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II. Nyilatkozatok  

 

1. A doktori értekezés szerzőjeként
2
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I. GENERAL INTRODUCTION 

Skill acquisition, habit formation, and development of behavioral automatisms 

are all results of learning processes, sharing a unique combination of features that 

makes them different from other kinds of learning. According to one point of view, 

these learning types are forms of non-declarative learning, underscoring thus that 

learning is not dependent on the mediotemporal brain structures (Squire & Zola, 1996). 

Another viewpoint emphasizes the fact that learners are usually not fully aware of the 

information that had been acquired, and it is only their improving performance that 

implies learning, thus emphasizing conscious awareness (or the lack of it) as a defining 

criterion. Learning that occurs without awareness is called implicit - in contrast with 

explicit learning where conscious awareness accompanies learning (A. S. Reber, 1967; 

Graf & Schacter, 1985). A third approach, by contrast, relies on three variables: the 

speed of encoding (rapid vs. slow); whether a single item is encoded or associations 

among multiple items; and the compositionality (vs. rigidity) of the resulting memory 

(Henke, 2010). According to this view, skill acquisition and habit formation is a form of 

slow encoding of rigid associations (as is classical conditioning and semantic memory). 

And finally, there is a separate research tradition, namely the investigation of statistical 

learning abilities originating from Saffran, Aslin, & Newport (1996) that also deals with 

the unsupervised, incidental learning of an inherent structure present in the to-be-

learned material; Perruchet & Pacton (2006) went as far as suggesting that implicit 

learning and statistical learning is actually the same phenomenon (see also Christiansen, 

2018). In a similar vein, Reber (2013) proposed that implicit memory manifests as an 

improvement from experience based on mechanisms of cortical plasticity; the extraction 

of the underlying statistical structure is incremental, and it allows for a distributed 

representation of information.  

Despite the similarities between these research traditions, and the substantial 

overlap of their proposed constructs, their notions are not synonyms. For example, the 

term implicit learning is broader than the term skill learning, as other types of implicit 

learning phenomena also exist, e.g. priming, classical conditioning and  

habituation/sensitization (Squire & Zola, 1996).  On the other hand, skill learning does 

not only rely on implicit processes but also on explicit learning (Ghilardi, Moisello, 

Silvestri, Ghez, & Krakauer, 2009; Taylor, Krakauer, & Ivry, 2014). Third, although 
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statistical learning is thought to be an implicit learning process (e.g. Kim, Seitz, 

Feenstra, & Shams, 2009; Perruchet & Pacton, 2006; Turk-Browne, Scholl, Chun, & 

Johnson, 2008), there is evidence that explicit knowledge can also emerge after the 

encounter with statistically structured stimuli (e.g. Perruchet, Bigand, & Benoit-Gonin, 

1997; Rünger & Frensch, 2008; Goujon, Didierjean, & Poulet, 2014). The narrow field I 

was interested in (which is summarized in this work) is the implicit statistical learning, 

not implicit learning or skill learning in general.  

I/1. Tasks of implicit statistical learning  

 A typical test of implicit (statistical) learning is the Artificial Grammar Learning 

(AGL) Task (A. S. Reber, 1967; or more recently, Danner, Hagemann, & Funke, 2017), 

in which words of a non-existent, fictional language are created by an algorithm (based 

on conditional probabilities, e.g. the letter A is followed by the letter B or letter C, but 

never with the letter D; thus the words AB and AC are legal in that language, but AD is 

not). The algorithm is never explicitly uncovered, it can only be inferred from the 

shown examples, that, according to the instruction, need to be memorized. After the 

learning phase, new words are shown which either obey the rules of the algorithm or 

not; participants are asked to guess whether particular words are legal in the artificial 

language. The percentage of correct guesses informs us whether learning occurred or 

not.  

 Another type of task is the Weather Prediction (WP) Task (or more generally the 

Probabilistic Classification tasks) (e.g. Knowlton, Squire, & Gluck, 1994) which differ 

from the AGL in that instead of showing concrete examples resulting from the 

underlying statistical structure (algorithm) and then testing the knowledge via a forced-

choice task, participants int he WP are asked to guess the „outcomes” (rainy or sunny 

weather) based on the shown cards from the beginning of the task, and learning is aided 

by the feedback that is provided about the correctness of the guesses. Again, 

performance is assessed by computing the percentage of correct guesses (and comparing 

it to the baseline of chance level).   

A further typical task is the Sugar Factory (or more generally the Dynamic 

Systems Control tasks) (Berry & Broadbent, 1984) in which participants are required to 

learn to control a complex system, where the relationship between participants’ settings 
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and the outcomes is governed by a hidden algorithm. On every trial, a goal is defined 

that participants need to achieve by setting the input variables, and if they approximate 

the goal close enough, the trial is considered to be completed. Similarly to the 

previously described tasks, accuracy is the only measure of implicit learning, as there is 

no time limit for accomplishing the goals.    

In the Contextual Cueing (CC) paradigm (Chun, 2000) complex spatial layouts 

are shown to participants and their task is to find a target among the distractors (and 

indicate its direction with one of the two possible keypresses). Some of the layouts are 

repeated, and participants are getting progressively more efficient in reacting to targets 

in these layouts despite not being able to recognize that they have completed these trials 

before. In other words, performance is mediated by global repetition statistics of the 

displays (Zang, Zinchenko, Jia, Assumpção, & Li, 2018). Participants’ efficacy in 

responding to the targets is measured by assessing reaction times and/or accuracy.  

Finally, in the Serial Reaction Time task (Nissen & Bullemer, 1987) - or more 

generally the Sequence Learning tasks – participants have to respond to the location of 

consecutive stimuli, which, unbeknownst to them, follows a deterministic or 

probabilistic sequence. With determinisitic sequences, learning is usually measured by 

inserting random or pseudo-random blocks of stimuli, and assessing the worsening of 

performance on these blocks (Nissen & Bullemer, 1987); with probabilistic sequences, 

on the other hand, performance is measured by contrasting performance on probable 

outcomes with performance on less probable outcomes (J. H. Howard & Howard, 

1997). Similarly to the Contextual Cueing paradigm, the efficacy of responding can be 

measured via reaction times and/or accuracy measures. 

