

main effect of EPOCH (F4,244 = 10.53, p < 0.001, η²P = 0.147), indicating better Sequence 

learning scores as learning progressed. This effect was modulated by the block number 

on a trend level (F4,244 = 2.58, p = 0.08, η²P = 0.041), suggesting that the earlier 

participants could report the correct sequence, the better their Sequence learning became 

across training. Importantly, no significant group differences emerged either in overall 

learning or in the trajectory of learning even after taking into account the block number 

as a covariate (ps > 0.21).  

A similar ANOVA was conducted for the consolidation analysis (Epoch 6 to 8). This 

ANOVA also revealed a significant main effect of EPOCH (F2,122 = 8.34, p < 0.001, η²P 
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= 0.120), which is consistent with the previous ANOVA conducted for these epochs, 

showing increase in Sequence learning scores due to additional training (Epoch 7 vs. 

Epoch 8, see Figure 3). This effect was not modulated by the block number (p = 0.49). 

Furthermore, no significant group differences emerged either in overall learning scores 

or in the trajectory of learning scores across these epochs, even after taking into account 

the block number as a covariate (ps > 0.32). These results altogether suggest that, although 

the timing when participants gained explicit knowledge about sequence affects their 

Sequence learning scores, this effect is similar across the groups both during training and 

consolidation. 

 

Associations Between EEG Spectra and Off-line changes 

Off-line changes in Sequence Learning as indexed by the difference scores between 

the 7th (first half of retesting phase) and the 6th epochs’ (testing phase) scores were 

positively associated with frontal theta power (r = 0.44 p = 0.028) within the nap group. 

Off-line changes in Sequence Learning were not associated with spectral EEG power 

measures in the either of the awake (AW, QR) groups. Additional off-line-changes in 

Sequence Learning as indexed by the difference scores between the 8th (second half of 

retesting phase) and the 6th epochs’ (testing phase), showed a positive association with 

frontal theta power (r = 0.52, p = 0.008) within the nap group only. Nevertheless, these 

correlations did not reach statistical significance after FDR correction of multiple 

comparisons (all ps > 0.05). Since region-wise averaging of electrodes might not capture 

associations between behavioral measures and spectral power of a more local nature, we 

examined (on an exploratory level) the associations between theta activity and off-line 

changes (7th vs. 6th epoch and 8th vs. 6th epoch) in Sequence Learning within the nap 

group. As shown in Figure 6, associations with theta band power were prominent at 

frontal electrode sites, peaking at left frontopolar locations in case of immediate off-line 

changes (Figure 6A), as well as in case of additional off-line changes in performance 

(Figure 6B). Finally, we examined the associations between off-line (7th vs. 6th epoch and 

8th vs. 6th epoch) changes in Sequence Learning and bin-wise EEG spectral power 

averaged across all electrodes (within the Nap group). Immediate (7th vs. 6th epoch) and 

delayed (8th vs. 6th epoch) post-sleep improvement in Sequence Learning correlated only 

with slow frequency activity between 2 and 7.75 Hz (all bins p < 0.01).  
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Figure 4.6 Associations between NREM theta power and off-line changes in Sequence Learning. A) 

Pearson correlations between NREM theta band power and immediate (7th vs. 6th epoch) post-sleep changes 

in Sequence Learning. B) Spearman Rho correlations coefficients between NREM theta band power and 

delayed (8th vs. 6th epoch) post-sleep changes in Sequence Learning. The heat plots on the right indicate the 

magnitude of correlation coefficients, the scatterplots on the left show the association in a prominent (left 

frontal) electrode site. In case of 5B the correlation coefficient remained unchanged (r = 0.64, p < 0.001) 

after the exclusion of the outlier. The figures show uncorrected p values (before FDR correction). For the 

immediate off-line changes, only Fp1, Fp2, AF3, AF4 locations remained significant after FDR correction. 

For the additional off-line changes, frontal channels Fp1, Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, 

F6, F8 as well as FC4, FC5, CP5 and P5 locations remained significant after FDR correction.  
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Immediate and additional off-line changes (7th vs. 6th epoch and 8th vs. 6th epoch) in 

Statistical Learning were not associated with spectral power measures within the nap 

group, and no other associations emerged within the Quiet Rest and Active Wake groups. 

In sum, individual differences in off-line changes in Statistical Learning assessed 

immediately after the long delay (6th vs. 7th epoch) and after extended practice, (6th vs. 8th 

epoch) were not associated with spectral EEG power measures in any of the three groups. 

On the other hand, immediate and delayed post-sleep improvements in Sequence 

Learning were predicted by high delta and theta activity during sleep within the Nap 

group. Nevertheless, these correlations did not remain significant after correction for 

multiple comparisons. 

 

Associations Between Sleep Spindles and Off-line Changes 

Off-line change (7th vs 6th epoch) in Sequence Learning showed a negative 

correlation with slow spindle density at Frontal (r = -0.52, p = 0.008), Central (r = -0.54, 

p = 0.006), and Posterior (r = -0.53, p = 0.006) derivations. Slow spindle amplitude, fast 

spindle density and amplitude were not associated with the off-line change in Sequence 

Learning. Negative correlations between slow spindle density and off-line change in 

Sequence Learning remained significant after FDR correction (p = 0.036).  

Off-line change in Statistical Learning was negatively correlated with fast spindle 

amplitude (Frontal: r = -0.43, p = 0.03; Central: r = -0.47, p = 0.02; Posterior: r = -0.44, 

p = 0.03), but was not related either to fast spindle density or slow spindle 

density/amplitude. Correlations between fast spindle amplitude and off-line change in 

Statistical Learning were not significant after FDR correction (all ps > 0.05).  

To examine whether the negative correlation between off-line changes in 

performance and spindle parameters were linked to overall Sequence/Statistical Learning 

ability, we applied partial correlations with learning performance of the training phase as 

a covariate. Learning performance here was computed as the differences in Sequence and 

Statistical learning between the 5th and the 1th epochs of the training phase. Slow spindle 

density remained a negative correlate of off-line change in Sequence Learning even after 

controlling for this initial Sequence Learning performance (Frontal: r = -0.5, p = 0.006; 

Central: r = -0.52, p = 0.009; Posterior: r = -0.51, p = 0.005). 
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Similarly, partial correlations were computed between fast spindle amplitude and off-

line change in Statistical Learning with Statistical Learning performance as a covariate. 

The correlations showed trends after partialling out this initial Statistical Learning 

performance (Frontal: r = -0.37, p = 0.07; Central: r = -0.43, p = 0.03; Posterior: r = -

0.36, p = 0.08).   

 Additional (delayed) off-line-changes in Sequence and Statistical Learning as 

indexed by the difference scores between the 8th (second half of retesting phase) and the 

6th epochs’ (testing phase) were not associated to any of the extracted spindle parameters. 

 

Discussion   

 Our aim was to investigate performance trajectories in Sequence and Statistical 

Learning during extensive practice and after off-line periods spent in different vigilance 

states. In order to examine these processes in the same experimental context, we applied 

a paradigm that simultaneously measured sequence and statistical learning by delineating 

order and frequency-based information. Our findings indicate that Sequence and 

Statistical Learning follow different learning curves. Whereas performance in Sequence 

Learning exhibited an increase during training, Statistical Learning was rapidly acquired 

and remained unchanged throughout training. During the off-line period, both forms of 

learning were preserved as no significant off-line changes emerged in either Sequence or 

Statistical Learning. Nevertheless, Sequence Learning improved after additional practice 

(i.e., in the retesting phase), whereas Statistical Learning remained stable regardless of 

further training compared to the testing phase. Performance trajectories were similar 

across the groups: Performance during training and consolidation did not differ between 

the Active Wake, Quiet Rest, and Nap groups. EEG spectral power assessed during the 

off-line periods was not associated with off-line changes in Sequence and Statistical 

Learning in the awake groups. Within the Nap group we found a trend indicating a 

positive association between frontal theta band power and off-line change in Sequence 

Learning. In addition, frontal theta power predicted further improvements in Sequence 

Learning after additional practice. Within the Nap group, slow spindle density was 

negatively associated with post-sleep improvement in Sequence Learning, and fast 

spindle amplitude was negatively associated with post-sleep improvement in Statistical 

Learning.   
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 Our data suggests that sequence and statistical learning are markedly different 

sub-processes of procedural learning. Frequency-based information is acquired rapidly 

and appears to undergo less prominent changes during further training compared to the 

acquisition of order-based information that may exhibit further performance 

improvements. Our fine-grained analyses revealed that statistical learning occurs already 

in the first block of the task. This finding suggests that participants are so sensitive to the 

frequency statistics that as little as, on average, four presentations of the same trials are 

sufficient to show speeded responses to them. Nevertheless, the further analysis of effect 

sizes showed that, although participants were able to extract the statistical regularities 

from the stimulus stream very early in the task, additional training helped them strengthen 

the acquired statistical knowledge.  

Rapid statistical learning has also been reported before: for instance, in the ASRT 

study of Szegedi-Hallgató and colleagues (2017), statistical learning was apparent already 

in the first epoch in the Explicit group but seemed to have larger individual differences 

in the Implicit groups as only one of the two Implicit groups exhibited significant 

statistical learning in the first epoch (see Supplementary results and figures). Similarly, 

in Kóbor et al.’s (2018) study, statistical learning was observed in the first epoch of the 

explicit version of the ASRT task, along with a significant sequence learning as well. 

Consequently, a possible explanation for the very rapid statistical learning is that, in an 

explicit condition, the instructions and motivation to learn can have an overarching effect, 

providing a cognitive state, in which not only the instructed sequential but also the 

uninstructed statistical regularities can be learned quickly. Although this was not in the 

primary focus of these previous studies, if we take a closer look at the learning 

trajectories, it appears that statistical regularities are extracted very early and no (or very 

little) further gains may be observed during training if explicit instructions are given for 

the sequential information (Szegedi-Hallgató et al., 2017; Kóbor et al., 2018). In contrast, 

in the implicit conditions, statistical learning may undergo further improvements during 

training (Szegedi-Hallgató et al., 2017), above and beyond the strengthening of the 

acquired knowledge as suggested in the previous paragraph. These observations support 

the interpretation that explicit instructions and the motivation to learn can have an 

overarching effect in that not only the instructed sequential but also the uninstructed 

statistical regularities can be learned more quickly. Interestingly, a recent study showed 
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that, if the task is fix-paced instead of self-paced, no such overarching effect can be 

observed, suggesting a complex interplay of multiple factors that may influence the effect 

of explicit instructions on learning (Horvath et al., 2018). Further studies should directly 

test these factors. 

Nevertheless, it is important to note that statistical learning typically occurs implicitly 

(i.e., without conscious intent to learn and without awareness about the learning situation 

itself or about the actual regularities) and relatively quickly, already in one learning 

session (e.g., Song et al., 2007a; Nemeth et al., 2013; Kóbor et al., 2017). In contrast, it 

has been previously shown that acquiring the alternating sequence structure (frequently 

referred to as higher-order sequence learning) in the ASRT task typically occurs after 4 

days of practice if learning is implicit (Howard and Howard, 1997; Howard et al., 2004), 

while this can be substantially faster if explicit instruction is provided to the participants 

(Nemeth et al., 2013). Accordingly, participants quickly formed explicit knowledge about 

the sequence. Therefore, we think that the current study design was suitable to measure 

both sequence and statistical learning, bringing them in the same time frame of acquisition 

(i.e., showing significant learning in one learning session for both measures).  

The present study narrows down the concept of statistical learning by regarding it as 

only one of the processes that is the sensitivity to frequency information. From a 

theoretical perspective, however, it is important to note that at the level of transitional 

probabilities, statistical learning (in this narrow sense) and sequence learning could be 

considered as similar. Namely, both are statistical learning in a broader sense. When 

acquiring frequency information (statistical learning in the narrow sense), a 2nd order 

probabilistic sequence should be learned, in which there are always one probable 

continuation and some less probable continuations for the first two elements of a given 

three-element stimulus chunk (Szegedi-Hallgató et al., 2017; Kóbor et al., 2018). When 

acquiring order information (sequence learning), the 2nd order transitional probability is 

equal to one; namely, consecutive elements in the sequence could be predicted with 100% 

certainty from the previous sequence element (Kóbor et al., 2018). 

Our finding of different learning trajectories within one learning session is in line 

with the results of Kóbor and colleagues (2018) well as corroborates earlier data (Nemeth 

et al., 2013) that showed different developmental trajectories of sequence and statistical 

learning between 11 and 40 years of age but did not analyze the time course of these 
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learning types. Beyond the group-level results, we performed an additional analysis to 

characterize learning trajectories on a subject-by-subject basis. This analysis revealed that 

one-third of participants showed gradually increasing Sequence learning during training, 

and this proportion was significantly higher than the number of participants who exhibited 

gradually increasing Statistical learning, confirming differences in learning trajectories 

for Sequence vs. Statistical learning beyond the group-level findings. Nevertheless, the 

majority of participants exhibited a learning trajectory other than gradual. It is plausible 

that these participants explored different strategies over the course of learning that may 

have resulted in large changes in some epochs compared to their overall learning 

performance. Further investigations should directly focus on individual level 

heterogeneity and test which factors/characteristics predict learning trajectories on the 

individual level. 

  We had a special focus on the off-line change and the effect of sleep on Sequence 

Learning and Statistical Learning. In order to differentiate between the specific effects of 

sleep and from the indirect effect of reduced interference during off-line periods, we 

included a quiet rest control group into the design. On the behavioral level, we found no 

sleep-dependent consolidation neither in Sequence Learning nor in Statistical Learning. 

The lack of evidence for the beneficial influence of sleep on statistical learning is in line 

with previous studies that used probabilistic sequence learning tasks (Hallgato, Győri-

Dani, Pekár, Janacsek, & Nemeth, 2013; Nemeth, Janacsek, Londe, et al., 2010; Peigneux 

et al., 2003; P. Peigneux et al., 2006; Song et al., 2007b), however, we should note that 

these studies did not differentiate between order-based and frequency-based learning 

mechanisms. Here, we aimed to investigate the influence of sleep on pure (frequency-

based) statistical learning in the perceptual-motor domain. Other studies examined sleep-

dependent consolidation on statistical learning in the auditory domain (Durrant et al., 

2011, 2013) and contrary to our results, found improved performance after sleep 

compared to wakefulness. Discrepancies between these studies and our findings might 

stem from methodological differences (overnight sleep and longer daytime naps in 

Durrant and colleagues’ study) as well as the examined modality (auditory system vs. 

perceptual-motor system). Nevertheless, it is important to highlight that Durrant and 

colleagues (2011) did not include a quiet rest condition that might be favorable in napping 

studies.   
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Interestingly, and contrary to our expectations sleep did not facilitate off-line 

improvement in Sequence Learning either. In case of perceptual-motor sequence learning, 

Robertson and colleagues (Robertson et al., 2004) reported sleep-dependent consolidation 

in the explicit version of the Serial Reaction Time task using deterministic sequences. 

Discrepant findings between the present and Robertson and colleagues’ study can be the 

result of different sequence structures applied in the SRT and ASRT task. In addition, 

other confounding factors, such as the effects of fatigue or reactive inhibition (B. Török, 

Janacsek, Nagy, Orbán, & Nemeth, 2017) might have a different impact on these tasks. 

For instance, effects of fatigue are typical to occur in learning tasks (Brawn, Fenn, 

Nusbaum, & Margoliash, 2010; Pan & Rickard, 2015; Rickard et al., 2008), however, 

ASRT learning scores seem to be relatively immune against the influence of fatigue 

(Török et al., 2017). Furthermore, recent studies raised concerns about the reliability of 

the deterministic SRT task (Stark-Inbar et al., 2016; West, Vadillo, Shanks, & Hulme, 

2017) while the ASRT proved to be a more reliable measure of sequence learning (Stark-

Inbar et al., 2017). 

Performance in Sequence and Statistical Learning did not show off-line 

improvements immediately after the long delay period; however, performance in 

Sequence Learning exhibited further gains after additional practice, suggesting that post-

sleep increases in our case were also largely dependent on further practice. Interestingly, 

delayed (training-dependent) off-line improvements were associated with slow 

oscillatory activity within the Nap group. This finding suggests that not sleep per se, but 

low-frequency oscillations are associated with delayed performance gains after sleep and 

additional practice. Our findings indicate that slower oscillatory activity including the 

(high) delta and the theta frequency ranges (from 2 to 7.75 Hz) during daytime sleep 

might be predictive of post-sleep improvements in Sequence Learning. Slow frequency 

oscillations peaking at anterior locations and spanning between 1 and 8 Hz reflect the 

homeostatic and restorative capacity of sleep as power in these frequencies is increased 

after prolonged wakefulness (Borbély, Baumann, Brandeis, Strauch, & Lehmann, 1981; 

Marzano et al., 2010) in fronto-central derivations. Furthermore, the homeostatic increase 

in spectral power between 2 and 7 Hz is state-independent (Marzano et al., 2010) making 

these oscillations likely candidates to reflect restorative processes during a daytime nap, 

with lower homeostatic pressure. Whether the association between slow frequency 
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activity and further improvement in Sequence Learning reflects processes of sleep-related 

memory consolidation or a non-specific effect of restorative sleep facilitating 

performance remains a question of further research. 

Sleep spindle parameters within the Nap group were negatively associated with off-

line changes in performance: slow spindle density and fast spindle amplitude showed 

negative associations with early off-line changes in Sequence Learning and Statistical 

Learning, respectively. These findings are hard to interpret as they are at odds with the 

majority of previous findings that reported a positive association between spindle 

parameters, general cognitive abilities, and off-line gains in performance in a variety of 

declarative and procedural learning tasks (see Rasch and Born, 2013 for a comprehensive 

review). Still, negative correlations were also reported to some extent although in samples 

including children (Chatburn et al., 2013), and psychiatric patients (Nishida, Nakashima, 

& Nishikawa, 2016). In our study, associations between spindle parameters and off-line 

changes in performance might not simply stem from trait-like effects, as associations 

were unchanged if we controlled for the confounding effects of training-dependent 

learning performance. Nevertheless, given the lack of baseline EEG measurements, we 

cannot fully discern trait- and state-like effects in the present study. Moreover, only the 

association between slow spindle density and the off-line change in Sequence Learning 

remained significant after the correction for multiple comparisons, whereas previous 

studies mainly linked sleep-dependent cognitive benefits to fast spindle activity. In sum, 

off-line changes in Sequence Learning and Statistical Learning were associated with 

different spindle parameters, nevertheless, the relevance of these associations should be 

examined in further studies, including baseline sleep measurements without pre-sleep 

learning experience. 