I/2. The relationship between the different tasks measuring implicit statistical 

learning  

The previously described tasks differ in many ways; e.g. whether the regularity 

is present temporally or spatially, whether the exposure of the regularity is passive or 

requires some activity from the participant, etc. Nevertheless, they all rely on the 

detection of statistical regularities which are covertly present in the task (Arciuli & 

Conway, 2018). It is thus somewhat surprising that learning scores gained from 

different tests do not correlate with each other (Gebauer & Mackintosh, 2007; Sævland 
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& Norman, 2016; Siegelman & Frost, 2015) or even if they do, the correlation is weak 

(Kalra, Gabrieli, & Finn, 2019). Conversely, dissociations within implicit memory tests 

were observed in dyslexics (Bennett, Romano, Howard, & Howard, 2008; J. H. 

Howard, Howard, Japikse, & Eden, 2006) and children with Attention Deficit 

Hyperactivity Disorder (Barnes, Howard, Howard, Kenealy, & Vaidya, 2010).  

The lack of correlation (and the dissociations) between the different measures of 

implicit statistical learning is alarming, and it is important to find the reasons behind it. 

First, it is possible that there is truly no relationship between these measures and hence 

research is (rightfully) unable to find one. Theoretically, this scenario would question 

the domain-generality (opposed to domain-specificity) and/or the unitary nature 

(opposed to multicomponentiality) of implicit statistical learning. In other words, it 

would mean that there is no such thing as „the implicit statistical learning”, only 

different types of it. Practically, it would highlight the need to find the factors that 

differentiate between different types of implicit statistical learning, and this knowledge 

– in turn – would be used for designing new tasks and/or help us to choose from the 

existing tasks to fulfill our purposes.  

In a second scenario, there is a positive relationship between these different 

measures, but – for some reason – researchers have been unable to find it. The reason 

behind this could be methodological and/or related to the psychometric properties of the 

tasks. In spite of bearing the hope that we could somehow overcome these obstacles in 

the future, this scenario would also mean that our knowledge about the nature of 

implicit statistical learning is seriously biased (possibly wrong in many aspects). If our 

tests are so weak in terms of reliability, for example, that they barely correlate with each 

other, how could we interpret the lack of correlation with other kinds of tests?  

In the following sections, I will briefly discuss the possible factors behind both 

scenarios (i.e. no relationship between tasks, or the difficulty of finding them). I will 

also indicate how we considered these factors in our research. 
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I/3. Implicit Statistical Learning – One or Many?  

I/3.1. Modality Specificity 

Accumulating evidence suggests that there are qualitative differences in patterns 

of implicit statistical learning in the auditory, visual and tactile modalities, which 

corroborate the notion of modality specificity of implicit statistical learning (Emberson, 

Conway, & Christiansen, 2011; Li, Zhao, Shi, Lu, & Conway, 2018; Walk & Conway, 

2016). A putative explanation puts forward that encoding of information follows 

different constraints that are determined by the specific properties of the input in the 

respective brain cortices (despite similar sets of computational principles) (Conway & 

Christiansen, 2005). For example, the auditory cortex might be more sensitive to the 

temporal accumulation of information than the visual cortex (Frost, Armstrong, 

Siegelman, & Christiansen, 2015). In line with this, it was found that timing parameters 

affect the visual statistical learning more than auditory learning, and visual learning of 

temporally structured information is worse than the visual learning of spatially 

structured information or the auditory learning of temporally structured information 

(Conway & Christiansen, 2009).  

I/3.2. Independency from other cognitive abilities 

Arciuli (2017) reviewed evidence that statistical learning is sometimes found to 

be better in younger than in older participants, while sometimes the opposite pattern can 

be observed. As a resolution for the mixed findings, he suggested that implicit statistical 

learning is a multicomponent ability (being comprised of certain types of attention, 

processing speed, and memory, etc.); and performance on different tasks might depend 

on the way they draw on particular underlying components (Arciuli, 2017; Arciuli & 

Conway, 2018).  

Although one might question whether attention or processing speed, for 

example, should be regarded as parts of implicit statistical learning, it is certainly true 

that the different tasks vary in terms of cognitive demands (comprising statistical 

learning and other abilities), which could result in very divergent results. Even with 

equivalent statistical learning abilities, there might be significant individual differences 

in performance on different tasks (e.g. it is necessary for one to be able to motorically 
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respond quickly to an event in case of reaction time tasks, otherwise learning can not be 

detected even if it occurs).  

Additionally, even if implicit and explicit processes dissociate, it does not 

exclude the possibility of interplay between these memory systems; and although the 

evidence is not unequivocal, some results do point towards this possibility (Boyd & 

Winstein, 2003; Arnaud Destrebecqz et al., 2005; Dew & Cabeza, 2011; Lagarde, Li, 

Thon, Magill, & Erbani, 2002; Sun, Zhang, Slusarz, & Mathews, 2007; but see Sanchez 

& Reber, 2013; and Curran & Keele, 1993). In a related field of research, assessing the 

performance of skilled behavior under stress, it was found that explicit processing (but 

not implicit learning of the same skill) hampered performance of that skill under 

stressful conditions (Masters, 1992; Maxwell, Masters, & Eves, 2000; Gucciardi & 

Dimmock, 2008). Thus, performance on implicit statistical learning tasks might also be 

mediated by explicit processes. 

I/3.3. Type of statistics – Does it matter? 

 It has been recognized that humans are capable of learning at least two types of 

statistics: joint probaibilities (i.e. distributional statistics of chunks of information), and 

conditional probabilities (i.e. the predictability of a target event given its antecedents) 

(J. H. Howard, Howard, Dennis, & Kelly, 2008; Thiessen, Kronstein, & Hufnagle, 

2013; Thiessen, 2017) and it has been suggested that those are results of independent 

processes (Thiessen, 2017). However, the relative contribution of different types of 

statistics in a specific learning task is rarely discussed (but see J. H. Howard et al., 

2008). 

 Additionally, the complexity of the embedded statistical structure might also 

contribute to differences observed with different statistical learning tasks. For example, 

in sequential tasks, when the previous element predicts the next element, it is called a 

first-order sequential structure; when the N-2
th

 trial has predictive power on the current 

target, the sequence has a second-order structure, and so on. It has been shown that 

humans are capable of learning up to fourth-order statistical regularities (Remillard, 

2008, 2011), or even fifth- and sixth-order regularities (Remillard, 2010). At the same 

time it has been shown that learning of higher-order information can be selectively 

impaired (in dyslexia: W. Du & Kelly, 2013; J. H. Howard et al., 2006; in Parkinson’s 
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disease: Smith & McDowall, 2004; in Schizophrenia: Schwartz, Howard, Howard, 

Hovaguimian, & Deutsch, 2003; with age: J. H. Howard, Howard, Dennis, & 

Yankovich, 2007; D. V. Howard et al., 2004; Feeney, Howard, & Howard, 2002; J. H. 

Howard & Howard, 1997; Urry, Burns, & Baetu, 2018). It is a matter of question, 

though, whether lower- and higher-order sequence learning should be thought of as 

worse or better performance on the same measure, or as different abilities.  

In sum, the lack of correlation between different measures of implicit statistical 

learning may indicate that implicit statistical learning is not a unitary process but rather 

many processes or a multicomponential one, which possibly vary for different kinds of 

statistics that can be learned. That being said, it would be of outstanding importance to 

define the type of statistical learning for every previously used task (e.g. a visuomotor 

sequence learning task with second-order conditional probabilities) instead of just 

referring to „implicit statistical learning” in general. Additionaly, extensive work is 

required to determine to what extent do different types of statistical learning share 

characteristics, e.g. resistance to interference, on-line and/or offline consolidation, 

sleep-dependent consolidation, sensitivity to instructions (interaction with explicit 

processes), etc.  

I/4. The psychometric properties of the tasks  

As noted earlier, it is also possible that there is a relationship between different 

types of implicit statistical learning (or between different tasks, assuming a single 

ability behind every task), and the reason for not being able to see the relationship is 

related to the psychometric properties of the resulting learning scores.  

I/4.1. Low reliability 

Other things being equal, the correlation between two variables will be low 

when the reliability of the measures are low (i.e. measurement error is high). Since 

reliability is the correlation of a test with itself, therefore it is easy to see that a measure 

that does not correlate with itself can not correlate with other variables either (Goodwin 

& Leech, 2006). 

Unfortunately, implicit measures are generally considered less reliable than 

explicit measures (Lebel & Paunonen, 2011). A possible explanation blames the often 
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vague and ambiguous instructions (for example in the Weather Prediction task 

participants have no solid idea on what basis should they guess, translating to very 

diverse cognitive and noncognitive processes contributing to performance for a given 

individual) (Buchner & Wippich, 2000). Additionaly, many measures are based on 

reaction times which vary considerably from one testing situation to the next as a 

function of psychological, hormonal, emotional or other factors, leading to high 

variability (Lebel & Paunonen, 2011), although Buchner & Wippich (2000) also 

speculated that speeded responding leads to better reliability than responding with no 

time limits. Furthermore, learning scores computed as difference scores (which often is 

the case)  lead to another problem: such aggregate scores suffer in reliability in direct 

proportion to the correlation between the two components the difference score was 

computed from (Edwards, 2001); Kaufman et al.  (2010) even suggested that RT 

difference scores tend to be too unstable to provide rank-ordering between individuals. 

I/4.2. Low individual variability 

It is hypothesized that implicit learning is evolutionarily older than explicit 

learning, implying that it is also more robust and results in less inter- and intra-species 

variability (A. S. Reber & Allen, 2000). It has been assumed that individual differences 

in implicit cognition are minimal relative to individual differences in explicit cognition 

(A. S. Reber, 1993). In line with this assumption, the individual differences in implicit 

cognition remained largely unexplored (A. S. Reber & Allen, 2000; but see Kaufman et 

al., 2010; and Kalra et al., 2019). 

Although the assumption of low individual variability is far from being 

empirically proven, it may give us a concern because (other things being equal) the 

value of the correlation coefficient is greater if there is more variability among the 

observations (Goodwin & Leech, 2006). Additionally, low variability may also stem 

from floor effects, ceiling effects or artifacts that contaminate the measures of implicit 

learning. If any of these factors applies (for at least some of the measures), it may 

explain the lack of correlation between different measures of implicit learning. 
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I/4.3. Issues related to reaction-time based measures 

As noted earlier, difference scores derived from reaction times are thought to be 

unstable (Kaufman et al., 2010), and it was suggested that accuracy (Urry, Burns, & 

Baetu, 2015; Urry et al., 2018) or reaction time ratio measures (Kaufman et al., 2010) 

provide better measures of learning, and are less prone to result in floor effects (Urry et 

al., 2015). The fact that difference scores based on reaction times and difference scores 

based on accuracy do not show correlation (Hedge, Powell, Bompas, Vivian-Griffiths, 

& Sumner, 2018) also implies that the choice between the two types of measures should 

not be based on convenience or traditions only, but should be a matter of theoretical 

consideration. Accordingly, tasks that are based on accuracy percentages (responses 

being made without time limit, such as the Weather Prediction task) could be 

uncorrelated with reaction-time based measures (such as the SRT or ASRT) for 

methodological reasons rather than theoretical ones. 