      To conclude, here we were able to assess the time-course of two fundamental 

learning processes, namely Sequence Learning and Statistical Learning separately and 

showed that Statistical Learning is acquired rapidly and remains unchanged even after 

extended practice, whereas Sequence Learning may develop more gradually. On the 

behavioral level, both sequence and statistical knowledge were retained and were 

independent of whether the off-line period included sleep or not. Although our measures 

of cortical oscillations assessed during the off-line period showed associations with 

behavioral performance within the sleep group to some extent, the influence of sleep-
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specific oscillations on Sequence and Statistical learning should be examined in future 

studies. Nevertheless, our findings suggest that sleep does not have an all-in-one-effect 

on memory consolidation, and future studies should focus on mapping systematically 

which learning and memory mechanisms might and might not benefit from sleep and 

related oscillatory activity. Learning and memory should be assessed on a process level 

(such as Sequence Learning and Statistical Learning in the current study) in order to 

characterize the time-course of these processes on the behavioral level as well as their 

neural correlates more precisely.  
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The relationship between subjective sleep quality and cognitive 

performance in healthy young adults: Evidence from three empirical 

studies13 

 

Abstract 

The role of subjective sleep quality in cognitive performance has gained increasing 

attention in recent decades. In this paper, our aim was to test the relationship between 

subjective sleep quality and a wide range of cognitive functions in a healthy young adult 

sample combined across three studies. Sleep quality was assessed by the Pittsburgh Sleep 

Quality Index, the Athens Insomnia Scale, and a sleep diary to capture general subjective 

sleep quality, and the Groningen Sleep Quality Scale to capture prior night’s sleep quality. 

Within cognitive functions, we tested working memory, executive functions, and several 

sub-processes of procedural learning. To provide more reliable results, we included 

robust frequentist as well as Bayesian statistical analyses. Unequivocally across all 

analyses, we showed that there is no association between subjective sleep quality and 

cognitive performance in the domains of working memory, executive functions and 

procedural learning in healthy young adults. Our paper can contribute to a deeper 

understanding of subjective sleep quality and its measures, and we discuss various factors 

that may affect whether associations can be observed between subjective sleep quality 

and cognitive performance. 

 

 

  

                                                 
13 Zavecz, Z., Nagy, T., Galkó, A., Nemeth, D., & Janacsek, K. (2020). The relationship between subjective 

sleep quality and cognitive performance in healthy young adults: Evidence from three empirical 

studies. Scientific reports, 10(1), 1-12. 
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Introduction 

There is a widely accepted belief that experiencing poor sleep quality, including 

subjective experiences (e.g., reporting difficulties falling asleep, waking up frequently 

during the night, or feeling tired during the day), indisputably decreases cognitive 

performance. We can often hear people complaining about weaker memory and/or 

attentional performance in relation to their experienced sleep insufficiency. This 

phenomenon can be particularly prevalent amongst university students since the pressure 

for academic performance in this population is exceptionally high. The possible 

overestimation of the importance of one's subjective sleep quality can even lead to 

placebo or nocebo effects on cognitive performance (Draganich & Erdal, 2014; Gavriloff 

et al., 2018). However, scientific evidence on the relationship between experienced 

subjective sleep quality and cognition is still inconclusive (Bastien et al., 2003; Miyata et 

al., 2013; Nebes, Buysse, Halligan, Houck, & Monk, 2009; Stepanski et al., 1989; van 

den Noort et al., 2016). Therefore, our aim in the current study was to test whether 

subjective sleep quality is associated with cognitive performance in healthy young adults. 

The role of sleep in cognitive performance has gained increasing attention in 

neuroscience and sleep research in recent decades (Diekelmann & Born, 2010; Jones & 

Harrison, 2001). Numerous experimental methods exist that can be employed for 

examining the association between sleep and cognitive performance. Sleep parameters 

can be evaluated based on actigraph or electroencephalograph measurements (i.e., 

objective measures), which are time-consuming and require expensive equipment. Hence, 

researchers and clinicians often tend to rely on questionnaires (i.e., subjective measures) 

to assess sleep parameters (e.g., sleep latency, sleep quality, sleep disturbances, or sleep 

duration). This inclination has also motivated the current study to explore the relationship 

between sleep questionnaires and cognitive functions. 

Previous studies have shown that subjective and objective sleep parameters, such as 

sleep latency, sleep duration, or sleep efficiency could differ (Armitage et al., 1997; 

Guedes et al., 2016; Landry et al., 2015b); the strength of correlation between the 

subjective and objective measures of the same parameters varied between 0.21 and 0.62 

for sleep latency and duration, while it was close to 0 for sleep efficiency. Subjective 

sleep quality can vary from objective sleep quality as it is typically estimated from a 

combination of parameters, such as sleep initiation, sleep continuity (number of 
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awakenings), and/or depth of sleep. For instance, extreme deviations can occur between 

subjective and objective measures in sleep disorders, such as insomnia or sleep-state 

misperception. According to Zhang and Zhao (2007), the subjective and objective 

measures together should determine the type of treatment and medication in sleep 

disorders. Stepanski et al. (1989) showed that, within insomniac patients, the decisive 

factor of whether a patient seeks medication is their subjective evaluation of their sleep 

quality and daytime functioning. Furthermore, Gavriloff et al. (2018) found that providing 

sham feedback about their sleep to patients with insomnia influenced their daytime 

symptoms and performance in attention and vigilance tasks. Similarly, in a placebo sleep 

study, young adults were randomly told they had below or above average sleep quality 

based on their brainwaves and other psychophysiological measures (Draganich & Erdal, 

2014). This constructed belief about their sleep quality affected their performance in 

attentional and executive function tasks. Thus, beyond therapeutic importance, it appears 

that subjective sleep quality can have further explanatory value for cognitive performance 

compared to objective measures. 

 One of the most widely-used sleep questionnaires is the Pittsburgh Sleep Quality 

Index (PSQI) (Buysse, Reynolds III, Monk, Berman, & Kupfer, 1989), a self-

administered questionnaire, in which participants rate their subjective sleep quality based 

on several questions. These questions deal with various aspects of sleep that range from 

the average amount of sleep during the night, the difficulty experienced in falling asleep, 

and other sleep disturbances. Nevertheless, there are other popular measurements, such 

as the Athens Insomnia Scale (AIS) (Soldatos et al., 2000), which measures difficulties 

in falling asleep or maintaining sleep, as well as sleep diaries, which capture the sleeping 

habits of the participants from day to day, spanning a few days or weeks. Sleep 

questionnaires and sleep diaries are two different types of self-reported measures: while 

sleep questionnaires are administered at a single point in time, and ask about various 

aspects of sleep experience in a longer time period retrospectively, sleep diaries are 

ongoing, daily self-monitoring tools. Libman, Fichten, Bailes, and Amsel (2000) showed 

that the two measurement types are tapping the same domains but lead to somewhat 

different results due to methodological differences: questionnaires can be susceptible to 

memory distortion while sleep diaries may be distorted by atypical sleep experiences 

during the monitored period. 
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Previous research on subjective sleep quality and cognitive performance has led to 

mixed findings. While some studies focusing on healthy participants have shown that 

poorer sleep quality as measured by the PSQI score was associated with weaker working 

memory (van den Noort et al., 2016), executive functions (Nebes et al., 2009), and 

decision-making performance (Telzer, Fuligni, Lieberman, & Galván, 2013), others have 

failed to find an association between subjective sleep quality and cognitive performance 

(Miyata et al., 2013; Stepanski et al., 1989). Bastien et al. (2003) showed different 

associations between subjective sleep quality as measured by a sleep diary and cognitive 

performance in patients with insomnia who received or did not receive treatment and in 

elderly participants who reported good sleep quality. Interestingly, in good sleepers, 

greater subjective depth, quality, and efficiency of sleep were associated with better 

performance on attention and concentration tasks but poorer memory performance. These 

findings suggest that further studies are needed to clarify the complex relationship 

between subjective sleep quality and aspects of cognitive functioning.  

Notably, these previous studies focused on diverse populations, including 

adolescents, elderly and clinical groups, and relied on sample sizes ranging from around 

20 to 100, with smaller sample sizes potentially limiting the robustness of the observed 

results. In these studies, subjective sleep quality was assessed by a combination of self-

reported measures, such as difficulty in sleep initiation, sleep continuity, and/or depth of 

sleep. In contrast to subjective sleep quality captured by a combination of such measures, 

self-reported sleep duration has been studied more thoroughly. In a large study with more 

than 100,000 participants, Sternberg et al. (2013) reported a quadratic relationship 

between self-reported sleep duration and performance in cognitive tasks assessing 

working memory and arithmetics. Furthermore, a recent powerful meta-analysis focusing 

on elderly participants also showed that both short and long sleep increased the odds of 

poor cognitive performance (Lo, Groeger, Cheng, Dijk, & Chee, 2016). A similar 

association was shown in another study investigating insomnia symptoms and cognitive 

performance in a large sample of participants (Kyle et al., 2017): self-reported sleep 

duration extremes were associated with impaired performance. Systematic investigations 

on the relationship between subjective sleep quality as captured by a combination of 

parameters (such as sleep latency, subjective sleep quality, sleep disturbances) and 

cognitive performance using larger sample sizes are, however, still lacking. 
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 Moreover, in previous investigations focusing on the association between 

subjective sleep quality and various aspects of cognitive performance, the potential 

relationship with procedural learning/memory has largely been neglected. The procedural 

memory system underlies the learning, storage, and use of cognitive and perceptual-motor 

skills and habits (Poldrack et al., 2001). Evidence suggests that the system is multifaceted 

in that it supports numerous functions that are performed automatically, including 

sequences, probabilistic categorization, and grammar, and perhaps aspects of social skills 

(Fiser & Aslin, 2001; J. H. Howard, Jr. & Howard, 1997; Lieberman, 2000; Poldrack & 

Foerde, 2008; Pothos, 2007). Considering the importance of this memory system, the 

clarification of its relationship with subjective sleep quality would be indispensable.  

 Here we aimed to fill the gaps identified in previous research by providing an 

extensive investigation on the relationship between subjective sleep quality and cognitive 

performance in healthy young adults. Within cognitive functions, we focused on working 

memory, executive functions and procedural learning. We chose these domains because 

1) the relationship between working memory, executive functions and subjective sleep 

quality has remained inconclusive, and 2) the relationship between procedural 

learning/memory and subjective sleep quality has largely been neglected in previous 

studies. Therefore, in the latter case, we explored several measures of procedural learning 

in order to obtain a more detailed picture of the potential associations with subjective 

sleep quality. To increase the robustness of our analyses, we created a database of 235 

participants' data by pooling three separate datasets from our lab. We assessed subjective 

sleep quality by PSQI and AIS (Study 1-3), Groningen Sleep Quality Scale (GSQS, Study 

2), and a sleep diary (Study 2). These separate measures capture somewhat different 

aspects of self-reported sleep quality and thus provide a detailed picture. We tested 

working memory, executive functions and several sub-processes of procedural learning 

in all three studies. To control for possible confounding effects, we included age, gender 

and chronotype as covariates in our analyses. To test the amount of evidence either for 

associations or no associations between subjective sleep quality and cognitive 

performance, we calculated Bayes Factors that offer a way of evaluating the evidence 

against or in favor of the null hypothesis, respectively.  

 

http://www.sciencedirect.com/topics/neuroscience/categorization
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Methods 

Participants 

Participants were selected from a large pool of undergraduate students from Eötvös 

Loránd University. The selection procedure was based on the completion of an online 

questionnaire assessing mental and physical health status. Respondents reporting current 

or prior chronic somatic, psychiatric or neurological disorders, or the regular consumption 

of drugs other than contraceptives were excluded. In addition, individuals reporting the 

occurrence of any kind of extreme life event (e.g., accident) during the last three months 

that might have had an impact on their mood or daily rhythms were also excluded from 

the study. 

The data was obtained from three different studies, each with a slightly different 

focus. Importantly, the analyses presented in the current paper are completely novel, none 

of the separate studies focused on the relationship between subjective sleep quality and 

cognitive performance. Forty-seven participants took part in Study 1 (C. Török, Janacsek, 

& Nemeth, 2016), 103 participants took part in Study 2 (Simor et al., 2019), and 85 

participants took part in Study 3 (Á. Takács et al., 2016). Descriptive characteristics of 

participants in the three studies are listed in Table 1. All participants were 

white/Caucasian. All participants provided written informed consent and received 

course credits for taking part. The studies were approved by the Research Ethics 

Committee of Eötvös Loránd University (201410, 2016/209). The study was conducted 

in accordance with the Declaration of Helsinki. 

 

Table 5.1 Descriptive characteristics of participants 

Study N 
Age 

Mean (SD) 
Gender 

Years in 

education 

Mean (SD) 

MEQ score  

Mean (SD) 

Study 1 47 21.38 (1.79) 10M/37F 14.36 (1.58) 34.96 (6.69) 

Study 2 103 21.62 (2.00) 30M/73F 14.50 (1.74) 33.99 (6.31) 

Study 3 85 20.99 (1.59) 23M/62F 14.28 (1.60) 33.61 (5.68) 

Note: M = male, F = female, MEQ = Morningness-Eveningness Questionnaire  
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Procedure 

We conducted three separate studies on the association of subjective sleep quality 

and procedural learning, working memory, and executive functions in healthy young 

adults. The sleep questionnaires included in the studies and the timing of the procedural 

learning task slightly differed. While we assessed subjective sleep quality by PSQI and 

AIS in all three studies, in Study 2, we included further measures of subjective sleep 

quality as well: (1) a sleep diary to assess day-to-day general sleep quality and (2) 

Groningen Sleep Quality Scale (GSQS) to assess prior night’s sleep quality. To control 

for the potential confounding effect of chronotype, we also administered the 

Morningness-Eveningness Questionnaire (MEQ) (Horne & Östberg, 1976; Zavecz, 

Török, Köteles, Pálosi, & Simor, 2015), henceforth referred to as morningness score 

because a larger score on this questionnaire indicates greater morningness.   

In all three studies, PSQI and AIS sleep quality questionnaires and the MEQ were 

administered online, while the GSQS in Study 2 and the tasks assessing cognitive 

performance in all studies were administered in a single session in the lab. Due to 

technical problems, the data of six participants on executive functions are missing. To 

ensure that participants do the tests in their preferred time of the day, the timing of the 

session was chosen by the participants themselves (between 7 am and 7 pm). The timing 

of the sessions was normally distributed in all three studies, with most participants 

performing the tasks during the daytime between 11 am and 3 pm. The sleep diary in 

Study 2 was filled by the participants for at least one week, and to a maximum of two 

weeks, prior to the cognitive assessment that was scheduled based on the participants’ 

availability.  

 

Questionnaires and tasks 

All cognitive performance tasks and subjective sleep questionnaires are well-known 

and widely used in the field of psychology and neuroscience (for details about each task 

and questionnaire, see Supplementary methods). 

Subjective sleep quality questionnaires – To capture the general sleep quality of 

the last month, we administered the Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 

1989; J. Takács et al., 2016) and the Athens Insomnia Scale (AIS) (Novak et al., 2004; 
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Soldatos et al., 2000). Additionally, in Study 2, we administered a Sleep diary (Gilson et 

al., 2015) to assess the sleep quality of the last one-two weeks, and the Groningen Sleep 

Quality Scale (GSQS) (Meijman, de Vries-Griever, De Vries, & Kampman, 1988; Simor, 

Köteles, Bódizs, & Bárdos, 2009) to capture the sleep quality of the night prior testing. 

Cognitive performance tasks – Working memory was measured by the Counting 

Span task (Case, Kurland, & Goldberg, 1982; A. R. Conway et al., 2005; Engle, Tuholski, 

Laughlin, & Conway, 1999; Virag et al., 2015). Executive functions were assessed by the 

Wisconsin Card Sorting Test (WCST) (Berg, 1948; Nemeth, Janacsek, Polner, et al., 

2013; Piper et al., 2015). The outcome measure of the WCST task was the number of 

perseverative errors, which shows the inability/difficulty to change the behavior despite 

feedback. Procedural learning was measured by the explicit version of the Alternating 

Serial Reaction Time (ASRT) task (Figure S1, see also (Nemeth, Janacsek, & Fiser, 

2013)). There are several learning indices that can be acquired from this task. Higher-

order sequence learning refers to the acquisition of the sequence order of the stimuli. 

Statistical learning refers to the acquisition of frequency information embedded in the 

task. However, previous ASRT studies often assessed Triplet learning, which is a mixed 

measure of acquiring frequency and sequential information (for details, see 

Supplementary methods). In addition to these learning indices, we measured the average 

reaction times (RTs) and accuracy (ACC), which reflect the average general performance 

of the participants across the task, and the changes in RT and ACC from the beginning to 

the end of the task, which indicate general skill learning that occurs due to more efficient 

visuomotor and motor-motor coordination as the task progresses (Hallgato et al., 2013). 

  

Data analysis 

Statistical analyses were conducted in R 3.6.1 (R Core Team, 2018) using the lme4 

package (Bates, Mächler, Bolker, & Walker, 2015). Bootstrapped confidence intervals 

and p-values were calculated using the boot package (Canty & Ripley, 2019; Davison & 

Hinkley, 1997). The data and analysis code can be found on the following link: 

https://github.com/nthun/performance_sleep_quality/ 

 Analysis of the relationship between subjective sleep quality and cognitive 

performance – Subjective sleep quality scales (PSQI and AIS) were combined into a 

single metric, using principal component analysis. Then separate linear mixed-effect 

https://github.com/nthun/performance_sleep_quality/
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models were created for each outcome measure (i.e., performance metric), where the 

aggregated sleep quality metric (hereinafter referred to as sleep disturbance) was used as 

a predictor, and ‘Study’ (1, 2 or 3) was added as a random intercept. This way we could 

estimate an aggregated effect while accounting for the potential differences across 

studies. To control for possible confounding effects, we included age, gender and 

morningness score as covariates in our analyses. Thus, the estimates reported in the 

Results section are controlled for these factors.   

As the residuals did not show normal distribution, we used bootstrapped estimates 

and confidence intervals, using 1000 bootstrap samples, from which we calculated the p-

values (Canty & Ripley, 2019; Davison & Hinkley, 1997). Bayes Factors (BF01) were 

calculated by using the exponential of the Bayesian Information Criterion (BIC) of the 

fitted models minus the BIC of the null models – that contained the confounders only, 

and a random intercept by study (Wagenmakers, 2007). The BF is a statistical technique 

that helps conclude whether the collected data favors the null-hypothesis (H0) or the 

alternative hypothesis (H1); thus, the BF could be considered as a weight of evidence 

provided by the data (Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011). It is 

an effective mathematical approach to show if there is no association between two 

measures. In Bayesian correlation analyses, H0 is the lack of associations between the 

two measures, and H1 states that association exists between the two measures. Here we 

report BF01 values. According to Wagenmakers et al. (2011), BF01 values between 1 and 

3 indicate anecdotal evidence for H0, while values between 3 and 10 indicate substantial 

evidence for H0. Conversely, while values between 1/3 and 1 indicate anecdotal evidence 

for H1, values between 1/10 and 1/3 indicate substantial evidence for H1. If the BF is 

below 1/10, 1/30, or 1/100, it indicates strong, very strong, or extreme evidence for H1, 

respectively. Values around 1 do not support either H0 or H1. Thus, Bayes Factor is a 

valuable tool to provide evidence for no associations between constructs as opposed to 

frequentists analyses, where no such evidence can be obtained based on non-significant 

results. 

To test the association between the additional subjective sleep quality measures and 

cognitive performance in Study 2, we used robust linear regression, this time without 

random effects. We included the same potential confounders (age, gender, morningness 

score), and Bayes factors were calculated in the previously described way.  
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Analysis of the ASRT data – Performance in the ASRT task was analyzed by 

repeated-measures analyses of variance (ANOVA) in each study (for details of these 

analyses, see Supplementary methods). Based on these ANOVAs, Triplet learning, 

Higher-order sequence learning and Statistical learning occurred in all three studies, both 

in ACC and RT (all ps < .001; for details, see Supplementary results and Figure S2). 

 

Results 

Cognitive performance in the three studies 

The working memory capacity (measured by the counting span) and executive 

functions (measured by the number of perseverative errors in the WCST task) of the 

participants were in the standard range for their age (Heaton, 1981; Racsmány, Lukács, 

Németh, & Pléh, 2005). The mean counting span for the entire sample was 3.59 (SD = 

0.85) in the three studies. This average score represents a mid-range cognitive 

performance, as obtainable scores range from 1 to 6. The mean number of perseverative 

errors was 14.76 (SD = 5.27) in the three studies (no maximum score can be defined in 

this case). For procedural learning, mean scores were 26.48 (SD = 26.37) for RT Triplet 

learning, 16.63 (SD = 40.34) for RT Higher-order sequence learning, 16.74 (SD = 9.94) 

for RT Statistical learning, 359.88 (SD = 40.94) for average RT, and 31.13 (SD = 30.15) 

for RT general skill learning. Accuracy scores were as follows: 0.04 (SD = 0.03) for ACC 

Triplet learning, 0.02 (SD = 0.03) for ACC Higher-order sequence learning, 0.03 (SD = 

0.03) for ACC Statistical learning, 0.90 (SD = .10) for average ACC, -0.02 (SD = 0.09) 

for ACC general skill learning, in all three studies. Note that for accuracy, these values 

represent proportions (e.g., the average ACC was 90%, hence 0.90), and the learning 

scores are difference scores (e.g., the ACC Triplet learning score shows that participants 

were on average 4% more accurate on high-frequency triplets compared to the low-

frequency ones). All presented RT and ACC scores represent typical values in ASRT 

studies with healthy young adults.   

We also provide descriptive data for Study 2 separately, as additional analyses were 

run on cognitive performance from this dataset and GSQS and sleep diary scores. In Study 

2, the mean counting span was 3.65 (SD = 1.01), and the mean number of perseverative 

errors was 14.46 (SD = 6.37). For procedural learning in Study 2, mean scores were 33.04 
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(SD = 27.96) for RT Triplet learning, 28.53 (SD = 51.44) for RT Higher-order sequence 

learning, 18.77 (SD = 9.78) for RT Statistical learning, 348.29 (SD = 42.26) for average 

RT, and 39.30 (SD = 34.74) for RT general skill learning. Accuracy scores were as 

follows: 0.03 (SD = 0.02) for ACC Triplet learning, 0.01 (SD = 0.02) for ACC Higher-

order sequence learning, 0.02 (SD = 0.02) for ACC Statistical learning, 0.94 (SD = 0.03) 

for average ACC, 0.02 (SD = 0.03) for ACC general skill learning.  

Overall, these values represent a mid-range cognitive performance with a sufficient 

level of variability in the sample to conduct the planned analyses. 

 

Subjective sleep questionnaire scores in the three studies 

The obtainable scores, means, standard deviations, and proportions of good, 

moderate and poor sleepers for each questionnaire are presented in Table 2. The mean 

scores of  PSQI in the current sample were higher than the score of 1.91 for the same 

components in Buysse et al. (1989), and in the range or even higher than the global PSQI 

score (which aggregates seven components; M = 2.67) for the control participants, whose 

age was between 24 and 83 years. In the same study (Buysse et al., 1989), the participants 

with sleep disorders had a mean score of 4.78 for the three components of PSQI, 

suggesting that ~18% of the current sample had a score higher than the average score of 

sleep-disordered patients. The mean scores of AIS were somewhat higher than the mean 

score of 3 reported for a representative Hungarian adult sample in Novak et al. (Novak et 

al., 2004). According to the cut-off score of 10 suggested in that paper, ~5% of our sample 

would fall in the diagnostic category of insomnia. However, according to a stricter cut-

off score of 6 suggested by Soldatos, Dikeos & Paparrigopoulos (Soldatos, Dikeos, & 

Paparrigopoulos, 2003), up to 23% of the participants would have complaints comparable 

to those of insomniac patients. The mean of the GSQS score was lower than the mean 

score reported for a Hungarian sample of young adults (M = 4.70, SD = 1.78) in Simor et 

al. (2009). The mean of the Sleep diary score in Study 2 was comparable to the mean 

PSQI score of 1.3 for the same components for the control participants and lower than the 

score of 6.36 for the participants with sleep disorders in Buysse et al. (1989).  

Although with some differences across questionnaires, these sleep scores suggest a 

moderate to poor sleep quality of the current sample, with about 15% of participants 

experiencing very poor sleep quality, comparable to those of patients with sleep disorders. 
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Overall, all sleep measures used in the current study appear to have a sufficient level of 

variability to conduct the planned analyses.  

 

Table 5.2 Descriptive statistics of the subjective sleep questionnaire scores 

 
Obtainable 

scores 
Mean (SD) 

Good 

sleepers 

Moderate 

sleepers 

Poor 

sleepers 

Scores (percentage of participants) 

PSQI 

All participants 

0–9  

2.99 (1.57) 

 

0–1 (15.3%) 

 

2–4 (66.4%) 

 

5–8 (18.3%) 

Study 2  2.54 (1.29)    

AIS 

All participants 

0–24  

3.98 (2.66) 

 

0–2 (35%) 

 

3–6 (50%) 

 

7–17 (15%) 

Study 2  3.41 (2.09)    

GSQS 

Study2 

0–14  

2.86 (2.87) 

 

0–1 (40%) 

 

2–7 (53%) 

 

8–13 (7%) 

Sleep dairy 

Study 2 

0–12  

1.38 (1.22) 

 

0–1 (60%) 

 

2–5 (40%) 

 

 
Note: PSQI = Pittsburgh Sleep Quality Index, AIS = Athens Insomnia Scale, GSQS = Groningen Sleep 

Quality Scale 

 

Combining sleep quality metrics 

Principal component analysis was used to combine PSQI and AIS into a single ‘sleep 

disturbance’ metric. The Bartlett’s test of sphericity indicated that the correlation between 

the scales was adequately large for a PCA, χ2(235) = 84.88, p < .0001. One principal 

factor with an eigenvalue of 1.55 was extracted to represent sleep disturbance. The 

component explained 83.7% of the variance, and it was named ‘sleep disturbance’ as 

higher values of this metric show more disturbed sleep. The aggregated sleep disturbance 

index across the three studies ranged from -1.9 to 3.86.   

 

Associations between subjective sleep quality and cognitive performance 

As described above, to study the associations between subjective sleep quality and 

cognitive performance, separate linear mixed-effect models were created for each 

outcome measure (i.e., cognitive performance metric), where sleep disturbance was used 

as a fixed predictor, and ‘Study’ was added as a random intercept. Sleep disturbance did 

not show an association with any of the cognitive performance metrics (see Table 3 and 



 

 

114 

 

 

Fig. 1). Bayes Factors ranged from 5.01 to 14.35, indicating substantial evidence for no 

association between subjective sleep quality and the measured cognitive processes 

(Wagenmakers et al., 2011). 

 

Table 5.3 The association of sleep disturbance with cognitive performance metrics 

Outcome β 95% CI  df p BF01 

ACC learning indices       

ACC Higher-order sequence learning -.041 [-0.18, 0.11] 205 .58 12.28 

ACC Statistical learning -.038 [-0.17, 0.09] 205 .56 12.42 

ACC Triplet learning -.067 [-0.19, 0.06] 205 .30 8.50 

RT learning indices       

RT Higher-order sequence learning .014 [-0.15, 0.16] 205 .85 14.29 

RT Statistical learning -.062 [-0.21, 0.07] 205 .39 10.48 

RT Triplet learning -.028 [-0.17, 0.12] 205 .71 13.60 

General skill indices       

ACC general skill learning .037 [-0.06, 0.13] 205 .45 11.06 

Average ACC .065 [-0.04, 0.17] 205 .23 6.79 

RT average -.019 [-0.17, 0.12] 205 .80 14.05 

RT general skill learning -.075 [-0.23, 0.07] 205 .33 8.83 

WM and EF indices       

Counting Span -.013 [-0.17, 0.14] 205 .87 14.35 

WCST – perseverative error .107 [-0.03, 0.24] 199 .13 5.01 

Note: The table shows standardized regression coefficients for sleep disturbance, where the ‘Study’ random 

intercept was included in separate linear mixed-effect models for each cognitive performance metrics. Age, 

gender, and morningness score were added as covariates. BF01 was derived from BIC (see the ‘Data 

analysis’ section for details). ACC = accuracy. RT = reaction time. WM = working memory. EF = executive 

function. WCST = Wisconsin Card Sorting Test. 

 

To test whether AIS or PSQI scores separately are associated with cognitive 

performance, we performed similar analyses as for the sleep disturbance metric. 

Additionally, we also tested whether cognitive performance differed between “good” and 

“poor” sleepers as defined by the extremes in the overall PSQI score. For this analysis, 
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we considered those with a score of 0 or 1 as good sleepers (N = 36), while those with a 

score of 5 to 8 as poor sleepers (N = 43), corresponding to approximately the upper and 

lower 15% of the data (see Table 2). These additional analyses (reported in the 

Supplementary results) are consistent with the above findings for the sleep disturbance 

metric, suggesting no relationship between subjective sleep quality and cognitive 

performance using these measures.  

 

Figure 5.1 Association between sleep disturbance and cognitive performance metrics by study. 

Horizontal axes represent the sleep disturbance index, while vertical axes represent the outcome variables, 

with their names shown in the panel titles. The scatterplots and the linear regression trendlines show no 

association between subjective sleep quality and procedural learning indices in terms of reaction time (RT, 

A), or accuracy (ACC, B), general skill indices in terms of RT or ACC (C), and working memory and 

executive function indices (D).     

 

In Study 2, to investigate the associations between further subjective sleep quality 

questionnaires and cognitive performance, we created a separate linear mixed-effect 

model for each outcome measure (i.e., cognitive performance metric), and each additional 

sleep questionnaire (i.e., sleep diary and GSQS). Sleep diary scores did not show 

association with any of the cognitive performance metrics (all ps > .05, see Table 4 and 
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Fig. 2). Bayes Factors ranged from 2.51 to 12.58, indicating, in all but one cases, 

substantial evidence for no association between subjective sleep quality and measures of 

cognitive performance (Wagenmakers et al., 2011). The lowest value of 2.51 for ACC 

general skill learning also pointed to the same direction, indicating slightly weaker 

evidence for no association with subjective sleep quality. 

 

Table 5.4 The association of sleep diary with cognitive performance metrics in Study 2 

Outcome β 95% CI t df p BF01 

ACC learning indices       

ACC Higher-order sequence learning -.077 [-0.28, 0.13] -0.749 97 .46 7.73 

ACC Statistical learning -.031 [-0.24, 0.17] -0.296 97 .77 8.09 

ACC Triplet learning -.111 [-0.31, 0.09] -1.092 97  .28 4.46 

RT learning indices       

RT Higher-order sequence learning -.001 [-0.11, 0.11] -0.025 97 .98 9.76 

RT Statistical learning -.205 [-0.41, 0.00] -1.955 97 .05 8.96 

RT Triplet learning -.059 [-0.19, 0.07] -0.917 97 .36 11.28 

General skill indices       

ACC general skill learning -.171 [-0.35, 0.01] -1.866 97 .07 2.51 

Average ACC .035 [-0.18, 0.25] 0.317 97 .75 8.94 

RT average -.086 [-0.31, 0.13] -0.764 97 .45 12.79 

RT general skill learning -.064 [-0.26, 0.14] -0.623 97 .53 7.10 

WM and EF indices       

Counting Span -.065 [-0.26, 0.13] -0.664 97 .50 5.63 

WCST – perseverative error .005 [-0.13, 0.14] 0.072 96 .94 9.71 

Note: The table shows standardized regression coefficients for sleep diary scores in separate linear mixed-

effect models for each cognitive performance metrics. Age, gender, and morningness score were added as 

covariates. BF01 was derived from BIC (see ‘Data analysis’ section for details). ACC = accuracy. RT = 

reaction time. WM = working memory. EF = executive function. WCST = Wisconsin Card Sorting Test. 
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Figure 5.2 Association between sleep diary and GSQS scores and cognitive performance metrics. 

Horizontal axes represent the sleep disturbance index, while vertical axes represent the outcome variables, 

with their names shown in the panel titles. The scatterplots and the linear regression trendlines show no 

association between subjective sleep quality (measured with a sleep diary (blue) or the GSQS (red)) and 

procedural learning indices in terms of reaction time (RT, A), or accuracy (ACC, B), general skill indices 

in terms of RT or ACC (C), and working memory and executive function indices (D).     

 

Similarly, GSQS scores did not show association with any of the cognitive 

performance metrics (all ps > .11, see Table 5 and Fig. 2). Bayes Factors ranged from 

3.46 to 16.46, indicating substantial evidence for no association between subjective sleep 

quality and the measured cognitive processes (Wagenmakers et al., 2011). 

 

 

 

 

 

 



 

 

118 

 

 

Table 5.5 The association of GSQS with cognitive performance metrics in Study 2 

Outcome β 95% CI t df p BF01 

ACC learning indices       

ACC Higher-order sequence learning .029 [-0.17, 0.23] 0.278 102 .78 10.87 

ACC Statistical learning -.001 [-0.20, 0.20] -0.013 102 .99 10.08 

ACC Triplet learning .000 [-0.20, 0.20] 0.000 102 1.00 10.15 

RT learning indices       

RT Higher-order sequence learning -.004 [-0.11, 0.10] -0.070 102 .94 10.14 

RT Statistical learning -.105 [-0.32, 0.11] -0.973 102 .33 5.39 

RT Triplet learning -.054 [-0.17, 0.07] -0.866 102 .39 16.46 

General skill indices       

ACC general skill learning .040 [-0.13, 0.21] 0.452 102 .65 12.28 

Average ACC .156 [-0.05, 0.36] 1.466 102 .15 5.16 

RT average -.176 [-0.39, 0.04] -1.617 102 .11 3.46 

RT general skill learning -.104 [-0.30, 0.09] -1.039 102 .30 5.85 

WM and EF indices       

Counting Span -.062 [-0.26, 0.13] -0.632 102 .53 6.07 

WCST – perseverative error -.009 [-0.13, 0.14] -0.133 101 .89 9.22 

Note: The table shows standardized regression coefficients for GSQS scores in separate linear mixed-effect 

models for each cognitive performance metrics. Age, gender, and morningness score were added as 

covariates. BF01 was derived from BIC (see the ‘Data analysis’ section for details). ACC = accuracy. RT = 

reaction time. WM = working memory. EF = executive function. WCST = Wisconsin Card Sorting Test. 

 

Discussion 

Our aim was to investigate the relationship between subjective sleep quality and 

cognitive performance in healthy young adults. Cognitive performance was tested in the 

domains of working memory, executive functions, and procedural learning. To provide 

more reliable results, we pooled data from three different studies, controlled for possible 

confounders, such as age, gender and chronotype, and performed robust frequentists as 

well as Bayesian statistical analyses. We did not find associations between subjective 

sleep quality and cognitive performance measures using the robust frequentist statistical 

analyses. Moreover, the Bayes factors provided substantial evidence for no association 

between subjective sleep quality and measures of working memory, executive functions, 
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and procedural learning. This pattern held when subjective sleep quality was reported 

retrospectively for a longer period (i.e., a month; with PSQI and AIS), as well as when 

monitored daily (for one to two weeks; with the sleep diary) or reported for the night prior 

to testing (with GSQS). These results suggest that neither moderately persistent nor 

transient subjective sleep quality is associated with cognitive performance in healthy 

young adults. 

There are several factors to consider why subjective sleep quality showed no 

associations with cognitive performance in our sample of healthy young adults. First, it 

is possible that methodological issues contributed to the null effects. For example, having 

a lower range of obtainable scores on the selected subjective sleep quality and cognitive 

performance measures can limit the possibility of finding a relationship between these 

measures. Importantly, all measures that we used in the current study have been well-

established in previous research and have a reasonable range of obtainable values. 

Although the sample choice of healthy young adults has naturally limited the range of 

scores on the used measures, our analyses showed a sufficient level of variability in all 

measures. Therefore, the obtained null results seem unlikely to be explained by such 

methodological issues.  

Second, as we studied healthy university students, there may be a ceiling effect in 

subjective sleep quality. Sleep disturbance can be more prevalent in elderly populations 

and in clinical disorders (Buysse et al., 1989; Novak et al., 2004). Consequently, variance 

and extremities in subjective sleep quality could be greater in these populations, while it 

can remain relatively low in healthy young adults. Nevertheless, previous research has 

found that university students are also prone to sleep disturbances, and in particular to 

chronic sleep deprivation (Gaultney, 2010). Although with some variation across sleep 

questionnaires, most participants’ subjective sleep quality ranged from moderate to poor 

in our sample, with about 15% of participants experiencing very poor sleep quality similar 

to those of patients with sleep disorders. Thus, it seems unlikely that the obtained results 

are due to a ceiling effect in subjective sleep quality. 

Third, it is possible that because young adults typically show a peak cognitive 

performance, poor subjective sleep quality may not have a substantial impact on it. In line 

with this explanation, the studies that reported associations between subjective sleep 

quality and cognitive performance (Nebes et al., 2009; van den Noort et al., 2016)(Telzer 
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et al., 2013) focused primarily on adolescents, older adults, or clinical populations, where 

cognitive performance has not yet peaked or have declined. Further supporting this 

explanation, Saksvik, Bjorvatn, Hetland, Sandal, and Pallesen (2011) found in their meta-

analysis that young adults are not as prone to the negative consequences of shift work as 

the elderly. Moreover, Gao, Terlizzese, and Scullin (2019) in a recent study showed that 

above-average cognitive abilities buffer against insufficient sleep durations. However, 

not all cognitive functions peak in adulthood: while previous studies have reported the 

best performance in working memory and executive functions in young adulthood (Craik 

& Bialystok, 2006; Tanczos, Janacsek, & Nemeth, 2013a, 2013b; Zelazo, Craik, & Booth, 

2004), some aspects of procedural learning (as measured by the ASRT task) has been 

shown to peak in childhood and to decline already around adolescents (Janacsek et al., 

2012; Juhasz, Nemeth, & Janacsek, 2019; Nemeth, Janacsek, & Fiser, 2013). 

Consequently, a cognitive peak may explain finding no relationship between subjective 

sleep quality and aspects of working memory and executive functions, while this 

explanation for the measures of procedural learning seems unlikely.  

Fourth, the conditions under which the data collection took place could have also 

contributed to the null results. We conducted our experiments during the term-time when 

the workload in the university is typically moderate. Moreover, students could choose the 

time of day for cognitive testing, and they may have chosen a time when they typically 

felt well-rested. There is evidence that performing in a preferred circadian time period 

can attenuate the effect of sleep disturbances (Goel, Basner, Rao, & Dinges, 2013). 