Second, there is an often-overlooked factor that might influence serial reaction 

time tasks, namely that different series of responses are not equally easy to be 

performed, e.g. responding to the same stimuli many times in a row is easier than 

responding to an unsystematic order of stimuli. This is sometimes referred to as „pre-

existing sequential effects” and „preexisting biases” in the context of serial reaction 

time tasks (Song, Howard, & Howard, 2007a) or, more generally, „sequential effects” in 

the context of the broader category of forced-choice reaction time tasks (e.g. 

Remington, 1969). Complementary to these cognitive effects, there are also 

biomechanical constraints of the body that also affect serial reaction times (Y. Du & 

Clark, 2017), as not all effectors (e.g. fingers) are equally efficient in responding. Apart 

from manifesting as an artifact, and thus influencing our interpretations of the results, 

these biases might also mask the individual variability of implicit learning (given that 

they are robust and similar in direction for every participant), and seemingly increase 

the reliability of the task. Low variability, makes it harder to detect any relationship of 

implicit learning measures with each other or with other measures of cognitive abilities; 

seemingly higher reliability, on the other hand, gives the illusion that the results are 

more trustworthy than they actually are (since it stems from the artifact rather than from 

the effect we intended to measure).  
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I/5. Questions and aims of the studies  

Taken together, there is a myriad of questions regarding the methodology and 

analysis methods in the research of implicit statistical learning that needs to be clarified. 

The nature of the resulting statistical knowledge should be assessed for each (possible) 

subtype of statistical learning – considering modality, the type of statistics embedded in 

the task, etc. so that we could get to a conclusion about the theoretical questions (what 

factors matter and how). Also, psychometric properties of the tasks used should be 

routinely reported, along with the observed individual variability in a particular 

experiment and the assessment of possible artifacts biasing the results. Only this way 

could we be sure that the theory that we build is not the by-product of questionable 

methodology.  

Admittedly, this is a very ambitious goal requiring lots of investment. In the 

present Dissertation, I present four studies covering only a tiny slice of these goals: to 

increase our knowledge about the nature of implicit statistical learning that could be 

measured with the ASRT task, to learn about the psychometric properties of the task, 

and to improve the analysis methods to overcome its flaws. 

I/5.1. About the ASRT task 

 The ASRT task was introduced in 1997 as a means of measuring implicit 

memory (J. H. Howard & Howard, 1997). In the original task, visual stimuli are 

presented on a computer screen in one of four possible locations, and the subject’s task 

is to react as fast and as accurately as possible to the location of the stimuli by pressing 

the corresponding response button (usually aligned to stimuli to allow for a simple 1:1 

stimulus-response mapping).  Thus, due to necessity of a collaboration between visual 

and motor components, one might consider the ASRT a visuomotor task.  

 The stream of stimuli is not entirely random: a pre-defined four-element long 

pattern (P) is embedded in a stream of random (R) trials so that P and R trials alternate 

(hence the name of the task). This alternation is crucial as it allows for the comparison 

of performance on the predetermined (P) and random (R) trials continuously, in contrast 

with the SRT task (Nissen & Bullemer, 1987) in which the uninterrupted stream of 

pattern trials is occasionally followed by an uninterrupted stream of random (or pseudo-

random) trials, and learning can only be assessed at these occasions by comparing 
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performance on the random chunk to the performance on the surrounding pattern 

chunks.  

 Learning on the task may not (entirely) rely on subjects ability to differentiate 

between pattern and random trials. The structure that results from their alternation is a 

second-order probabilistic sequence. A second-order structure means that the basic units 

of the statistical structure are three consecutive trials, so-called triplets; some triplets are 

frequent and others are infrequent. In this particular case, after encountering any two 

consecutive trials, a prediction could be made of what to expect next. The term 

probabilistic refers to the fact that sometimes the following trial is „unexpected”, not 

very probable. Learning can be derived from  the comparison of performance on 

probable versus improbable trials (e.g. Nemeth et al., 2011; Nemeth, Janacsek, Londe, 

et al., 2010; Nemeth, Janacsek, Polner, & Kovacs, 2013). Thus ASRT may be thought 

of as a measure of statistical learning. It is an open question whether it can be also 

considered as a measure of pattern learning (i.e. whether humans are capable of learning 

to differentiate between P and R trials in addition to being able to discriminate between 

statistical properties of trials; the two are heavily confounded).  

 As a difference to the aforementioned SRT task, learning on the ASRT task is 

thought to be more clearly implicit. The authors introducing the task reported that not a 

single subject became aware of the hidden pattern (J. H. Howard & Howard, 1997), and 

our experience with the task corroborates their notion. Thus, the ASRT task measures 

implicit learning.  

 In summary then, the ASRT task is an implicit visuomotor statistical learning 

task measuring the ability to acquire second-order probabilistic information.   

I/5.2. Open questions about the ASRT task and the resulting knowledge 

 As noted above, the ASRT is typically considered a visuomotor task, but the 

contribution of the visual and motor components has not been systematically studied 

before. Since statistical learning is thought to be modality specific (Emberson, Conway, 

& Christiansen, 2011; Li, Zhao, Shi, Lu, & Conway, 2018; Walk & Conway, 2016), it is 

possible than ASRT measures more than one type of statistical learning (i.e. in the 

visual and motor domains). If so, the relative contribution of the two is to be 

determined. Second, if learning of the visual and motor stream is separable, it is also 
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possible that the resulting representations differ in some aspects (e.g. the magnitude of 

learning, consolidation (and sleep) effects, etc.), which are to be determined. 

 Independently from the question of modality, one also needs to explore the 

nature of the statistical knowledge that results from the experience with the ASRT task 

more generally. Is it prone to interference effects? If so, to what extent? Is there an 

interaction with other cognitive abilities (e.g. can we „boost” implicit learning by 

providing explicit information)?  

 Finally, the last line of quesitons addresses the of the utility of the task itself. Is 

the ASRT task reliable? Is it possible to differentiate between different types of 

statistical learning using the ASRT task? Are the learning scores affected by pre-

existing biases – and if so, to what extent? How can we  overcome these obstacles? 

I/5.3. Aims of the studies 

In Study 1 the main question was whether perceptual information is learned in a 

temporally structured visuomotor sequence such as the ASRT (in addition to motor 

sequencing), and if so, then whether perceptual learning is comparable to motor 

learning in the paradigm. In order to assess this question, we modified the ASRT task so 

that stimuli always appeared in the center of the screen (and their identity was 

differentiated based on perceptual features rather than the location of appearance), this 

way eye movements were minimized. In Study 2 we extended our findings with 

assessing consolidation of these different learning types with the inclusion of off-line 

periods that either included sleep or not. This way the question of modality-specificity 

was assessed. 

In Study 3 we addressed the question of interference between similar (but 

different) sequences learned in succession; whether the sequence learned in the first 

place could be „overwritten” with a second sequence, whether there are costs associated 

with the proactive interference caused by the first sequence; and whether it really gets 

„overwritten” (rewired) or the knowledge for both sequences is accessible later. 

Additionally, consolidation was also addressed, since the experiment took place on 

three consecutive days allowing for the assessment of benefits of these off-line periods. 

Finally, an important question related to the effect of explicit (top-down) knowledge 

about the rule (but not about the statistical structure) embedded in the sequence, and 
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whether this knowledge – or the differences in participants mindsets owing to this 

knowledge – results in differences in implicit statistical learning measured on trials on 

which the explicit knowledge could not be utilized. This way, the interaction between 

implicit and explicit processes was assessed. 

In Study 4 our goal was two-fold. First, we wanted to show that the ASRT task 

makes it possible to assess the learning of both second-order and third-order statistical 

structure without any modification to the task (just by refining the analysis methods), 

and also assess the question of pattern (rule) learning, i.e. whether participants learn 

about the alternating structure of the sequence in addition to its statistical properties. We 

have also compared the currently/typically used analysis methods with the proposed 

method (in terms of goodness of fit). Second, we assessed the psychometric properties 

of the task (both with the typical analysis methods and with the newly proposed 

method), and we suggested the application of a filter to lessen the impact of pre-existing 

(cognitive or biomechanical) biases to certain stimulus combinations which could result 

in artifacts in the learning scores.  
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II. PERCEPTUAL AND MOTOR FACTORS OF IMPLICIT SKILL LEARNING 

(Study 1)
6
 

 

II/1. Abstract 

Implicit skill learning underlies not only motor but also cognitive and social 

skills, and represents an important aspect of life from infancy to old age. Earlier 

research examining this fundamental form of learning has shown that learning relies on 

motor and perceptual skills, along with the possible role of oculomotor learning. The 

goals of this study were to determine whether motor or perceptual cues provide better 

prompts to sequence learning and to remove the possibility of oculomotor learning 

during the task. We used a modified version of the probabilistic alternating serial 

reaction time task, which allowed the separation of motor and perceptual factors. Our 

results showed that motor and perceptual factors influenced skill learning to a similar 

extent. 

Keywords: alternating serial reaction time, implicit Skill learning, motor 

learning, oculomotor learning, perceptual learning 
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II/2. Introduction 

Implicit skill learning occurs when information is acquired from an environment 

of complex stimuli without conscious access either to what was learned or to the fact 

that learning had occurred (A. S. Reber, 1993). In everyday life, this learning 

mechanism is crucial for adapting to the environment and to evaluate events. The most 

important models of skill learning in cognitive neuroscience and neuropsychological 

studies emphasize the role of the basal ganglia and the cerebellum (Doyon, Bellec, et 

al., 2009; Hikosaka et al., 1999; Hikosaka, Nakamura, Sakai, & Nakahara, 2002), 

although the role of the hippocampus remains inconclusive (Albouy et al., 2008; 

Schendan, Searl, Melrose, & Stern, 2003). Skill learning can be differentiated into 

phases (an initial rapid phase and a subsequent slower phase), into types (motor, 

visuomotor, or perceptual such as visual, auditory, etc.), and into consciousness types 

(implicit and explicit) (Doyon, Bellec, et al., 2009). Implicit motor skill learning tasks 

have been used for decades, but there is no agreement about how these tasks reflect 

motor versus perceptual learning, and what their proportions are. 

The most widely used task to measure skill learning is the serial reaction time 

(SRT) task (Nissen & Bullemer, 1987). In this task, the stimulus appears in one of four 

possible positions on the screen and the participant has to press the appropriate response 

key as fast as possible. The stimuli follow a predefined sequence, and although the 

research subjects are not aware of this, they perform better on these trials than in 

corresponding random trials. In most SRT tasks, the location of the stimulus 

corresponds to the location of the response key. Therefore, learning can be influenced 

by the sequence of stimuli locations on the screen (perceptual learning), by the correct 

answer button sequence in the egocentric space (answer-based learning) or by the finger 

movement patterns (effector-based learning) (Remillard, 2003).  

Another disadvantage of these paradigms (classical SRT and finger-tapping 

tasks) is that after a short training session, the participants often recognize the stimulus 

pattern, which causes significant limitations in studying implicit learning (J. H. Howard 

& Howard, 1997). In contrast, using the alternating SRT (ASRT) task (J. H. Howard & 

Howard, 1997) allows researchers to overcome this aforementioned problem by using 

an eight-element sequence, whereby random elements alternate with sequence elements 

(e.g.: 2–R–3–R–1–R–4–R, where R refers to random).  
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In these research paradigms, it is difficult to isolate perceptual learning. 

Specifically, motor learning cannot be eliminated in both observation-based and 

transferbased studies because it is the motor response reaction time (RT) that gives the 

informative measurements (Dennis, Howard, & Howard, 2006). Perceptual learning in 

these paradigms can be observed only if it can be shown in addition to implicit skill 

learning. For example, Robertson et al. (E. M. Robertson, Tormos, Maeda, & Pascual-

Leone, 2001) showed that if perceptual and motor sequences are combined (e.g. color 

and location), it leads to a greater level of learning than either one of the sequences 

alone.  