Consistently, previous studies showed that participants exhibit better performance on 

working memory and executive functions tasks in their preferred time of day (Matchock 

& Mordkoff, 2009; Rowe, Hasher, & Turcotte, 2009). However, a recent study found that 

participants, in fact, exhibit weaker performance in procedural learning in their preferred 

time of day, and better performance in their non-preferred time of day, suggesting 

variability in the relationship between circadian effects and cognitive functions 

(Delpouve, Schmitz, & Peigneux, 2014). Additionally, independent of the time of day, 

participants may have perceived the session with the cognitive tasks as a testing situation 

and may have been motivated to show their best performance, compensating for any 

possible effect of poor subjective sleep quality. Indeed, there is evidence that highly 

motivated participants are less prone to the effect of sleep deprivation (Hull, Wright Jr, 
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& Czeisler, 2003). Thus, the time of testing and participants’ motivation may have 

contributed to our findings by potentially compensating for any negative effects of poor 

subjective sleep quality on cognitive performance. 

Fifth, the relationship between sleep and cognitive performance can vary depending 

on what parameters of sleep are assessed. Associations between objective sleep quality 

(measured by actigraphy or electroencephalography) and various aspects of working 

memory, executive functions and procedural learning have been frequently reported in 

previous studies (for a review, see (Diekelmann & Born, 2010; Jones & Harrison, 2001)). 

Here we showed that subjective sleep quality is not associated with these cognitive 

functions, at least under the circumstances described above. As outlined in the 

Introduction, this dissociation suggests that objective and subjective sleep quality, 

although measure the same domains, do not necessarily capture the same aspects of sleep 

quality and sleep disturbances (Armitage et al., 1997). Subjective sleep quality may be 

estimated based on a combination of objective sleep parameters. Moreover, some 

objective parameters of sleep that contribute to cognitive performance may not be 

captured with self-reported instruments. For example, it is often reported that spindle 

activity or time spent in slow-wave sleep (SWS) or in REM sleep is essential for memory 

consolidation (Clemens, Fabo, & Halasz, 2005; Siegel, 2001; Walker, 2009). Also, in 

laboratory sleep examinations, sleep quality is usually carefully controlled for several 

days prior to the examination. Potentially, the objective sleep parameters showing 

associations with cognitive performance may only be measured in these carefully 

controlled conditions (i.e., when sleep quality on the night of testing as well as in the 

preceding days are good). Hence, it is possible that while results with objective sleep 

quality may show how healthy sleep is related to cognitive functioning, results with 

subjective sleep quality may reflect how aspects of sleep disturbances are related to 

cognitive functioning. 

Sixth, and relatedly, there could be differences in the association with cognitive 

performance within self-reported measures of sleep as well. In our study, we captured the 

perceived disturbances in initiating and maintaining sleep rather than the self-reported 

duration of sleep. While we found no associations between these measures of subjective 

sleep quality and cognitive performance, there is solid evidence that self-reported extreme 

sleep durations (both long and short sleep times) are associated with worse cognitive 
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performance (Kyle et al., 2017; Lo et al., 2016; Sternberg et al., 2013). These findings 

suggest a dissociation between sleep quality as measured by extreme self-reported sleep 

durations and other types of sleep quality disturbances. 

Seventh, it is possible that while interindividual differences in subjective sleep 

quality do not contribute to at least some aspects of cognitive performance, 

intraindividual fluctuations do. The possible importance of intraindividual rather than 

interindividual differences was also suggested by Ackermann, Hartmann, 

Papassotiropoulos, de Quervain, and Rasch (2015) in a large study, in which contrary to 

previous studies they showed no associations between declarative memory consolidation 

and objective sleep parameters. Further studies are warranted to test whether day-to-day 

variations in subjective sleep quality predict day-to-day changes in cognitive 

performance. 

Finally, our paper has some limitations. As mentioned above, it is possible that 

investigating populations more susceptible to sleep disturbances or cognitive 

performance problems could yield different results, and the lack of associations could be 

specific to healthy young adults. Furthermore, it would be interesting to test whether 

individual differences in other factors (for example, interoceptive ability, i.e., how 

accurately one perceives their own body sensations) influence the relationship between 

subjective sleep quality and cognitive performance. 

 

Conclusions 

In conclusion, we showed that self-reported, subjective sleep quality is not associated 

with working memory, executive functions, and various aspects of procedural learning in 

a relatively large sample of healthy young adults. These findings were supported not only 

by frequentist statistical analyses but also by Bayes factors that provided substantial 

evidence for no associations between these functions. Importantly, however, our findings 

do not imply that sleep per se has no relationship with these cognitive functions; instead, 

it emphasizes the dissociation between subjective and objective sleep quality. We believe 

that our approach of systematically testing the relationship between self-reported sleep 

questionnaires and a relatively wide range of cognitive functions can inspire future 

systematic studies on the relationship between subjective/objective sleep parameters and 

cognition. Within healthy young adults, future studies are warranted to probe the 
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relationship between subjective sleep quality and cognitive performance assessed in the 

non-preferred time of day, include other aspects of cognitive functions, and test 

intraindividual, day-to-day variations in the relationship between sleep and cognitive 

performance. 
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General discussion 

The aim of the dissertation was twofold: to better characterize procedural memory 

on the behavioral and on the neural level. In order to do this, we aimed to answer different 

questions in the four studies of the dissertation. In Study 1, we examined both declarative 

and non-declarative memory in a sleep-disordered population to determine their relation 

to sleep. Study 2 focused on the neural background of procedural memory by examining 

the causal role of theta oscillations. In Study 3, besides aiming to characterize two 

subprocesses of procedural memory, we also explored the neural background of its 

consolidation, in particular, whether sleep has a prominent role in it. Lastly, in Study 4, 

we focused on subjective sleep parameters and their possible associations with different 

subprocesses of procedural memory.  

 

How declarative and non-declarative memory is related to sleep in a sleep-

disordered population? 

In Study 1, we investigated the differential association of declarative and non-

declarative memory with sleep in a sleep-disordered population. More precisely, our aim 

was to investigate whether Slow-wave sleep (SWS) spectral power is associated with 

learning capacity and overnight memory consolidation within a group of children with 

Sleep-disordered breathing (SDB). Moreover, we applied both a declarative and a non-

declarative memory task in order to explore the specificity of sleep-related memory 

impairments in SDB. Our results confirmed that slow frequency activity was associated 

with declarative learning capacity: delta power (1-4 Hz) during post-learning SWS was 

positively, whereas theta power (4-8 Hz) was negatively associated with declarative 

learning capacity. However, we did not find any associations between the spectral 

composition of SWS and non-declarative learning capacity. Apart from learning capacity, 

we also did not find associations between the spectral composition of SWS and the 

overnight memory consolidation neither in the declarative nor in the non-declarative task.  

This finding might suggest that the memory impairments associated with sleep 

disorders are the result of chronic insufficient sleep quality affecting learning capacity 

rather than overnight insufficient sleep quality affecting consolidation mechanisms. 

However, specific studies are warranted to test this hypothesis, as lower learning capacity 
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could lead to floor effects in consolidation, i.e., individuals suffering from sleep disorders 

learn less, and therefore have the capacity to consolidate all learned content. In contrast, 

if they were to learn as much as their good-sleeper peers, we might saw impairments in 

consolidation performance as well. However, it is also possible that the relationship 

between sleep parameters and learning impairments appears due to a third factor that leads 

to both sleep disturbances and cognitive impairments. As we studied a sleep disorder in 

which the sleep fragmentation is a result of breathing difficulties, a likely candidate for a 

third factor is abnormal respiratory patterns. Studies have shown that the reduced oxygen 

delivery during sleeping in SDB can result in neuronal damage, especially in the 

prefrontal cortex (Beebe & Gozal, 2002; Blunden & Beebe, 2006). Thus breathing 

difficulties can result both in sleep fragmentation and through affecting the maturation of 

the prefrontal cortex, cognitive impairment. However, the severity of the respiratory 

problems does not predict the severity of the cognitive impairments, i.e. children with 

milder or severe SDB symptoms show similar cognitive impairments (Archbold et al., 

2004; Bourke et al., 2011a, 2011b; Csabi et al., 2015; Gottlieb et al., 2004). 

Our results of associations between sleep parameters and declarative but not with 

non-declarative memory performance are in line with previous studies comparing the 

performance of children with and without sleep disorders, showing declarative memory 

impairment together with intact non-declarative memory performance (Csábi et al., 2013; 

Gottlieb et al., 2004; Nemeth et al., 2012; Nemeth, Janacsek, Londe, et al., 2010). Albeit 

some studies reported sleep-dependent memory effects in case of similar procedural 

learning tasks (Durrant et al., 2013; Durrant et al., 2011; Urbain et al., 2013), these tasks 

differ in their methodology and presumably, also in their neural correlates (Durrant et al., 

2013; Durrant et al., 2011; Janacsek et al., 2015; Nemeth, Janacsek, Király, et al., 2013; 

Urbain et al., 2013). Several studies indicate that sleep-related benefits of memory 

consolidation are restricted to skill-learning paradigms that require attention, intentional 

learning or contain an explicit representation of the sequence (Robertson et al., 2004; 

Song & Cohen, 2014; Wilhelm et al., 2011). In contrast, learning within the ASRT task 

is implicit, and occurs without explicit awareness (J. H. Howard, Jr. & Howard, 1997; 

Nemeth, Janacsek, Londe, et al., 2010; Song et al., 2007b).  To sum up, our results 

indicate that declarative and non-declarative memory is differently associated with sleep: 

we found oscillatory mechanisms during sleep that showed associations with declarative 
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memory performance, but we did not reveal associations between sleep parameters with 

non-declarative memory performance. We cannot rule out however, that the lack of 

associations between sleep and non-declarative memory is specific to the measured type 

of procedural memory. 

Even though this was not the primary focus of the study, it is important to note, that 

these associations and effects of sleep disruption could be especially impactful during 

development. Research showed a stronger association between sleep quality and 

neurobehavioral functioning in younger children than in older children (Sadeh, Gruber, 

& Raviv, 2002). This higher vulnerability to poor sleep in early childhood could be 

explained by the important prefrontal cortex development occurring during early 

adolescence (Casey, Tottenham, Liston, & Durston, 2005). This early childhood period 

is especially characterized by dramatic prefrontal cortex changes in structural architecture 

and functional organization that decline throughout adolescence. Based on these findings, 

we can assume that the influence of low sleep quality on prefrontal cortex functions 

impacts cognitive and school performance during development. Considering this 

vulnerability in brain maturation in childhood, the question of reversibility of 

neurocognitive symptoms of children with sleep disorders raises. Yet, studies 

investigating the effect of treatment in pediatric sleep disorders are scarce. In a follow-up 

study that is currently ongoing, we are aiming to answer these important questions as 

well. 

 

Thesis statement 1: Declarative memory is associated with parameters of sleep in a 

sleep-disordered population, whereas non-declarative is not. 

Thesis statement 2: Slow oscillations (delta and theta) of sleep are relevant for 

declarative memory. 

   

Is theta oscillation crucial for procedural memory? 

In Study 2, we investigated the neural background of procedural memory by directly 

manipulating oscillatory activity during learning: we tested the causal relationship 

between fronto-parietal midline theta synchronization and procedural learning with non-

invasive transcranial alternating current stimulation (tACS). We could not find 

stimulation effects, the overall learning performance and the time course of learning did 
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not differ between the stimulation and the control conditions. This does not mean, 

however, that theta synchronization is irrelevant for procedural memory measured by the 

ASRT task. In the lack of an EEG recording simultaneously with or following the 

stimulation, we could not confirm that the brain stimulation induced the expected changes 

in brain activity. We chose the stimulation parameters based on studies that could 

influence brain activity/cognitive performance with a similar setting (Chander et al., 

2016; Polanía et al., 2015; Violante et al., 2017; Vosskuhl et al., 2015). However, it is 

likely that the chosen parameters for the tACS stimulation, such as the fronto-parietal 

midline montage, the relatively weak (1 mA) current intensity, and/or the chosen theta 

frequency were not appropriate to influence learning in our study. Regarding the current 

intensity, there have been several recent animal studies suggesting that the usual 

intensities applied in transcranial electric stimulation studies (including our study) are not 

sufficient to elicit significant changes in brain activity (Khatoun, Asamoah, & Mc 

Laughlin, 2019; Krause, Vieira, Csorba, Pilly, & Pack, 2019; Vöröslakos et al., 2018). To 

be able to confirm if certain brain dynamics are crucial for procedural memory, the 

changes in brain activity induced by the brain stimulation must be measured and proved. 

Unfortunately, such devices that can simultaneously measure the electrical activity of the 

brain and apply electrical stimulation are hardly accessible and were not available for our 

research group for this study. It would worth replicating this study (possibly with higher 

current intensity) with methods that enable us to confirm the induced changes in brain 

activity due to the stimulation. 

 

Thesis statement 3: Non-invasive brain stimulation is a powerful tool to test the causal 

relationship between brain dynamics and memory performance. 

 

Is sleep essential for the consolidation of different subprocesses of procedural 

memory? 

In Study 3, we investigated the consolidation of sequence and statistical knowledge 

in case of the off-line period spent sleeping or awake. We could not find differences in 

memory consolidation in the groups of participants who, after learning, either slept, rested 

quietly or watched a movie. Both sequence and statistical learning were preserved during 
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the off-line period independent of the activity of the period. These results are in line with 

previous studies that did not find beneficial effects of sleep on procedural memory tasks 

involving regularities (Peigneux et al., 2003, 2006; Song et al., 2007a; Nemeth et al., 

2010; Hallgató et al., 2013).  However, EEG spectral power assessed during the off-line 

period showed associations with memory consolidation during sleep, but not during 

awake states. This association was selective for sequence learning, namely frontal theta 

band power during sleep showed a positive association with the consolidation of sequence 

knowledge. In addition, frontal theta power also (and more strongly) predicted further 

improvements in sequence learning after additional practice following sleep. This finding 

suggests that not sleep per se, but low-frequency oscillations (2-8 Hz) are associated with 

memory consolidation and delayed performance gains.  

Albeit the primary focus of the study was to explore the effects of sleep and the neural 

background of procedural memory, this was also one of the first studies characterizing 

the subprocesses of procedural memory, sequence and statistical learning, separately 

within the same paradigm. Our findings indicate that sequence and statistical learning 

have different learning trajectories. Sequence learning exhibited a steady increase with 

practice, even after returning to the task following the off-line period. In contrast, 

statistical learning was acquired rapidly and remained stable throughout practice. Our 

fine-grained analyses showed that statistical learning occurs already after very little 

exposure to regularities, although additional training is required to strengthen the acquired 

statistical knowledge. Regarding consolidation, both forms of learning were preserved as 

no significant off-line changes emerged in either sequence or statistical learning. This 

latter could indicate, that the consolidation of these two subprocesses might rely on more 

similar mechanisms than their acquisition. However, the dissociation of the relevant 

oscillations during the off-line period indicates otherwise. In a follow-up study, we are 

aiming to reveal in greater detail whether the studied subprocesses rely on distinct neural 

oscillations.  

 

Thesis statement 4: Sequence and statistical learning show different learning 

trajectories. 

Thesis statement 5: Sleep does not seem to benefit the consolidation of procedural 

memory more than wakefulness. 
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Thesis statement 6: Sleep-specific slow oscillations however are associated with the 

consolidation of sequence knowledge. 

 

Are subjective measures of sleep associated with different subprocesses of 

procedural memory? 

In Study 4, we investigated whether subjective sleep quality is associated with 

procedural memory. According to our results, none of the various aspects of procedural 

learning that we investigated (alongside with working memory and executive functions) 

showed associations with self-reported sleep quality. Our findings do not imply that sleep 

per se has no relationship with these cognitive functions. There is a great dissociation 

between subjective and objective sleep quality (Armitage et al., 1997; Guedes et al., 2016; 

Landry et al., 2015b) therefore generalization from one aspect of sleep to the other should 

be avoided. Instead, this is another aspect of sleep that does not seem to affect procedural 

memory. 

Reviewing the literature on the relationship between subjective sleep quality and 

cognition revealed a pattern in studies that found and studies that did not find associations. 

Studies that reported associations between subjective sleep quality and cognitive 

performance (Nebes et al., 2009; Telzer et al., 2013; van den Noort et al., 2016), focused 

primarily on adolescents, older adults, or clinical populations, where cognitive 

performance has not yet peaked or have declined. In contrast, we studied healthy 

university students, who are at their peak cognitive performance. Saksvik et al. (2011) 

found in their meta-analysis that young adults are not as prone to the negative 

consequences of shift work as the elderly. Moreover, Gao et al. (2019) in a recent study 

showed that above-average cognitive abilities buffer against insufficient sleep durations. 

Differential associations between populations more or less susceptible to negative 

consequences of sleep (or other environmental factors) can affect the findings of all 

studies investigating sleep and memory, including the studies in this dissertation. 

Therefore, the lack of associations showed in this dissertation (and other studies) 

investigating healthy young adults should be treated with caution and should not be 

automatically generalized to sleep and memory overall. Another good approach would be 

to probe the relationship between (subjective) sleep quality and cognitive performance 
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within healthy young adults in a non-ideal setting for cognitive performance, for instance 

in a non-preferred time of day. 

 

Thesis statement 7: Subjective sleep quality is not associated with procedural memory, 

as in sequence, statistical or general skill learning and motor abilities. 

 

Conclusions of the studies on the behavioral level 

On the behavioral level, we provided evidence for the differentiation of the 

investigated two subprocesses of procedural memory: sequence and statistical learning 

have different learning trajectories. Importantly, in our studies, we defined sequence and 

statistical learning as processes sensitive to serial-order and frequency/probability 

information, respectively. However, from a theoretical perspective sequence and 

statistical learning could be both considered as statistical learning at the level of 

transitional probabilities. The difference between these two forms of learning at the level 

of transitional probabilities is that in case of sequence learning, the second order 

transitional probability is one, i.e. a sequence element can be predicted with a 100% 

certainty from the previous sequence element. In contrast, in case of statistical learning 

(as defined in our studies) the second order transitional probability is less than one, as 

there is always one probable continuation and some less probable continuations for the 

elements. However, our results in Study 3 and 4, as well as previous studies (Kóbor et al., 

2018; Nemeth, Janacsek, & Fiser, 2013; Szegedi-Hallgató et al., 2017) suggest that this 

difference is significant enough to consider these two processes as separate.  

However, even in these subprocesses of procedural memory, modification within the 

same task can still cause great changes in learning trajectories. For instance, sequence 

learning has been previously shown to occur slowly in the implicit ASRT task, over 

several sessions and days typically (Howard and Howard, 1997; Howard et al., 2004), 

while this can be substantially faster (one session) if explicit instruction is provided to the 

participants (Kóbor et al., 2018; Nemeth, Janacsek, & Fiser, 2013). In contrast, statistical 

learning occurs very quickly in both task versions (Horvath, Torok, Pesthy, Nemeth, & 

Janacsek, 2019; Kóbor et al., 2018; Szegedi-Hallgató et al., 2017). The further trajectory 

of statistical learning, however, also differs in the implicit and explicit version of the task. 

The explicit instruction about the sequence seems to suppress the gradual increase of 
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statistical knowledge: while the trajectory of statistical learning remains stable in the 

explicit ASRT, it gradually increases throughout practice in the implicit version. 

Similarly to the implicit version, in the explicit version, when the task is fix-paced instead 

of self-paced, a gradual increase of statistical knowledge can be observed (Horvath et al., 

2019; Szegedi-Hallgató et al., 2017). Considering that in the fixed-paced ASRT task, the 

participants have to give very quick answers, it is possible that altogether it is not the 

explicit knowledge, but the use of that knowledge is the decisive factor regarding the 

trajectory of statistical learning. In conditions where participants cannot rely on strategies 

containing the explicit sequence (in a lack of the explicit knowledge, or the lack of the 

time to use that knowledge), they show an increase in learning throughout practice, 

whereas their performance remains stable when they rely on such strategies. These 

dynamics all suggest that there might be a competition between the explicit focus on the 

sequential information and the implicit acquisition of the statistical regularities 

(Hardwick, Forrence, Krakauer, & Haith, 2019). This competition has also been shown 

in a developmental setting (Nemeth, Janacsek, & Fiser, 2013). In conclusion, the different 

parameters within the same task cause great variability in the behavioral characteristics 

of even well dissected subprocesses of memory. This variability could indicate that our 

taxonomy for memory might not consider (all) the relevant factors.  

 

Is it time to replace the classical taxonomies of memory?  

There have been several suggestions for alternative memory taxonomies over the past 

decades (Henke, 2010; Konkel & Cohen, 2009; P. J. Reber, 2013; Reder, Park, & 

Kieffaber, 2009; Shanks & St. John, 1994). P. J. Reber (2013) drew attention to the 

problem of the mere definition of non-declarative or implicit memory relying on an 

absence: the absence of MTL dependence in case of non-declarative and absence of 

consciousness in case of implicit memory. The MTL dependence is problematic as it 

seems to play a role in memory processes that were assumed to be independent of it (Chun 

& Phelps, 1999; Hannula & Greene, 2012). The definition by consciousness is 

problematic for two reasons: one reason is that it is not a binary construct, but instead a 

continuous scale. Relatedly, several memory processes can occur with or without 

conscious awareness as well (see sequence learning in our studies). The other reason why 

the definition by consciousness is problematic is that the variety of how implicit memory 
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can be observed is so great, that it is impossible to find a common ground to them. For 

this reason, Willingham and Preuss (1995) suggested abandoning the term entirely.  

A common feature of the alternative taxonomies is to account more for the brain’s 

information processing activities, as memory is a fundamental property of that (Konkel 

& Cohen, 2009; P. J. Reber, 2013; Reder et al., 2009). However, most of the alternative 

taxonomies only tried to characterize the non-declarative/implicit memory system better 

in order to have a processing characteristic that fully distinguishes this system from 

declarative/explicit memory. In contrast, Henke (2010) proposed a taxonomy where the 

boundaries of declarative and non-declarative memory were not considered any more: 

subtypes of memory that were traditionally characterized as declarative or non-

declarative memory became part of the same category in this taxonomy. The taxonomy 

distinguishes three basic processing modes: rapid encoding of flexible associations, slow 

encoding of rigid associations and rapid encoding of single or unitized items. In this way, 

for instance, semantic and procedural memory both fall in the same (second) category. 

However, this classification still encompasses the same memory types (episodic, 

semantic, procedural, etc.), ultimately. 

These definitional problems present a setback in memory research. It is futile to try 

to characterize memory types without a good working definition of those types. Due to 

this problem, memory research is currently characterizing behavioral and neural 

correlates of specific memory tasks rather than memory types themselves. The misleading 

classification also makes it hard to oversee which memory processes have more similar 

behavioral characteristics and neural correlates as these could be memory processes 

traditionally categorized into distinct memory types (e.g., declarative and non-

declarative). This rigidity prohibits a new, better taxonomy to emerge. While it was not 

the aim of this dissertation to provide a novel memory taxonomy, the findings of the 

studies emphasize the problems with the current classification.  

 

Are phases of memory clear?  

A second important classical division that can deteriorate memory research and 

should be considered in future research is the phases of memory. Traditionally, we 

differentiate learning, consolidation and retrieval. However, memory consolidation is a 

poorly defined construct. At this time, it is unclear how memories are altered after initial 
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encoding, as well as there is no consensus as to which of the processes contributing to 

this alteration should be included under the umbrella term of memory consolidation. 

Instead of a single process, we can differentiate phases or types of consolidation as well, 

such as stabilization, enhancement or integration (Stickgold & Walker, 2007). More 

recently, the concept of memory reconsolidation was also introduced, referring to the 

phenomenon of when previously stabilized memories are reactivated, they return to a 

labile state in which they are again susceptible to destructive interference, and need to be 

stabilized in a subsequent off-line period again (Nader, 2003). The focus of the current 

study was learning and consolidation, therefore, the phenomenon of reconsolidation did 

not affect the results of our studies. However, recently another consolidation mechanism 

has been identified, that could be relevant in our studies. Consolidation traditionally 

thought to take an extensive amount of time, however, recent papers show that it can 

occur in an extremely short period as well, on a scale of seconds (Bönstrup et al., 2019; 

Robertson, 2019). This phenomenon was referred to as ultra-fast offline improvement 

(Robertson, 2019). As the learning period in our studies took a relatively long time, the 

ASRT task was administered in blocks. These ultra-fast consolidation processes likely 

occurred between the blocks, leading to a mixed measure of acquisition and consolidation 

in each learning period. According to a new study, the extraction of regularities in a 

procedural memory task (i.e., the memory performance we were primarily interested in) 

is not affected by these consolidation processes (Fanuel et al., 2020). Nevertheless, future 

studies investigating memory processes that are measured by tasks that contain short 

resting periods should address this question specifically.  

 

The relationship between sleep and procedural memory on the behavioral level  

Other than characterizing the processes of procedural memory, we also wanted to 

explore its relationship with sleep. On the behavioral level, we did not find a beneficial 

effect of sleep on learning capacity or consolidation of procedural memory. In Study 3, 

we did not find differences in memory consolidation following post-learning sleep or 

wakefulness. In Study 4, we showed that there is no association between subjective sleep 

quality and procedural memory capacity. In both studies, the lack of association between 

memory performance and sleep was present both for sequence and statistical learning. 
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Importantly, we did not find associations between sleep and procedural memory with 

neither objective nor subjective sleep parameters. This is in line with previous studies that 

also did not show associations between sleep and procedural memory (Csabi et al., 2015; 

Nemeth et al., 2012; Wilhelm et al., 2008). 

 

Conclusions of the studies on the neural level 

The relationship between sleep and procedural memory on the neural level 

In contrast to the behavioral level, it is not clear if sleep, or more specifically sleep-

related oscillations on the neural level could affect procedural memory. In Study 1, the 

spectral composition of SWS did not correlate with procedural memory (in contrast with 

declarative memory that showed associations with the slow oscillations). In Study 3, 

however, where we dissected sequence and statistical learning, the findings were mixed. 

Statistical memory performance did not show associations with neural activity during 

sleep, whereas, we found associations between the spectral composition of sleep and the 

consolidation of sequence knowledge. Interestingly, this association emerged between 

slow oscillations of sleep and memory performance, similar to the association between 

declarative memory and sleep in Study 1.  

This similarity between declarative memory and explicit sequence learning could 

occur for two reasons: 1) Declarative memory and explicit sequence learning share some 

characteristics, such as consciousness or MTL dependence and/or 2) slow oscillations 

during sleep support different types of memory as well. There is some evidence for both 

of these possibilities.  

Declarative memory by definition relies on the MTL (Squire, 1992b) and some 

studies showed that MTL is relevant for sequence learning as well (Albouy, King, 

Maquet, & Doyon, 2013; Schapiro et al., 2012; Schendan et al., 2003). Indeed, theta 

oscillations have been observed consistently in the hippocampus and have been suggested 

to reflect cortico-hippocampal interactions underlying memory processes (Bastiaansen & 

Hagoort, 2003; Buzsáki & Moser, 2013; Sauseng, Griesmayr, Freunberger, & Klimesch, 

2010). However, it is not clear whether the theta oscillations measured on the scalp via 

EEG originate from the hippocampus.  
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Concerning consciousness, the declarative memory task was explicit, as well as 

sequence learning in the cued ASRT might have included explicit processes due to the 

instruction. Theta oscillations have also been associated with consciousness (Klimesch et 

al., 2001; Matsuoka, 1990). However, explicit processes can manifest on different levels, 

such as the instruction, awareness of learning, learning strategies, and representation of 

the acquired knowledge. However, these levels are somewhat independent of each other, 

i.e., explicit instruction does not necessarily lead to explicit learning strategies. 

Additionally, in the cued ASRT task, sequence learning is measured as a difference in 

reaction times (and accuracy) between the triplets constituted from the sequence as first 

and last elements and triplets with elements appearing in the same order, but starting and 

ending with random elements (pattern high-frequency vs. random high-frequency 

triplets). Even if the knowledge of the sequence helps the former triplet type, it does not 

affect the latter. This means that the sequence learning measured in the task could not be 

fully explicit. To conclude, these two memory processes (story recall and sequence 

learning) are still fundamentally different.  

Therefore, besides common characteristics between the two memory processes, slow 

oscillations having a more general benefit to memory could also explain the similar 

associations. Slow frequency activity of NREM sleep was consistently linked to better 

cognitive outcomes in healthy adults (Arico et al., 2010; Drago et al., 2011; Ferri et al., 

2010) and children (Bruni et al., 2012). Studies showed a power increase in these slow 

frequency oscillations (1-8 Hz) after prolonged wakefulness, suggesting they reflect the 

homeostatic and restorative capacity of sleep (Borbély et al., 1981; Marzano et al., 2010). 

Serving the function of homeostasis and restoration, the role of slow oscillations does not 

seem to be specific to support only a narrow band of memory processes. Instead, it is 

likely that different types of memory can equally benefit from this neural mechanism.  

Finally, it is also important to note, that while the associated frequency ranges (slow 

oscillations, 1-8 Hz) were identical in the two studies with the different memory 

processes, the exact associations differed. In Study 1, oscillations around 1 Hz positively, 

whereas oscillations between 4 and 7 Hz negatively associated with the declarative 

learning capacity. In Study 3, oscillations between 2 and 8 Hz positively correlated with 

the consolidation of sequence knowledge. Therefore, the precise frequency bins, direction 

of the association and the associated memory phase all varied between the two findings. 
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Thus, further studies are warranted to explore whether it is the same mechanism (and if 

yes, what mechanism it is exactly) underlying the associations between the slow 

oscillations of sleep and declarative and explicit sequence learning.   

 

Neural background of procedural memory independently of sleep 

While our findings regarding the neural correlates of procedural memory 

independent of sleep are inconclusive, there is still some enlightenment to be found in our 

studies. We introduced transcranial electric stimulation as a potential way to test causal 

relationship between brain activity and behavior. This is an important technique, as in 

humans, brain stimulation is the main method to test causality between brain activity and 

cognition. Regarding transcranial electric stimulation, we also enumerated several 

stimulation parameters that could help to influence (procedural) memory.  

Furthermore, it also became clear that more sophisticated measures of EEG are 

necessary to reveal the neural correlates of procedural memory consolidation in awake 

states. A more sophisticated analysis could be functional connectivity analysis, which we 

used in a previous EEG study investigating the brain activity during the learning phase of 

a procedural memory task, and indeed we did find associations between functional 

networks and memory performance (Tóth et al., 2017). Motivated by this, we have several 

ongoing studies where we aim to explore associations between functional networks 

measured by EEG and procedural memory performance. With this approach, we do find 

correlations between brain activity during post-learning wakefulness and consolidation 

of procedural memory.   

 

Summary 

The aim of the dissertation was to provide a deeper understanding of procedural 

memory processes by investigating their behavioral characteristics, neural background, 

and their relationship to sleep. We provided evidence that procedural memory is not 

unitary, and at least two subprocesses, sequence and statistical learning should be 

differentiated. These subprocesses have different learning trajectories and neural 

correlates. Moreover, procedural memory seems to be independent of sleep, however, 

sleep-specific oscillations might have a role in the consolidation of sequential 
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information. We used a wide variety of methods to explore associations between memory, 

sleep and their underlying brain activity: brain stimulation, electrophysiology, objective 

and subjective sleep measures. We also provided a list of factors that should be tested 

systematically in further studies, such as ultra-fast consolidation and reconsolidation, the 

differential associations between sleep and memory in different populations and the 

adequacy of alternative memory taxonomies. 

 

Implications 

Besides the theoretical implications that could interest sleep and memory researchers, 

these findings also have practical importance. They could be relevant for those in the 

fields of medicine and educational sciences, providing essential community benefits via 

potential public applications. A precise understanding of the neural background of a 

cognitive process could enable us to directly modify those via for instance the presented 

transcranial electric stimulation. If we unravel the neural background of memory, it could 

be the foundation for improving everyday memory performance, and for clinical therapies 

of several memory-related disorders (amnesia, post-traumatic stress disorder or 

dementia). Furthermore, showing differential associations of sleep with different types of 

memory could be of importance for training: for instance, if one form of memory is 

impaired in a sleep-disordered population, but the other one is intact, the latter can be 

used as a compensation technique. For a similar approach with a different disorder, see 

Ullman and Pullman (2015) and Ullman and Pierpont (2005). 
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Supplementary materials for Study 1 titled 

“Delta and theta activity during slow wave sleep are associated with 

declarative, but not with non-declarative learning in children with sleep-

disordered breathing” 

 

Analyses excluding children with OSA 

In order to verify whether the above correlations were not produced due to 

impaired learning specifically within the OSA (n = 4) subgroup, we performed the same 

analyses based on the data of the primary snoring subgroup only (n = 23). 

 

Declarative Memory (Story Recall) 

SWS spectral power within the delta range showed a positive correlation with 

evening story recall (r = .62, p = .002, Fig.S1A), whereas a negative correlation was found 

within the theta band (r = -.67 p = .001, Fig.S1B). All other frequency bands showed non-

significant (ps > .45) correlations with the evening score. No significant correlations were 

found between spectral power measures (all ps > .52) and overnight memory 

consolidation (i.e., the change in performance from evening to morning). 

 

 

Fig.S1. Correlation between slow wave sleep delta (A) and theta (B) power spectrum 

and immediate (evening) story recall performance in the case of only primary 

snoring patients. 
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To control for the confounding factor of age that might influence both memory 

performance and SWS we conducted a regression analysis with evening (immediate) 

story recall performance as the dependent factor, and age and SWS delta spectral power 

as separately entered independent variables. In the first model, performance in story recall 

was significantly associated with age (Std. beta = .58, p = .005). In the second model, age 

(Std. beta = .39, p = .024), and delta power (Std.beta = .53, p = .004) were both significant 

predictors of immediate story recall. We conducted the same regression analysis with 

evening story recall performance as the dependent variable, and age and SWS theta 

spectral power as separately entered independent variables. In the final model, age was 

not significantly associated with story recall performance (Std. beta = .22, p = .13), but 

theta power remained a significant predictor (Std.beta = -.56, p = .005). Both delta and 

theta power increased the explained variance of evening recall beyond the explained 

variance of age.  

 

Non-declarative memory (ASRT) 

SWS spectral power measures were not associated with the statistical learning 

score in the evening (based on the last, 5th epoch) (all ps > .57), or in the morning session 

(all ps > .19) in terms of ACCs. Moreover, spectral power measures were not associated 

to memory consolidation (all ps >.19) of statistical learning indexed by overnight change 

in ACCs. Similarly, no significant correlations emerged between statistical learning 

performance in the evening (all ps > .54), or in the morning session (all ps > .08) in terms 

of RT. Spectral power measures were not associated with memory consolidation (all ps 

>.31) indexed by overnight change in RT. 

Unlike statistical learning, SWS spectral power measures were associated with 

general skill learning in case of ACCs. Similarly to story recall, SWS spectral power in 

the delta range showed a positive correlation with the average ACCs (averaged across 

high and low frequency triplets) assessed in the evening (based on the last, 5th epoch, r = 

.59, p = .004), whereas a negative correlation was found with theta band power (r = - .47, 

p = .03). All other frequency bands showed non-significant (ps > .12) correlations with 

the average ACCs measured in the evening session. Similar, although stronger 

correlations were found between the morning ACCs and band-wise spectral power 

measures (delta: r = .82, p < .001, theta: r = -.70, p = .001, all other ps > .33). No 
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significant correlations were found between spectral power measures (all ps > .51) and 

overnight change in average ACCs (i.e. consolidation of general skill learning).     

In the case of general skill learning indexed by averaged RTs for high and low 

frequency triplets, no significant correlations emerged between skill learning and spectral 

power (all ps > .25). Neither we found significant correlations between the overnight RTs 

change and spectral power measures, although delta (r = .04, p = .08) and theta (r = -.44, 

p = .05) band power correlated with overnight change on a trend level (all other ps > .58). 

Similarly to story recall, we controlled for the confounding factor of age that might 

influence both memory performance and SWS. First, we conducted a regression analysis 

with average evening ACCs as the dependent factor, and age and slow wave delta spectral 

power as separately entered independent variables. In the first model, ACCs was 

significantly associated with age (Std. beta = .48, p = .023; Adj. R2 = .20, F (1,20) = 6.10;   

p = .023).  In the second model, the influence of age remained significant (Std. beta = .38, 

p = .05), but delta power was not a significant predictor (Std.beta = .24, p = .24) of ACCs 

(Model: Adj. R2 = .40, F (2,21) = 7.92  p = .003). We conducted the same regression 

analysis with average evening ACCs as dependent variable, and age and slow wave theta 

spectral power as separately entered independent variables. In the third model in which 

both age and theta spectral power were entered, neither age (Std. beta = .26, p = .29), nor 

theta power (Std.beta = -.39, p = .11) were significant predictors of ACCs (Model: Adj. 

R2 = .26, F (2,21) = 4.71  p = .022).  
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Supplementary materials for Study 2 titled 

“Frontal-midline theta frequency and probabilistic learning: A 

transcranial Alternating Current Stimulation study” 

 

Does baseline performance influence the effects of the stimulation? 