In the case of first-order probability sequences, motor learning is not necessary 

to learn patterns. However, in second-order probability sequences (e.g. ASRT), 

perceptual learning is, at best, minimal (Remillard, 2003). Nevertheless, previous 

studies have been able to isolate perceptual learning based on second-order or higher-

order probability sequences (Deroost, Coomans, & Soetens, 2009). For example, Dennis 

and colleagues (2006) found that young adults showed implicit skill learning in higher-

order sequences even without motor learning. Moreover, when no motor response was 

requested, deterministic sequence learning (e.g. SRT) led to explicit learning by simply 

observing the stimuli, whereby participants revealed the hidden sequence explicitly (J. 

H. Howard & Howard, 1997; Willingham, Nissen, & Bullemer, 1989). In the case of 

second-order sequences, explicit knowledge has been shown to be minimal or totally 

eliminated (J. H. Howard & Howard, 1997). Song et al. (Song, Howard, & Howard, 

2008) showed perceptual learning using similar tasks and found that learning took place 

even without a motor response to the observed stimuli. After the observation, 

participants were able to transfer the sequence knowledge to the testing (motor) 

condition. The concern with this study was that the stimuli appeared on four different 

areas of the screen. Hence, skill learning could have reflected oculomotor learning as 

well (for example, Song et al., 2008). The question remains whether learning is purely 

perceptual when it is accompanied with eye movements. Remillard (2003) found that 

perceptual learning was not influenced by the distance between the stimuli (i.e. the 

amplitude of the eye-movement). In contrast, Willingham et al. (1989) were not able to 

show perceptual learning without eye movements.  

Willingham et al. (Willingham, Wells, Farrell, & Stemwedel, 2000) changed the 

conditions of the SRT task after the learning phase in one of the two following ways: 
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either the stimulus sequence (perceptual information) remained the same as in the 

learning phase while the sequence of the answers (motor information) was changed, or 

the motor response sequence remained the same and the response locations changed 

(participants had to answer crossing their hands during the testing phase). Participants 

were able to transfer their knowledge only when the sequence of response locations was 

maintained, not the sequence of finger movements (Willingham et al., 2000). These 

findings suggest that the sequence of response locations must have been retained for 

implicit knowledge to transfer, whereas the contribution of motor and perceptual 

information was less considerable. It is important to note that Willingham et al. 

(Willingham et al., 2000) did not eliminate the possibility of oculomotor learning as the 

sequence occurred perceptually in the locations of the stimuli. 

The goal of this study was to investigate the role of perceptual learning in 

implicit sequence learning through a modified ASRT task. In this modified paradigm, 

the sequence followed a second-order regularity that eliminated the possibility of 

oculomotor learning because the stimuli always appeared in the same, central position. 

Similar to the study by Willlingham et al. (Willingham et al., 2000) in the learning 

phase, the sequence of stimuli and their responses were different. In the second phase 

(testing or transfer phase), the sequence of stimuli (perceptual information) remained 

the same and the response sequence (motor information) changed or vice versa. 

Our hypothesis was that, unlike Willingham et al. (Willingham et al., 2000), we 

would be able to show perceptual learning or perceptual transfer with a task that 

eliminated oculomotor learning. In addition, our goal was to create a task that would 

distinguish between perceptual and motor factors of implicit sequence learning.  

II/3. Methods  

II/3.1. Participants  

Thirty-four healthy right-handed individuals took part in the experiment. Half of 

the participants were randomly assigned to the perceptual condition (mean age M = 

21.76 years, SD = 2.02; 7 male/10 female), and the other half were assigned to the 

motor condition (mean age M = 21.76 years, SD = 1.64; 8 male/9 female). Participants 

did not suffer from any developmental, psychiatric, or neurological disorders. All 
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participants provided signed informed consent agreements and received no financial 

compensation for their participation.  

II/3.2. Task and procedure 

We used a modified version of the ASRT task (J. H. Howard & Howard, 1997), 

the socalled AS-RT-Race. We created a story about a car race for the task. The stimuli 

were the left, right, up, and down arrows (5 cm long and 3 cm wide), which appeared on 

the center of the screen. When the stimulus appeared on the screen, it represented the 

car’s direction. For example, when the participants saw an up arrow, they had to press 

the up button on the keyboard to move the car forward, the left button to turn left, and 

so on. All participants pressed the keys with their dominant hand.  

After the starting block of 85 random presses, they were told that there was a car 

crash and the steering wheel failed (Fig. II/1/a). The car now kept going to the left if 

they wanted to go straight, but by turning the steering wheel right they could correct this 

malfunction, and could continue to go straight. Thus participants had to mentally rotate 

the arrows (the steering wheel) by 90 to the right, and press the button corresponding 

to this rotated arrow.  

 

 

Figure II/1. a) Schematic diagram of the experiment. b) In the perceptual condition, the perceptual 

sequence was the same and the motor sequence (button presses) changed compared with the sequences in 

hte learning phase. In the motor condition, key presses followed the learned sequence and the preceptual 

information changed.  
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In the learning phase, five practice blocks were presented (these were excluded 

from the analysis), followed by 20 learning blocks with 85 key presses in each block. 

These 85 key presses included an initial five random presses (warm-up; excluded from 

the analysis), then an eightelement sequence alternated 10 times (2–R–3–R–1–R–4-R, 

where R represents random trials). The stimulus remained on the screen until the 

participant pressed the correct button. The next stimulus appeared after a 120-ms delay 

(response to stimulus interval) after the participant’s correct response (following the 

parameters of the original task by Howard and Howard (J. H. Howard & Howard, 

1997). During this delay, a fixation cross was displayed on the screen. Participants were 

told to respond as fast and as accurately as they could.  

After the learning phase (and a 3-min-long break), the participants were told that 

the car had been taken to a service station and the steering wheel had been fixed. They 

were told to use the answer keys corresponding to the arrows that appeared on the 

screen (up button for up arrow, left button for left arrow, etc.). In the testing phase, half 

of the participants were assigned to the perceptual condition and the other half to the 

motor condition (Fig. II/1/a). In the perceptual condition, participants responded to the 

sequence seen during the learning phase (e.g. 2–R–3–R–1–R–4–R, Fig. II/1/b), and the 

appropriate key presses represented a new sequence (also 2–R–3–R–1–R–4–R), which 

they had not practiced before. In contrast, participants in the motor condition had to 

respond by key presses practiced before (e.g. 3–R–4–R–2–R–1–R, Fig. II/1/b) but the 

corresponding stimuli on the screen followed another sequence (also 3–R–4–R–2–R–1–

R), which they had not seen before. Thus, in the perceptual condition, the perceptual 

sequence was the same but the motor sequence (key presses) changed compared with 

the previously practiced sequence. However, in the motor condition, key presses 

followed the previously learned sequence and the perceptual information (the sequence 

of the stimuli displayed on the screen) changed. By comparing the participant’s 

performance between the two conditions, we could determine whether the perceptual 

and the motor component had the same or different effects on learning. The possible 

oculomotor aspect of learning was excluded by displaying all the stimuli in the same 

place (in the center) of the screen.  

To explore how much explicit knowledge the participant acquired about the task, 

we used a short questionnaire after the testing phase. None of the participants reported 

noticing the sequences in the tasks.  
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II/3.3. Statistical analysis  

We followed the procedures of the original ASRT task (Bennett, Howard, & 

Howard, 2007; Song, Howard, & Howard, 2007b) in our analysis because the core 

structure of the tasks was the same. Given that there was a fixed sequence in the AS-

RT-Race task (and in the ASRT task as well), which included alternating random 

elements (e.g. 2–R–3–R–1–R–4–R), some triplets or runs of three events occurred more 

frequently than others. For example, in the above illustration, triplets such as 2_3, 3_1, 

1_4, 4_2 could occur more frequently because the third element could be derived from 

the sequence or could also be a random element. In contrast, triplets such as 4_1, 4_4 

would occur less frequently, because in this case, the third element could only be 

random. In other words, pattern trials were always high frequency, whereas one-fourth 

of random trials were high frequency by chance. Previous studies have shown that as 

participants practice, they come to respond more quickly to the highfrequency 

compared with the low-frequency triplets, thereby revealing sequence-specific learning 

(triplet type effect; (D. V. Howard et al., 2004; J. H. Howard & Howard, 1997; Song et 

al., 2007a)). In addition, general motor skill learning was revealed by the overall speed 

with which participants responded, irrespective of the triplet types. Thus, we obtained 

measures of both sequence-specific and general motor skill learning in the AS-RT-Race 

task.  

The blocks of the AS-RT-Race task were organized into groups of five to 

facilitate data processing. A group of five blocks was referred to as an ‘epoch’ (a term 

given by the ASRT authors). The first epoch contained blocks 1–5, the second epoch 

contained blocks 6–10, etc. Our analysis focused only on RT data because participants’ 

accuracy remained very high during the entire test (the average was 97% for both 

conditions in both the learning and testing phases). Median RTs were calculated for 

each participant and in each epoch both for the high-frequency and low-frequency 

triplets.  
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II/4. Results  

II/4.1. Learning phase 

The 2 (triplet: high and low) 4 (epochs: 1–4) repeatedmeasures analysis of 

variance with condition (perceptual vs. motor) as the between-subject factor revealed 

sequence-specific learning [indicated by a significant main effect of the triplet: F(1,23) 

= 124, mean square error MSE = 56.65, p < 0.001, ηp
2
 = 0.63, as well as general motor 

skill learning. shown by the significant main effect of the epoch: F(4,20) = 8.85, MSE = 

32.53, p < 0.001, ηp
2
 =0.72, thereby suggesting that the more the participants practiced, 

the faster their responses became (Fig. II/2/a and Fig. II/2/b). The two groups 

(perceptual and motor conditions) did not differ either in sequencespecific or in general 

motor skill learning (p > 0.31).  

 

 

Figure II/2. Results of the learning phase (Epochs 1-4) and testing phase (Epoch 5) for perceptual 

(a) and motor (b) conditions. Filled squares represent low-frequency triplets; open squares represent 

high-frequency triplets. Comparing the sequence-specific knowledge (the reaction time (RT) differences 

between high-frequency and low-frequency triplets) of perceptual and motor conditions (c). Error bars 

indicate standard error of mean (SEM). 

 

 

II/4.2. Testing phase  

To compare the perceptual and motor conditions in the testing phase, a 2 (triplet: 

high and low) 2 (epochs: 4–5) repeated-measures analysis of variance was conducted 

with condition (perceptual vs. motor) as the betweensubject factor. The main effect of 

the triplet was significant, F(1,32) = 69.72, MSE = 139.36, p < 0.001, ηp
2
 =0.69, such 

that participants responded faster for high-frequency than for low-frequency triplets 
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(Fig. II/2/c). The main effect of the epoch was also significant, F(1,32) = 115.4, MSE = 

1448.27, p < 0.001, ηp
2
 =0.78, whereby participants were faster in the testing phase (455 

ms) than in the learning phase (525 ms). Interestingly, the triplet epoch interaction was 

also significant, F(1,32) = 5.75, MSE = 117.79, p = 0.02, ηp
2
 = 0.15, thereby suggesting 

that the sequence-specific knowledge decreased between the learning and the testing 

phases (the RT difference between the high-frequency and low-frequency triplets was 

21 ms in epoch 4 and 12 ms in epoch 5). However, despite this decrease, participants 

still showed a significant triplet type effect in epoch 5, indicated by a one-sample t-test: 

t(33) = 4.52, p < 0.001. In addition, there was no difference between the conditions 

either in sequence-specific (p = 0.38) or in general motor skill (p = 0.10). 