Recent studies showed that baseline performance could interact with the effect of 

stimulation, namely that low-performing participants usually benefit more from 

transcranial electric stimulation compared to high-performing participants [1-4]. As a 

post-hoc analysis, we wanted to explore whether the participants’ initial performance 

interact with the effect of the stimulation. We conducted four mixed-design analyses of 

variance (ANOVAs) with STIMULATION (Sham vs. Active) and EPOCH (1-4) as 

within-subject factors and four different grouping variables based on initial performance 

as a between-subject factor on the reaction time (RT) and accuracy (ACC) learning 

scores. The four grouping variables for high- vs. low-performing participants were the 

following: 1) BASELINE RT GROUP, 2) BASELINE RT LEARNING GROUP, 3) 

BASELINE ACC GROUP, 4) BASELINE ACC LEARNING GROUP. For each of these 

grouping variables, we divided participants into two groups with equal size (N = 13) 

based on their initial performance on the respective variable measured in the first epoch 

of the first session (independent of the stimulation condition): average RT was used for 

the BASELINE RT GROUP, RT learning score for the BASELINE RT LEARNING 

GROUP, average ACC for the BASELINE ACC GROUP, and ACC learning scores for 

the BASELINE ACC LEARNING GROUP. ANOVAs with grouping variables based on 

RT data were computed on standardized RT learning scores, and ANOVAs with grouping 

variables based on ACC data were computed on the ACC learning scores. Thus, we 

conducted the two mixed-design ANOVAs with the RT grouping variables on the 

standardized RT learning scores (for the calculation of the learning scores, see the main 

text) and the two ANOVAs with the ACC grouping variables on the ACC learning scores. 

Furthermore, we conducted the same mixed-design ANOVAs with a Bayesian approach, 

as well. To summarize the importance of the effects (in particular, the interaction between 

the groups and the stimulation) across all models, we performed model averaging and 
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report inclusion Bayes factors (for further details on the Bayesian ANOVA, see main 

text).  

Baseline RT performance. First, we investigated whether the effect of 

stimulation differed depending on participants’ initial RTs (Table S1-S2, Baseline RT 

column). Similarly to the results reported in the main text, the main effect of EPOCH was 

significant, indicating that the learning scores increased throughout training, irrespective 

of the stimulation. We did not find any significant differences between groups with fast 

vs. slow baseline RTs either in overall learning scores (main effect of BASELINE RT 

GROUP) or the trajectory of these learning scores (BASELINE RT GROUP x EPOCH 

interaction). We also did not find any significant differences between the learning scores 

in the active stimulation vs. sham conditions (main effect of STIMULATION, and 

STIMULATION x EPOCH interaction). Furthermore, initial baseline RTs did not seem 

to influence the stimulation effects (STIMULATION x BASELINE RT GROUP 

interaction and STIMULATION x EPOCH x BASELINE RT GROUP interaction).  

The analysis of effects (model-averaged results) of the Bayesian ANOVA on the 

RT learning scores showed that the effect of EPOCH should be included in the model 

(BFinclusion = 74.523), while other main effects or interactions should not (all BFinclusion < 

1, Table S2). Importantly, there was substantial evidence that the STIMULATION x 

BASELINE RT GROUP and STIMULATION x EPOCH x BASELINE RT GROUP 

interactions should not be included in the model (BFinclusion = 0.072, BFinclusion = 0.0002 

respectively). To conclude, we did not find different stimulation effects in participants 

with fast or slow initial RTs.  

Baseline RT learning performance. Second, we tested whether initial 

probabilistic learning performance measured by RTs could interact with the effect of 

stimulation (Table S1-S2, Baseline RT learning column). The main effect of EPOCH was 

again significant, indicating increasing learning scores as the task progressed. The 

BASELINE RT LEARNING GROUP x EPOCH interaction was also significant, 

indicating that the trajectory of the learning scores differed between the two groups, 

irrespective of the stimulation. The post-hoc analysis showed that the groups significantly 

differed in the first epoch (p < .001, possibly influenced by the grouping criterion itself), 

but not in the subsequent epochs (ps > .12) indicating that the initial performance 

difference diminished throughout the task. The overall learning scores did not differ 
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significantly between the two groups (main effect of BASELINE RT LEARNING 

GROUP). Again, we did not find any significant differences between the learning scores 

in the active stimulation vs. sham conditions (main effect of STIMULATION and 

STIMULATION x EPOCH interaction). Furthermore, initial learning scores did not seem 

to influence the stimulation effects either (STIMULATION x BASELINE RT 

LEARNING GROUP interaction and STIMULATION x EPOCH x BASELINE RT 

LEARNING GROUP interaction).  

The analysis of effects (model-averaged results) of the Bayesian ANOVA on RT 

learning scores showed that the effect of EPOCH, BASELINE RT LEARNING GROUP 

and BASELINE RT LEARNING GROUP x EPOCH should be included in the model 

(BFinclusion = 337.966, BFinclusion = 2.367, BFinclusion = 7.672 respectively), while other main 

effects or interactions should not (all BFinclusion < 1, Table S2). Importantly, there was 

substantial evidence that the STIMULATION x BASELINE RT GROUP and 

STIMULATION x EPOCH x BASELINE RT GROUP interactions should not be 

included in the model (BFinclusion = 0.127, BFinclusion = 0.025 respectively). To conclude, 

we did not find different stimulation effects in participants with high or low initial 

learning scores measured by RT. 

Baseline ACC performance. Next, we tested whether the effect of stimulation 

differed depending on participants’ initial ACC (Table S1-S2, Baseline ACC column). 

Contrary to RT learning scores, ACC learning scores appeared to be stable throughout 

the task (non-significant main effect of EPOCH). We did not find any significant 

differences between groups with high vs. low baseline ACC either in the overall learning 

scores (main effect of BASELINE ACC GROUP) or the trajectory of these learning 

scores (BASELINE ACC GROUP x EPOCH interaction). We also did not find any 

significant differences between the learning scores of the active stimulation vs. sham 

conditions (main effect of STIMULATION and STIMULATION x EPOCH interaction). 

Furthermore, initial baseline ACC did not seem to influence the stimulation effects 

(STIMULATION x BASELINE ACC GROUP interaction and STIMULATION x 

EPOCH x BASELINE ACC GROUP interaction).  

The analysis of effects (model-averaged results) of the Bayesian ANOVA on 

ACC learning scores showed that none of the studied effects should be included in the 

model (all BFinclusion < 1, Table S2). Importantly, there was substantial evidence that the 
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STIMULATION x BASELINE RT GROUP and STIMULATION x EPOCH x 

BASELINE RT GROUP interactions should not be included in the model (BFinclusion = 

0.019, BFinclusion = 0.00006 respectively). To conclude, we did not find different 

stimulation effects in participants with high vs. low initial ACC. 

Baseline ACC learning performance. Lastly, we tested whether initial 

probabilistic learning performance measured by ACC could interact with the effect of 

stimulation (Table S1-S2, Baseline ACC learning column). Again, the ACC learning 

scores appeared to be stable throughout the task (non-significant EPOCH main effect). 

However, there was a significant difference in the overall learning scores between those 

who had low vs. high baseline ACC learning scores (main effect of BASELINE ACC 

LEARNING GROUP): the difference in the initial learning performance that was the 

basis of the grouping, appeared to have remained throughout the task (M = 1.8% and M 

= 3.4% for the groups with low vs. high initial ACC learning scores, respectively). We 

did not find significant differences between the trajectory of learning scores in the two 

groups (BASELINE ACC LEARNING GROUP x EPOCH interaction). Again, we did 

not find any significant differences between the learning scores of the active stimulation 

and sham conditions (main effect of STIMULATION and STIMULATION x EPOCH 

interaction). Furthermore, initial learning scores did not seem to influence the stimulation 

effects either (main effect of BASELINE ACC LEARNING GROUP, STIMULATION 

x BASELINE ACC LEARNING GROUP interaction and STIMULATION x EPOCH x 

BASELINE ACC LEARNING GROUP interaction).  

The analysis of effects (model-averaged results) of the Bayesian ANOVA on the 

ACC learning scores showed that none of the studied effects should be included in the 

model (all BFinclusion < 1, Table S2). Importantly, there was substantial evidence that the 

STIMULATION x BASELINE RT GROUP and STIMULATION x EPOCH x 

BASELINE RT GROUP interactions should not be included in the model (BFinclusion = 

0.047, BFinclusion = 0.004 respectively). To conclude, we did not find different stimulation 

effects in participants with high or low initial learning scores measures by ACC. 
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Table S1. Results from frequentist ANOVAs performed with different initial 

performance groups 

Effect Statistics Baseline RT 
Baseline RT 

learning 

Baseline 

ACC 

Baseline ACC 

learning 

Stimulation 

F 0.051 0.053 0.015 0.015 

p .824 .819 .902 .903 

η²p .002 .002 .001 .001 

Epoch 

F 6.945 8.030 2.208 2.317 

p < .001* < .001* .095 .083 

η²p .224 .251 .084 .088 

Stimulation x 

Epoch 

F 0.574 0.590 1.170 1.284 

p .634 .623 .322 .287 

η²p .023 .024 .046 .051 

Group 

F 0.238 2.165 1.562 7.699 

p .630 .154 .223 .011* 

η²p .010 .083 .061 .243 

Group  

x Epoch 

F 0.814 4.688 0.302 1.506 

p .490 .005* .824 .220 

η²p .033 .163 .012 .059 

Stimulation 

x Group 

F 0.110 1.343 0.272 0.172 

p .743 .258 .607 .682 

η²p .005 .053 .011 .007 

Stimulation 

x Group  

x Epoch 

F 0.525 1.203 0.113 2.457 

p .666 .315 .912 .089 

η²p .021 .048 .005 .093 

Note: Results of four mixed-design analyses of variance (ANOVAs) with STIMULATION (Sham vs. 

Active) and EPOCH (1-4) as within-subject factors and 1) BASELINE RT GROUP, 2) BASELINE RT 

LEARNING GROUP, 3) BASELINE ACC GROUP, or 4) BASELINE ACC LEARNING GROUP as a 

between-subject factor on the respective RT/ACC learning scores. Relevant interaction effects that show 

whether the baseline performance groups interacted with the stimulation effects are boldfaced. * p < .05. 
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Table S2. Model-averaged results from Bayesian ANOVAs performed with different 

initial performance groups 

Effect 
Baseline 

RT 

Baseline 

RT 

learning 

Baseline 

ACC 

Baseline ACC 

learning 

Stimulation 0.066 0.086 0.060 0.067 

Epoch 74.523 337.966 0.185 0.225 

Stimulation x Epoch 0.131 0.040 0.016 0.021 

Group 0.029 2.367 0.132 0.560 

Group x Epoch 0.018 7.672 0.014 0.145 

Stimulation x Group 0.072 0.127 0.019 0.047 

Stimulation x Group  

x Epoch 
2.392e -4 0.025 6.461e -5 0.004 

Note: We report inclusion Bayes Factors. Results of four mixed-design analyses of variance (ANOVAs) 

with STIMULATION (Sham vs. Active) and EPOCH (1-4) as within-subject factors and 1) BASELINE 

RT GROUP, 2) BASELINE RT LEARNING GROUP, 3) BASELINE ACC GROUP, or 4) BASELINE 

ACC LEARNING GROUP as a between-subject factor on the respective RT/ACC learning scores. 

Relevant interaction effects that show whether the baseline performance groups interacted with the 

stimulation effects are boldfaced. 

 

Altogether, our results show that the individual differences in the initial baseline 

performance (as defined by the average speed and accuracy, and RT and ACC 

probabilistic learning scores at the beginning of the task) did not interact with the effects 

of the stimulation. However, as these tests were post-hoc, and the number of participants 

was low in the groups for each comparison, these results should be treated with caution 

and further studies are warranted to probe whether initial performance in a probabilistic 

learning task could be a relevant factor when testing the effect of brain stimulation on 

learning.  
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Does the partial overlap between the sequences practiced during the two stimulation 

sessions influence the effects of the stimulation? 

To ensure that the partially overlapping sequence in the task between the two sessions did 

not distort the effects of the stimulation, we computed learning scores excluding the 

responses (RT and ACC) to those triplets that were high-probability in both sessions. As 

the retention of probabilistic information is intact after one week [5], or even after one 

year [6], responses during the second session can be faster for those high-probability 

triplets that were practiced in the previous session. By eliminating these high-probability 

triplets, we ensure that the difference between the performance for high- and low-

probability triplets will be due to the probabilistic information acquired during that 

session. Thus, for both sessions, we included data only from high-probability triplets that 

were unique for the given session.  

After the elimination of overlapping high-probability triplets, overall RTs and 

ACC significantly differed between the two sessions (as revealed by the main effect of 

SESSION in the repeated-measures ANOVA with SESSION (First vs. Second), EPOCH 

(1-4) and TRIPLET TYPE (High vs. Low) as within-subject factors for RT: F(1, 25) = 

142.879, p < .001, η²p = .851 and for ACC: F(1, 25) = 5.821, p = .024, η²p = .022). 

Therefore, we calculated standardized scores within each subject in each session. For 

RTs, we calculated z-score within each subject in each session, while for ACC, we 

corrected the performance of each session with the initial (i.e., during the 1st epoch) 

performance of each subject. Then, for each epoch, we calculated learning scores both 

for RT and ACC data. For RT, the learning score was calculated as the difference between 

the z-transformed RTs for low-probability triplets minus the z-transformed RTs for high-

probability triplets. For ACC, the learning score was calculated as the standardized ACC 

for high-probability triplets minus the standardized ACC for low-probability triplets. In 

both cases, a higher learning score indicates better learning. 

To evaluate changes in probabilistic learning as a function of stimulation, we 

conducted repeated-measures ANOVAs separately for the RT and ACC learning scores 

with STIMULATION (Sham vs. Active) and EPOCH (1-4) as within-subject factors. 

Greenhouse–Geisser epsilon (ε) correction was used if necessary. Original df values and 

corrected p-values (if applicable) are reported together with partial eta-squared (η²p) as 

the measure of effect size. Furthermore, we conducted the same repeated-measures 
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ANOVAs with STIMULATION and EPOCH as within-subject factors for RT and ACC 

learning scores with a Bayesian approach. The Bayesian ANOVA is a model comparison 

approach (for details on the interpretation of the Bayesian ANOVA, see the main text).  

RT performance. The frequentist repeated-measures design ANOVA on the z-

transformed RT learning scores revealed a significant Intercept (F(1, 25) = 32.552, p < 

.001, η²p = .566), suggesting that learning occurred in the ASRT task. The main effect of 

EPOCH was also significant (F(3, 75) = 6.102, p = .001, η²p = .196), indicating that the 

learning scores increased throughout the task, independent of the stimulation condition 

(Fig. S1A). However, we did not find any significant differences between the active 

stimulation and sham conditions either in overall learning (main effect of 

STIMULATION: F(1, 25) = 0.048, p = .829, η²p = .002) or in the trajectory of learning 

(STIMULATION * EPOCH interaction: F(3, 75) = 0.471, p = .704, η²p = .018).  

 

Figure S1. Probabilistic learning in terms of reaction times (A) and accuracy (B) in the active 

stimulation vs. sham conditions across the four epochs of the ASRT task, excluding the performance 

for overlapping high-probability triplets over the sessions. There was no significant difference between 

the active stimulation in theta frequency (grey squares) and sham (black triangles) conditions either in 

overall learning or in the time course of learning. Error bars indicate Standard Error of Mean (SEM).  

 

The analysis of effects (model-averaged results) of the Bayesian repeated-

measures ANOVA on the RT learning scores showed that the effect of EPOCH should 

be included in the model (BFinclusion = 14.05), while the main effect of STIMULATION 

and the STIMULATION x EPOCH interaction should not (all BFinclusion < 1, Table S3). 
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Thus, based on the Bayesian analysis of effects, the learning scores changed throughout 

the task, but they were independent of the stimulation condition or the order of the 

stimulation. 

Table S3. Model-averaged results of Bayesian ANOVA for RT learning scores 

Effects  P(incl) P(incl|data) BF inclusion 

Stimulation  0.600  0.146 0.114  

Epoch   0.600  0.955 14.050  

Stimulation x Epoch   0.200  0.011 0.043  

Note: The Effects column denotes predictors of interest, the column P(incl) shows the prior inclusion 

probability, P(incl | D) shows the posterior inclusion probability, and BFInclusion shows the inclusion Bayes 

factor. 

 

Based on the Bayesian model comparison, the best model for our data contained 

only the main effect of EPOCH (Table S4). More specifically, the model with the main 

effect of EPOCH is ~6 times more likely than any model including the effect of the 

STIMULATION. This suggests that while the learning scores changed during the task, 

this was independent of the stimulation condition. 

Table S4. Bayesian model comparisons for RT learning scores 

Models  P(M) P(M|data) BF M BF 10 error % 

Epoch   0.200  0.814  17.551  1.000    

Stimulation + Epoch   0.200  0.130  0.596  0.159  2.428  

Null model   0.200  0.039  0.163  0.048  0.753  

Stimulation + Epoch + Stim. x Epoch   0.200  0.011  0.043  0.013  3.773  

Stimulation   0.200  0.006  0.024  0.007  1.481  

Note: All models include Subject. The Model column shows the predictors included in each model, the 

P(M) column the prior model probability, the P(M | D) column the posterior model probability, the BFM 

column the posterior model odds, and the BF10 column the Bayes factors of all models compared to the best 

model. The final column, ‘error’ is an estimate of the numerical error in the computation of the Bayes 

factor. All models are compared to the best model and are sorted from highest Bayes factor to lowest. 
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ACC performance. The frequentist repeated-measures design ANOVA on the 

ACC learning scores revealed a significant Intercept (F(1, 25) = 47.205, p < .001, η²p = 

.654), suggesting that learning occurred in the ASRT task. The main effect of EPOCH 

was also significant (F(3, 75) = 3.490, p = .020, η²p = .122), indicating that the learning 

scores increased throughout the task, independent of the stimulation condition (Fig. S2B). 

However, we did not find any significant differences between the active stimulation and 

sham conditions either in overall learning (main effect of STIMULATION: F(1, 25) = 

0.004, p = .952, η²p < .001) or in the time course of learning (STIMULATION * EPOCH 

interaction: F(3, 75) = 1.072, p = .361, η²p = .041).  

The analysis of effects (model-averaged results) of the Bayesian repeated-

measures ANOVA on the ACC learning scores showed that the main effect of 

STIMULATION and the STIMULATION x EPOCH interaction should not be included 

in the model (all BFinclusion < 1, Table S5). Inclusion of the main effect of EPOCH 

remained inconclusive (BFinclusion = 1.098). Thus, based on the Bayesian analysis of 

effects, the learning scores were stable throughout the task and they were independent of 

the stimulation condition or the order of the stimulation. 

Table S5. Model-averaged results of Bayesian ANOVA for ACC learning scores 

Effects  P(incl) P(incl|data) BF inclusion 

Stimulation  0.600  0.141  0.109   

Epoch   0.600  0.622  1.098   

Stimulation x Epoch   0.200  0.014  0.055   

Note: The Effects column denotes predictors of interest, the column P(incl) shows the prior inclusion 

probability, P(incl | D) shows the posterior inclusion probability, and BFInclusion shows the inclusion Bayes 

factor. 

 

Based on the Bayesian model comparison, the best model for our data is with 

only the main effect of EPOCH (Table S6). This model is ~7 times more likely than any 

model including the STIMULATION factor. This suggests that while the learning scores 

changed during the task, this was independent of the stimulation condition. 
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Table S6. Bayesian model comparisons for ACC learning scores 

Models  P(M) P(M|data) BF M BF 10 error % 

Epoch   0.200  0.530   4.507   1.000     

Null model  0.200  0.329   1.965   0.622   0.753   

Stimulation + Epoch  0.200  0.079   0.342   0.149   1.393   

Stimulation   0.200  0.048   0.203   0.091   1.313   

Stimulation + Epoch + Stim. x Epoch   0.200  0.014   0.055   0.026   1.913   

Note: All models include Subject. The Model column shows the predictors included in each model, the 

P(M) column the prior model probability, the P(M | D) column the posterior model probability, the BFM 

column the posterior model odds, and the BF10 column the Bayes factors of all models compared to the best 

model. The final column, ‘error’ is an estimate of the numerical error in the computation of the Bayes 

factor. All models are compared to the best model and are sorted from highest Bayes factor to lowest. 

  

Altogether, our results after the elimination of the overlapping high-probability 

triplets are identical to the results without the elimination of these triplets: the stimulation 

did not influence the learning scores and their trajectories neither in case of RT nor ACC 

learning scores. Therefore, we can conclude that the overlapping sequences in the two 

sessions did not influence the effect of the stimulation considerably. 

 

Are there any obvious patterns in the stimulation effects for different individuals? 

To explore whether the stimulation affected individuals differently, we plotted the 

average RT and ACC learning scores for each epoch in the two stimulation conditions for 

each participant (Fig. S2-S3). We could not identify any obvious subgroups of 

participants as a function of their learning performance in the stimulation vs. sham 

conditions. Furthermore, to explore visually whether the order of the conditions 

influenced the effect of stimulation, we grouped the participants based on whether they 

completed the sham condition (Fig. S2A and S3A), or the active stimulation condition 

first (Fig. S2B and S3B). Again, no obvious patterns emerged based on the stimulation 

order. 
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Figure S2. Probabilistic learning in terms of reaction times in the active stimulation vs. sham 

conditions across the four epochs of the ASRT task for each participant separately for those who 

completed the sham (A) or the active stimulation (B) condition first. There were no obvious subgroups 

based on the difference between the active stimulation in theta frequency (grey squares) and sham (black 

triangles) conditions either in overall learning or in the time course of learning. Furthermore, the order of 

the stimulation did not seem to interact with the effects of the stimulation.  
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Figure S3. Probabilistic learning in terms of accuracy in the active stimulation vs. sham conditions 

across the four epochs of the ASRT task for each participant separately for those who completed the 

sham (A) or the active stimulation (B) condition first. There were no obvious subgroups based on the 

difference between the active stimulation in theta frequency (grey squares) and sham (black triangles) 

conditions either in overall learning or in the time course of learning. Furthermore, the order of the 

stimulation did not seem to interact with the effects of the stimulation.  
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Altogether, the plots did not unravel any obvious subgroups based on differences 

between the active stimulation and sham conditions either in overall learning or in the 

time course of learning. Furthermore, the order of the stimulation did not seem to interact 

with the effects of the stimulation. 
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Supplementary materials for Study 4 titled 

"The relationship between subjective sleep quality and cognitive 

performance in healthy young adults: Evidence from three empirical 

studies" 

Supplementary methods 

 

Cognitive performance assessments 

 Procedural learning. Procedural learning performance was measured by the 

explicit version of the Alternating Serial Reaction Time (ASRT) task (Figure S1, see also 

1). In the explicit version of the Alternating Serial Reaction Time (ASRT) task, a stimulus 

(a dog's head, or a penguin) appeared in one of four horizontally arranged empty circles 

on the screen, and participants had to press the corresponding button of a Chronos 

response box (Psychology Software Tools, INC) in Study 1 and Study 2, and a special 

keyboard with four heightened keys (Z, C, B, and M on a QWERTY keyboard) in Study 

3 when the stimulus occurred. The appearance of stimuli followed a predetermined 

alternating sequence order, such that every second element was part of the sequence and 

every second element was randomly selected: the dog stimulus always corresponded to 

sequence elements, and the penguin stimulus indicated random elements (Figure S1A). 

Participants were informed about this underlying structure of the sequence, and their 

attention was drawn to the alternation of sequence and random elements by the different 

visual cues (i.e., dogs vs. penguins). Participants were instructed to respond as quickly 

and accurately as they could, and to find the hidden pattern defined by the dog in order to 

improve their performance. 

The task was presented in blocks with 85 stimuli. A block started with five random 

stimuli for practice purposes, followed by an 8-element alternating sequence that was 

repeated ten times. The alternating sequence was composed of fixed sequence (pattern) 

and random elements (e.g., 2-R-4-R-3-R-1-R, where each number represents one of the 

four circles on the screen and “R” represents a randomly selected circle out of the four 

possible ones). The timing of the stimulus differed in the three studies. In Study 1, the 

stimulus remained on the screen until the participant pressed the correct response button, 
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and the next stimulus was presented 250 ms following the previous response. In Study 2, 

the stimulus remained on the screen until the participant pressed the correct response 

button, and the next stimulus was presented 120 ms following the previous response. In 

Study 3, the stimulus remained on the screen for 580 ms, the participant was asked to 

respond within this time window, and the next stimulus was presented 120 ms following 

the previous stimulus. Thus, the task was self-paced with different response-to-stimulus 

intervals (RSI) in Study 1 and 2, while it was fix-paced (inter-stimulus interval, ISI, of 

700 ms) in Study 3. The timing parameters of Study 3 was determined based on previous 

ASRT studies showing that healthy young adults' average RT performance is around 370-

430 ms during the task 1,2. We used different settings to explore which timing parameters 

promote better learning performance. It has been suggested that longer RSI/ISI (e.g., 250 

as opposed to 120 ms) can lead to better learning performance as participants have more 

time to process and elaborate the stimuli 3. Nevertheless, it is also plausible that the shorter 

the time between subsequent stimuli, the easier to find the association among them, which 

is essential in the ASRT task to achieve a good learning performance.  

In all three studies, the ASRT task consisted of 20 blocks. As one block took 

approximately 1-1.5 min, the session took approximately 20-25 min. For each participant, 

one of the six unique permutations of the four possible stimulus positions was selected in 

a pseudo-random manner, so that the six different sequences were used equally often 

across participants 4,5. 
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Figure S1. Schematic diagram of the procedural learning (ASRT) task design. A) In this task, the 

appearance of stimuli is based on a predetermined sequence order, in which pattern and random elements 

alternate (e.g., 2r4r3r1r, where numbers correspond to the four locations on the screen and the 'r' represents 

randomly chosen locations). The pattern and random elements are cued differently: the dog stimulus always 

corresponded to pattern elements, and the penguin stimulus indicated random elements. B) Numbers 

(corresponding to the locations on the screen) in blue represent elements of the pattern trials (e.g., appearing 

in the sequential order 2, 4, 3, 1 throughout the task), which were alternating with random elements (green). 

Because of this alternating structure, some runs of three consecutive trials (triplets) occur more frequently 

than others (high- vs. low-frequency triplets). For each element, we determined whether it was the last 

element of a high-frequency triplet (one example in blue frame) or low-frequency triplet (examples in 

magenta frames). C) Triplet learning (see text) was calculated as the difference in responses for the last 

elements of high-frequency triplets (irrespective of random or pattern position) compared to the last 

elements of low-frequency triplets. Statistical learning was assessed by comparing the responses for those 

random elements that were the last elements of high-frequency triplets vs. those that were the last elements 

of low-frequency triplets (right column). Higher-order sequence learning was assessed as a difference 

between responses for pattern elements (which are always high-frequency triplets) vs. random-high 

frequency triplet elements (top row).  
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 Trial types and procedural learning indices in the ASRT task. The alternating 

sequence of the ASRT task forms a sequence structure in which some of the runs of three 

successive trials (henceforth referred to as triplets) appear more frequently than others. In 

the above example, triplets such as 2X4, 4X3, 3X1, and 1X2 (X indicates the middle 

element of the triplet) occur frequently since the first and the third elements can either be 

a pattern or a random stimulus. However, 3X2 and 4X2 occur less frequently since the 

first and the third elements can only be a random stimulus. Figure S1B and S1C illustrate 

this phenomenon with the triplet 2-1-4 occurring more often than other triplets such as 2-

1-3, 2-1-1, and 2-1-2. The former triplet types are termed as high-frequency triplets, 

whereas the latter types are termed as low-frequency triplets (Figure S1C, see also 1). The 

third element of a high-frequency triplet is highly predictable (with 62.5% probability) 

based on the first element of the triplet. In contrast, in low-frequency triplets, the 

predictability of the third element is less predictable (with 12.5 % probability) based on 

the first element of the triplet. According to this principle, each trial was categorized as 

either the third element of a high- or a low-frequency triplet.  

Additionally, trials are differentiated by the visual cues (dog vs. penguin) indicating 

whether a pattern or a random stimulus was presented in that given trial. In case of pattern 

trials, participants can use their explicit knowledge of the sequence to predict that trial. 

Consequently, we further differentiate the previously defined high-frequency triplets into 

two categories based on whether the last element of the triplet was a pattern or a random 

stimulus. This way, the task consists of three trial types: 1) trials that belong to the 

explicitly cued sequential pattern and, at the same time, appear as the last element of a 

high-frequency triplet are termed pattern trials; 2) trials of random stimuli that appear as 

the last element of a high-frequency triplet are termed random high trials; and 3) trials of 

random stimuli that appear as the last element of a low-frequency triplet are termed 

random low trials (see the example in Figure S1C).  

Previous studies have shown that as people practice the ASRT task, they come to 

respond more quickly and more accurately to the high-frequency triplets (irrespective of 

whether it was for a pattern or a random stimulus) compared to low-frequency triplets 

(always random), revealing Triplet learning 5,6. Triplet learning is measured as the 

difference in reaction time (RT) and accuracy (ACC) between high- and low-frequency 

triplets (RTs of low-frequency triplets minus RTs of high-frequency triplets; ACC of 
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high-frequency triplets minus ACC of low-frequency triplets). Thus, greater Triplet 

learning is defined as faster/more accurate responses to high-frequency triplets compared 

to low-frequency triplets. Importantly, however, the comparison of RT and ACC of high- 

vs. low-frequency triplets does not take into account whether the last elements of the high-

frequency triplets are pattern or random stimuli and consequently, provides a mixed 

measure of at least two separate learning processes. 

The two key learning processes that can be disentangled in the explicit ASRT task 

are the so-called Higher-order sequence learning and the so-called Statistical learning 

(Figure S1C). Higher-order sequence learning is measured as the difference in RTs 

between random high and pattern trials (RTs for random high trials minus RTs for pattern 

trials; ACC for pattern trials minus ACC for random high trials). These trials share the 

same statistical properties (both correspond to the third element of high-frequency 

triplets) but have different sequence properties (i.e., pattern vs. random trials). Thus, 

greater Higher-order sequence learning is defined as faster/more accurate responses to 

pattern trials compared to random high trials. This learning measure thus can reflect the 

knowledge about the alternating sequential structure that the participants explicitly 

acquired during the task.  

Statistical learning is assessed by comparing the responses for those random trials 

that were the last elements of a high-frequency triplet vs. those that were the last elements 

of a low-frequency triplet (RTs for random low trials minus RTs for random high trials; 

ACC for random high trials minus ACC for random low trials). These trials share the 

same sequence properties (both are random) but differ in statistical properties (i.e., they 

correspond to the third element of a high- or a low-frequency triplet). Hence, faster 

responses to random high compared to random low trials yields greater Statistical 

learning. While Higher-order sequence learning quantifies the acquisition of the 

sequential pattern, Statistical learning captures purely frequency-based learning 1,7. Based 

on previous findings, the cueing of pattern and random stimuli is necessary to promote 

Higher-order sequence learning, otherwise, it occurs more slowly, and cannot be acquired 

during a single session 1,4. 

Additionally, more general changes in RT and ACC performance can be measured 

in the ASRT task. These changes occur similarly for all trial types, thus are not related to 

acquiring the sequential or statistical structure embedded in the stimulus stream. Instead, 



 

 

189 

 

 

these general changes indicate general skill improvements, such as more efficient visuo-

motor and motor-motor coordination as the task progresses 8, combined with potential 

fatigue effects that can accumulate during practice 9,10. General skill improvements in 

terms of RT are assessed as the difference of speed in the beginning and at the end of the 

task (RTs of the first five blocks minus RTs of the last five blocks, see also Statistical 

analysis). Similarly, general changes can be quantified in ACC between the beginning 

and the end of the task (ACC of the first five blocks minus ACC of the last five blocks). 

In our study, we first report the Triplet learning results because this has been the 

most common analysis method in the ASRT studies and thus it enables to directly 

compare our results with those of previous studies. Next, we report Higher-order 

sequence learning and Statistical learning measures to obtain a more detailed picture of 

the underlying processes within procedural learning. Finally, we report average RTs and 

ACCs and their change from the beginning to the end of the end of the task to test whether 

these more general aspects of performance have a differential association pattern with 

sleep compared to the learning scores. 

 Working memory. The Counting Span task 11-14 was used to assess working 

memory (WM) performance. The task consisted of three series. In each series, each trial 

included three to nine blue circles as targets, one to nine blue squares, and one to five 

yellow circles as distractors on a grey background. Participants counted aloud the number 

of blue circles in each trial, and when finished with counting, they repeated the total 

number. When presented with a recall cue, participants recalled each total from the 

preceding set of trials, in the order in which they appeared. The number of presented trials 

(i.e., set) ranged from two to six. A participant’s counting span capacity was calculated 

as the average of the highest set sizes of the three series at which the participant was able 

to recall the totals in the correct serial order. 

 Executive functions. The Wisconsin Card Sorting Test (WCST) 15,16 was used to 

assess executive functions. In this task, participants are asked to find out a sorting rule for 

cards based on the feedback they receive for their card-sorting choices. During the task, 

there are four decks on the screen with symbols on them, which differ in three features: 

number, shape, and color. On the bottom of the screen, a stimulus card appears, and 

participants are asked to match this card to one of the decks (based on a sorting rule of 

their choice). After the choice, participants receive a feedback whether the choice was 
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correct or not. Based on the feedback, participants have to find out the correct sorting 

rule. In each trial, only one sorting rule is correct (e.g., number, shape or color), and the 

rule changes several times during the task, allowing to measure adaptation to changing 

rules. The outcome measure of the task is the number of perseverative errors, which 

shows the inability to change the behavior despite feedback, so the higher values of this 

measure indicate weaker executive functions. 

 

Subjective sleep quality assessments 

 Pittsburgh Sleep Quality Index. The Pittsburgh Sleep Quality Index (PSQI) 17,18 

is one of the most commonly used questionnaires measuring self-reported sleep habits 

and sleep disturbances over the last month. Here we focused on three components of the 

questionnaire, which were obtained in all three studies: subjective sleep quality, sleep 

latency and sleep disturbances. Item 6 (referring to the original coding of PSQI) measured 

the participant’s perceived sleep quality, item 5a indicated sleep latency and items 5b-5j 

(9 items) showed sleep disturbances. We chose the aforementioned items because the 

factors they form are those that contribute most to the overall PSQI score (besides daytime 

dysfunction which we didn’t include, because we wanted to measure daytime functioning 

with the tests included). These three components range from 0 to 3 and form a global 

score that ranges between 0 and 9, a higher score indicating poorer sleep quality. 

Henceforth we refer to this 11-item long PSQI as PSQI. 

 Athens Insomnia Scale. The Athens Insomnia Scale (AIS) 19,20 was administered 

in all three studies. AIS is a self-reported questionnaire assessing general sleep quality 

(over a one month time period), and consists of eight items; the first five items assess 

difficulty with falling asleep, awakening during the night, early morning awakening, total 

sleep time, and overall quality of sleep, while the last 3 items pertain to the sense of well-

being, overall functioning and sleepiness during the day. Each item of AIS can be rated 

from 0 to 3 and the total score ranges from 0 to 24, where higher scores indicate poorer 

sleep quality.  

 Groningen Sleep Quality Scale. In Study 2, subjective sleep quality of the night 

before cognitive testing was assessed by the Groningen Sleep Quality Scale (GSQS) 21,22, 

which is a 15-item self-administered questionnaire. Every item is a yes or no question, 
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scoring 0 or 1, thus GSQS scores range from 0 to 14 (the first item is typically not scored), 

a higher score indicating poorer quality of sleep.  

 Sleep diary. In Study 2, we also asked participants to keep a sleep diary for 1-2 

weeks prior the testing session 23. In this diary, participants had to mark the time they 

went to bed, the time they got up, and the hours they spent with sleep during this period. 

After each night, participants also had to rate how good their sleep was (on a scale from 

1 to 5), report how long it took them to fall asleep (in minutes), and how many times they 

woke up during the night. We evaluated data from sleep diaries similarly to PSQI 

component scores. The average subjective sleep quality was scored as the first component 

of PSQI; the average sleep latency as the second component of PSQI, the average time 

spent with sleep as the third component of PSQI, and the average sleep time divided with 

the time spent in bed (i.e., sleep efficiency) as the fourth component of PSQI. Altogether, 

based on the sleep diary, we had 4 component scores, ranging from 0 to 3 and form a 

global score that ranges between 0 and 12, a higher score indicating poorer quality of 

sleep. 

 

Chronotype assessment 

Morningness-Eveningness Questionnaire. The Morningness–Eveningness 

Questionnaire 24 is a widely used and reliable scale assessing individual differences in 

morningness–eveningness. In the current study, we used the shortened 13 item Hungarian 

version 25 of this questionnaire. The items focus on subjective preferences of sleep–wake 

schedules, such as preferred rising and sleep times, peak times, morning freshness, as 

well as optimal time for intellectually or physically demanding activities. In the short 

Hungarian version, scores range between 10 and 59, with higher scores indicating greater 

morningness.  

 

Statistical analysis 

Analysis of the ASRT data. To facilitate data processing and to reduce intra-

individual variability, the blocks of ASRT were collapsed into epochs of five blocks, 

following previous ASRT studies 1,14. The first epoch contained blocks 1–5, the second 

epoch contained blocks 6–10, etc. We calculated mean accuracy (ACC) for all responses, 

and median reaction times (RTs) for correct responses only, separately for pattern, 
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random high and random low trials for each epoch. As in previous ASRT studies 5, two 

kinds of low-frequency triplets were eliminated: repetitions (e.g. 222, 333) and trills (e.g. 

212, 343). Repetitions and trills are low-frequency for all participants, and people often 

show pre-existing response tendencies to them 26. By eliminating these triplets, we 

attempted to ensure that differences between high- vs. low-frequency triplets emerged 

due to learning and not to pre-existing response tendencies.  

Performance in the ASRT task was analyzed by repeated measures analyses of 

variance (ANOVA) with median RTs or mean ACCs as the outcome measure, and 

EPOCH (1st-4th epochs) and TRIAL TYPE (pattern, random-high, and random-low) as 

within-subject factors. To evaluate the effect of TRIAL TYPE, and thus to confirm that 

Higher-order sequence learning (pattern vs. random-high difference) and Statistical 

learning (random-high vs. random-low difference) occurred, Fisher’s LSD post-hoc 

comparisons were performed. Greenhouse-Geisser epsilon (ε) correction was used if 

necessary. Original df values and corrected p values (if applicable) are reported together 

with partial eta-squared (ηp
2) as a measure of effect size. Note that for the sake of brevity, 

we do not report ANOVAs for the mixed measure of Triplet learning (RT/ACC difference 

in responses to high- vs. low-frequency triplets), which does not clearly differentiate 

between acquiring the sequential and statistical structure embedded in the task. We 

conducted these ANOVAs, and Triplet learning occurred in all three studies, both in ACC 

and RT (significant main effect of TRIPLET: all ps < .001). 

 

Supplementary results 

Procedural learning across the three studies 

 Study 1. The repeated-measures ANOVA on RT data (Figure S2A) revealed a 

significant main effect of EPOCH (F3,138 = 33.84, p < .0001, ηp
2 = .42), such that RTs 

decreased as the learning progressed indicating general skill improvements. The main 

effect of TRIAL TYPE was significant as well (F2,92 = 60.89, p < .001, ηp
2 = .57). The 

post-hoc analysis revealed that responses (averaged across epochs) to pattern trials were 

faster (M = 340.27 ms) compared to random high (M = 348.70 ms, p = .002) and random 

low trials (M = 366.68 ms, p < .0001), and responses to random high trials were faster 

compared to random low trials (p < .0001). The different RTs for the different trial types 

indicate Higher-order sequence learning (difference in pattern vs. random high trials) and 
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Statistical learning (difference in random low vs. random high trials) occurred during the 

task. The interaction between EPOCH and TRIAL TYPE was not significant (F6,276 = .89, 

p = .41, ηp
2 = .02). 

The repeated-measures ANOVA on accuracy data (Figure S2B) again revealed a 

significant main effect of EPOCH (F3,138 = 13.08, p < .0001, ηp
2 = .22): ACC decreased 

during the task. Similarly, to RTs, there was a significant main effect of TRIAL TYPE 

(F2,92 = 51.06, p < .0001, ηp
2 = .53). The post-hoc analysis revealed that responses 

(averaged across epochs) to pattern trials were more accurate (M = 96%) compared to 

random high (M = 95%, p = .08) and random low trials (M = 93%, p < .0001), and 

responses to random high trials were more accurate compared to random low trials (p < 

.0001). This again indicates that Higher-order sequence learning and Statistical learning 

occurred during the task. The EPOCH x TRIAL TYPE interaction was also significant 

(F6,276 = 4.15, p = .001, ηp
2 = .08), the ACC for random low trial type decreased more 

during the task (3.4% decrease on average) than ACC for pattern (1.2% decrease) or 

random high trial types (1% decrease). 

 Study 2. Similarly to Study 1, the ANOVA for RTs (Figure S2C) revealed a 

significant main effect of EPOCH (F3,306 = 93.13, p < .0001, ηp
2 = .48): RTs decreased as 

the learning progressed. We also found a significant main effect of TRIAL TYPE (F2,204 

= 63.39, p < .0001, ηp
2 = .38). The post-hoc analysis revealed that responses (averaged 

across epochs) to pattern trials were faster (M = 323.01 ms) compared to random high (M 

= 351.55 ms, p = .002) and random low trials (M = 370.32, p < .001), and responses to 

random high trials were faster compared to random low trials (p < .001), indicating 

Higher-order sequence learning and Statistical learning occurred during the task. The 

EPOCH x TRIAL TYPE interaction was also significant (F6,612 = 8.74, p < .001, ηp
2 = 

.08), RTs for pattern trials decreased more (58 ms on average) than for random high (31 

ms) and random low (28 ms) trials. 

Again, for accuracy data (Figure S2D), there was a significant main effect of EPOCH 

(F3,306 = 18.12, p < .0001, ηp
2 = .15): ACC decreased during the task. There was also a 

significant main effect of TRIAL TYPE (F2,204 = 97.55, p < .0001, ηp
2 = .49). The post-

hoc analysis revealed that responses (averaged across epochs) to pattern trials were more 

accurate (M = 96%) compared to random high (M = 95%, p < .001) and random low trials 

(M = 92%, p < .001), and responses to random high trials were more accurate compared 
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to random low trials (p < .001), indicating Higher-order sequence learning and Statistical 

learning occurred during the task. The EPOCH x TRIAL TYPE interaction was also 

significant (F6,612 = 5.47, p = .0001, ηp
2 = .05), the ACC for random low trial type 

decreased more during the task (3.3%) than ACC for pattern (0.7% decrease) or random 

high trial (1.3% decrease) types. 

 Study 3. As in the previous studies, the ANOVA for RTs (Figure S2E) revealed a 

significant main effect of EPOCH (F3,252 = 45.60, p < .0001, ηp
2 = .35): RTs decreased 

during the task. The main effect of TRIAL TYPE was significant as well (F2,168 = 31.58, 

p < .0001, ηp
2 = .27). The post-hoc analysis revealed that responses (averaged across 

epochs) to pattern trials were faster (M = 367.03 ms) compared to random high (M = 

375.92 ms, p = .008) and random low trials (M = 388.93, p < .0001), and responses to 

random high trials were faster compared to random low trials (p < .0001). The different 

RTs for the different trial types again indicate that Higher-order sequence learning and 

Statistical learning occurred during the task. The EPOCH x TRIAL TYPE interaction was 

also significant (F6,504 = .4.50, p < .001, ηp
2 = .05), the RTs for pattern and random high 

trial types decreased more (27 ms and 22 ms respectively) than RTs for random low trials 

(13 ms). 

Again, the ANOVA on accuracy data (Figure S2F) revealed a significant main 

effect of EPOCH (F3,252 = 33.03, p < .0001, ηp
2 = .28), such as ACC decreased during the 

task, and a significant main effect of TRIAL TYPE (F2,168 = 78.97, p < .001, ηp
2 =.49). 

The post-hoc analysis revealed that responses (averaged across epochs) to pattern trials 

were more accurate (M = 84%) compared to random high (M = 82%, p < .0001) and 

random low trials (M = 78%, p < .0001), and responses to random high trials were more 

accurate compared to random low trials (p < .0001) indicating that Higher-order sequence 

learning and Statistical learning occurred during the task. The EPOCH x TRIAL TYPE 

interaction was not significant (F6,504 = .91, p = .47, ηp
2 = .01). 
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Figure S2. RT for correct responses (A, C, E)  and accuracy for all responses (B, D, F) as a function of 

epoch (1-4) and trial type (pattern, random high- and low-frequency trials) in the ASRT task assessing 

procedural learning. The gap between the curves of pattern and random high-frequency trials indicates 

Higher-order sequence learning, the gap between the curves of random high and low-frequency indicates 

Statistical learning. Error bars denote standard error of mean. 

 

Associations between subjective sleep quality and cognitive performance 

To explore the associations between subjective sleep quality and cognitive 

performance, separate linear mixed-effect models were created for each outcome measure 

(i.e., cognitive performance metric), and PSQI or AIS was used as a fixed predictor, and 

‘Study’ was added as a random intercept. To control for possible confounding effects, we 

included age, gender and morningness score as covariates. As the residuals were not 

normally distributed we used bootstrapped estimates and confidence intervals, using 1000 
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bootstrap samples, from which we calculated the p-values 27,28. Bayes Factors (BF01) were 

calculated by using the exponential of the Bayesian Information Criterion (BIC) of the 

fitted models minus the BIC of the null models – that contained the confounders only, 

and a random intercept by study 29. Neither PSQI nor AIS showed an association with 

any of the cognitive performance metrics (all ps > .15, see Table S1 and S2, respectively). 

For PSQI, Bayes Factors ranged from 5.83 to 14.52, indicating substantial evidence for 

no association between subjective sleep quality and the measured cognitive processes 30. 

 

Table S1. The association of Pittsburgh Sleep Quality Index with cognitive 

performance metrics 

Outcome β 95% CI df p BF01 

ACC learning indices       

ACC Triplet learning -.04 [-0.16, 0.08] 205 .48 11.48 

ACC Higher-order sequence learning -.03 [-0.17, 0.11] 205 .66 13.22 

ACC Statistical learning -.03 [-0.16, 0.10] 205 .61 12.90 

RT learning indices       

RT Triplet learning -.05 [-0.19, 0.10] 205 .50 11.72 

RT Higher-order sequence learning -.02 [-0.17, 0.12] 205 .76 13.90 

RT Statistical learning -.06 [-0.20, 0.09] 205 .42 10.87 

General skill indices       

Average ACC .03 [-0.08, 0.14] 205 .57 12.26 

ACC general skill learning .00 [-0.09, 0.10] 205 .94 14.52 

RT average -.05 [-0.19, 0.09] 205 .49 11.46 

RT general skill learning -.10 [-0.24, 0.05] 205 .16 5.83 

WM and EF indices       

Counting Span .01 [-0.12, 0.17] 205 .86 14.34 

WCST – perseverative error .08 [-0.06, 0.23] 199 .29 7.98 

Note: The table shows standardized regression coefficients for PSQI, where the ‘Study’ random intercept 

was included in separate linear mixed-effect models for each cognitive performance metrics. Age, gender, 

and morningness score was added as covariates. BF01 was derived from BIC (for details, see the ‘Data 

analysis’ section in the main text). ACC = accuracy. RT = reaction time. WM = working memory. EF = 

executive function. WCST = Wisconsin Card Sorting Test. 
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For AIS, Bayes Factors ranged from 4.47 to 14.56, suggesting substantial evidence for no 

association between subjective sleep quality and the measured cognitive processes 30. 

 

Table S2. The association of Athens Insomnia Scale with cognitive performance 

metrics 

Outcome β 95% CI df  p BF01 

ACC learning indices       

ACC Triplet learning -.07 [-0.19, 0.04] 205 .25 7.95 

ACC Higher-order sequence learning -.04 [-0.18, 0.10] 205 .57 12.35 

ACC Statistical learning -.03 [-0.17, 0.10] 205 .65 12.96 

RT learning indices       

RT Triplet learning .00 [-0.14, 0.14] 205 1.00 14.56 

RT Higher-order sequence learning .04 [-0.09, 0.18] 205 .52 12.01 

RT Statistical learning -.05 [-0.18, 0.10] 205 .52 11.96 

General skill indices       

Average ACC .08 [-0.02, 0.19] 205 .15 4.47 

ACC general skill learning .06 [-0.04, 0.15] 205 .23 7.21 

RT average .01 [-0.12, 0.15] 205 .84 14.24 

RT general skill learning -.03 [-0.17, 0.11] 205 .68 13.47 

WM and EF indices       

Counting Span -.03 [-0.18, 0.10] 205 .65 13.13 

WCST – perseverative error .10 [-0.04, 0.26] 199 .17 5.07 

Note: The table shows standardized regression coefficients for AIS, where the ‘Study’ random intercept 

was included in separate linear mixed-effect models for each cognitive performance metrics. Age, gender, 

and morningness score was added as covariates. BF01 was derived from BIC (for details, see the ‘Data 

analysis’ section in the main text). ACC = accuracy. RT = reaction time. WM = working memory. EF = 

executive function. WCST = Wisconsin Card Sorting Test. 

 

Cognitive performance in subjective sleep quality extremes 

We also tested whether cognitive performance differed between “good” and 

“poor” sleepers as defined by the extremes in the overall PSQI score. As reported in the 

main text, we considered those with a score of 0 or 1 as good sleepers (N = 36), while 
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those with a score of 5 to 8 as poor sleepers (N = 43), corresponding to approximately the 

upper and lower 15% of the data. As the cognitive performance metrics were not normally 

distributed, we compared the two groups' performance using robust frequentist as well as 

Bayesian Mann-Whitney U tests (see Table S3, U and p values were obtained from the 

frequentist, while BF01 values were obtained from the Bayesian Mann-Whitney tests). 

We did not find a significant difference between good and poor sleepers in any of 

the cognitive performance metrics (all ps > .10, see Table S3). Bayes Factors indicated 

substantial evidence for no difference in Statistical learning (both RT and ACC 

measures), average ACC, ACC general skill learning, Counting Span and Perseverative 

error (WCST). Furthermore, Bayes Factors indicated anecdotal evidence for no difference 

in Higher-order sequence learning (both ACC and RT measures), and Triplet learning 

(both ACC and RT measures). The Bayes Factor for general skill learning in RT remained 

inconclusive. 

 

Table S3. Cognitive performance in PSQI extremes 

Outcome U p BF01 

ACC learning indices    

ACC Higher-order sequence learning 639 .18 1.84 

ACC Statistical learning 730 .67 3.48 

ACC Triplet learning 652 .23 2.26 

RT learning indices    

RT Higher-order sequence learning 679 .35 2.72 

RT Statistical learning 696 .45 3.11 

RT Triplet learning 611 .11 1.53 

General skill indices    

ACC general skill learning 747 .79 4.21 

Average ACC 715 .56 3.92 

RT average 656 .80 2.38 

RT general skill learning 604 .10 1.03 

WM and EF indices    

Counting Span 758 .87 4.19 



 

 

199 

 

 

WCST – perseverative error 760 .89 4.23 

Note: ACC = accuracy. RT = reaction time. WM = working memory. EF = executive function. WCST = 

Wisconsin Card Sorting Test. 

 

 

 

References 

1 Nemeth, D., Janacsek, K. & Fiser, J. Age-dependent and coordinated shift in performance 

between implicit and explicit skill learning. Front. Comput. Neurosci. 7, 

doi:10.3389/fncom.2013.00147 (2013). 

2 Kóbor, A., Janacsek, K., Takács, Á. & Nemeth, D. Statistical learning leads to persistent 

memory: Evidence for one-year consolidation. Sci. Rep. 7, 760, doi:10.1038/s41598-017-

00807-3 (2017). 

3 Destrebecqz, A. & Cleeremans, A. in Attention and Implicit Learning   (ed L Jiménez)  

181-213 (John Benjamins, 2003). 

4 Howard, J. H., Jr. & Howard, D. V. Age differences in implicit learning of higher-order 

dependencies in serial patterns. Psychol. Aging 12, 634-656 (1997). 

5 Nemeth, D. et al. Sleep has no critical role in implicit motor sequence learning in young 

and old adults. Exp. Brain Res. 201, 351-358, doi:10.1007/s00221-009-2024-x (2010). 

6 Song, S., Howard, J. H., Jr. & Howard, D. V. Sleep does not benefit probabilistic motor 

sequence learning. J. Neurosci. 27, 12475-12483, doi:10.1523/jneurosci.2062-07.2007 

(2007). 

7 Simor, P. et al. Deconstructing procedural memory: Different learning trajectories and 

consolidation of sequence and statistical learning. Front. Psychol. 9, 2708 (2019). 

8 Hallgato, E., Győri-Dani, D., Pekár, J., Janacsek, K. & Nemeth, D. The differential 

consolidation of perceptual and motor learning in skill acquisition. Cortex 49, 1073-1081 

(2013). 

9 Siegelman, N., Bogaerts, L., Christiansen, M. H. & Frost, R. Towards a theory of 

individual differences in statistical learning. Phil. Trans. R. Soc. B 372, 20160059 (2017). 

10 Török, B., Janacsek, K., Nagy, D. G., Orbán, G. & Nemeth, D. Measuring and filtering 

reactive inhibition is essential for assessing serial decision making and learning. J. Exp. 

Psychol. Gen. 146, 529 (2017). 



 

 

200 

 

 

11 Case, R., Kurland, D. M. & Goldberg, J. Operational efficiency and the growth of short-

term memory span. J. Exp. Child Psychol. 33, 386-404 (1982). 

12 Engle, R. W., Tuholski, S. W., Laughlin, J. E. & Conway, A. R. A. Working memory, 

short-term memory, and general fluid intelligence: A latent-variable approach. J. Exp. 

Psychol. 128, 309-331 (1999). 

13 Conway, A. R. et al. Working memory span tasks: A methodological review and user’s 

guide. Psychon. Bull. Rev. 12, 769-786 (2005). 

14 Virag, M. et al. Competition between frontal lobe functions and implicit sequence 

learning: evidence from the long-term effects of alcohol. Exp. Brain Res. 233, 2081-2089 

(2015). 

15 Piper, B. J. et al. Reliability and validity of neurobehavioral function on the Psychology 

Experimental Building Language test battery in young adults. PeerJ 3, e1460 (2015). 

16 Berg, E. A. A simple objective treatment for measuring flexibility in thinking. J. Gen. 

Psychol. 39, 15-22 (1948). 

17 Buysse, D. J., Reynolds III, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The 

Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. 

Psychiatry Res. 28, 193-213 (1989). 

18 Takács, J. et al. Reliability and validity of the Hungarian version of the Pittsburgh Sleep 

Quality Index (PSQI-HUN): comparing psychiatric patients with control subjects. Sleep. 

Breath. 20, 1045-1051 (2016). 

19 Diekelmann, S., Biggel, S., Rasch, B. & Born, J. Offline consolidation of memory varies 

with time in slow wave sleep and can be accelerated by cuing memory reactivations. 

Neurobiol. Learn. Mem. 98, 103-111 (2012). 

20 Novak, M., Mucsi, I., Shapiro, C. M., Rethelyi, J. & Kopp, M. S. Increased utilization of 

health services by insomniacs—an epidemiological perspective. J. Psychosom. Res. 56, 

527-536 (2004). 

21 Meijman, T., de Vries-Griever, A., De Vries, G. & Kampman, R. The evaluation of the 

Groningen sleep quality scale. Groningen: Heymans Bulletin (HB 88-13-EX) 2006 

(1988). 

22 Simor, P., Köteles, F., Bódizs, R. & Bárdos, G. A questionnaire based study of subjective 

sleep quality: the psychometric evaluation of the Hungarian version of the Groningen 

Sleep Quality Scale. Mentálhigiéné és Pszichoszomatika 10, 249-261 (2009). 

23 Gilson, M. et al. REM-enriched naps are associated with memory consolidation for sad 

stories and enhance mood-related reactivity. Brain Sci. 6, 1 (2015). 



 

 

201 

 

 

24 Horne, J. A. & Östberg, O. A self-assessment questionnaire to determine morningness-

eveningness in human circadian rhythms. Int. J. Chronobiol. (1976). 

25 Zavecz, Z., Török, C., Köteles, F., Pálosi, V. & Simor, P. The psychometric properties of 

the Hungarian version of the Morningness-Eveningness Questionnaire (MEQ-H): The 

separate factors of morning freshness and circadian rhythmicity. Psychiatria Hungarica: 

A Magyar Pszichiátriai Társaság Tudományos Folyóirata 30, 318-331 (2015). 

26 Howard, D. V. et al. Implicit sequence learning: effects of level of structure, adult age, 

and extended practice. Psychol. Aging 19, 79-92 (2004). 

27 Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions.  (2019). 

28 Davison, A. C. & Hinkley, D. V. Bootstrap methods and their application. Vol. 1 

(Cambridge university press, 1997). 

29 Wagenmakers, E. J. A practical solution to the pervasive problems of p values. Psychon 

Bull Rev 14, 779-804, doi:10.3758/BF03194105 (2007). 

30 Wagenmakers, E. J., Wetzels, R., Borsboom, D. & van der Maas, H. L. Why 

psychologists must change the way they analyze their data: the case of psi: comment on 

Bem (2011). J. Pers. Soc. Psychol. 100, 426-432, doi:10.1037/a0022790 (2011). 

 

 

 