II/5. Discussion  

Our research investigated the role of perceptual and motor learning in implicit 

skill learning. We addressed the possibility of demonstrating perceptual transfer beyond 

motor learning in a testing situation where, after the learning phase, the task continues 

either with motor sequence or with perceptual sequence while eliminating oculomotor 

learning. We were able to show learning after the learning phase both in the perceptual 

and motor conditions. We focused on the perceptual sequence transfer under the former 

condition, and the motor sequence in the latter. Our results showed that under this 

research paradigm, both motor and perceptual transfer was significant. These results 

support the different methods of Song et al. (Song et al., 2008), which showed 

perceptual learning with probabilistic sequence learning tasks. In contrast, our results 

partly differ from that of Willingham et al. (Willingham et al., 2000), which did not find 

perceptual learning to be an important element of learning. Their research design, 

however, did not eliminate the possibility of oculomotor learning, whereas this study 

did. Furthermore, our findings also indicated that there was motor transfer, thereby 

supporting the results of Willingham et al. (Willingham et al., 2000) and their implicit 

motor sequence learning model.  

Our findings well complement motor skill learning models (Doyon, Bellec, et 

al., 2009; Hikosaka et al., 1999, 2002), as well as the neuropsychological and 

neuroimaging studies that suggest the basal ganglia and the primary and secondary 

motor cortices play a role in implicit skill learning (Doyon, Bellec, et al., 2009; Grafton, 

Hazeltine, & Ivry, 1995; E. M. Robertson, Press, & Pascual-Leone, 2005; Willingham 
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& Koroshetz, 1993). The task developed in this study separated motor and perceptual 

learning, thereby allowing researchers to conduct more detailed studies in cognitive 

neuroscience for various pathologies affecting implicit skill learning and the underlying 

mechanisms of motor and perceptual learning.  

II/6. Conclusion  

In our study, we constructed a novel task (AS-RT-Race) to separate the 

perceptual and motor factors of implicit skill learning. We found that these components 

underlie the mechanisms behind skill learning to nearly the same extent. Our results 

draw attention to the fact that skill learning is not a single process. Instead, there are 

multiple mechanisms in this fundamental learning process. The novel task we 

developed was shown to be an appropriate method to investigate the components of 

skill learning in different neuropsychological pathologies (e.g. basal ganglia disorders, 

Alzheimer’s disease, etc.), and for examining the effects of development, aging, and 

sleep on the motor and perceptual factors contributing to skill learning.  
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III. THE DIFFERENTIAL CONSOLIDATION OF PERCEPTUAL AND 

MOTOR LEARNING IN SKILL ACQUISITION 

(Study 2)
7
 

 

III/1. Abstract 

Implicit skill learning is an unconscious way of learning which underlies not 

only motor but also cognitive and social skills. This form of learning is based on both 

motor and perceptual information. Although many studies have investigated the 

perceptual and motor components of “online” skill learning, the effect of consolidation 

on perceptual and motor characteristics of skill learning has not been studied to our 

knowledge. In our research we used a sequence learning task to determine if 

consolidation had the same or different effect on the perceptual and the motor 

components of skill acquisition. We introduced a 12-h (including or not including sleep) 

and a 24-h (diurnal control) delay between the learning and the testing phase with AM-

PM, PM-AM, AM-AM and PM-PM groups, in order to examine whether the offline 

period had differential effects on perceptual and motor learning. Although both 

perceptual and motor learning were significant in the testing phase, results showed that 

motor knowledge transfers more effectively than perceptual knowledge during the 

offline period, irrespective of whether sleep occurred or not and whether there was a 12- 

or 24-h delay period between the learning and the testing phase. These results have 

important implications for the debate concerning perceptual/motor learning and the role 

of sleep in skill acquisition. 

Keywords: Consolidation, Implicit skill learning, Offline learning, Perceptual-

motor learning, Sleep 
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III/2. Introduction 

Implicit skill learning occurs when information is acquired from an environment 

of complex stimuli without conscious access either to what was learned or to the fact 

that learning occurred (A. S. Reber, 1993). In everyday life, this learning mechanism is 

crucial for adapting to the environment and evaluating events. Implicit skill learning 

underlies not onlymotor but cognitive and social skills as well, it is therefore an 

important aspect of life from infancy to old age. Skill learning does not occur only 

during practice, in the so-called online periods, but also between practice periods, 

during the so-called offlineperiods. The process that occurs during the offline periods is 

referred to as consolidation which means stabilization of a memory trace after the initial 

acquisition. This process can result in increased resistance to interference or even 

improvement in performance following an offline period (Krakauer & Shadmehr, 2006; 

Nemeth, Janacsek, Londe, et al., 2010; Edwin M. Robertson, 2009; Song, 2009).  

Most models of skill learning (Dennis & Cabeza, 2011; Doyon, Bellec, et al., 

2009; Hikosaka et al., 1999, 2002; Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003; 

Kincses et al., 2008) highlight the role of the basal ganglia and the cerebellum. One of 

the main debates in the field of skill learning is whether we rely on “our hands” or on 

“our eyes” (Deroost & Soetens, 2006; Keele et al., 2003; Mayr, 1996; Nemeth, 

Hallgató, Janacsek, Sándor, & Londe, 2009; Song et al., 2008; Ziessler & Nattkemper, 

2001)? The goal of the present study is to determine if an offline period modifies the 

contribution of motor and perceptual components to implicit sequence learning. This 

issue is of particular interest because it deals with the question of whether sequence 

learning and consolidation are mediated by perceptual or by motor brain networks 

primarily (Deroost & Soetens, 2006; Goschke, 1998)  

One of the most popular implicit learning tasks is the Serial Reaction Time 

(SRT) Task (Nissen & Bullemer, 1987) and its modification, the Alternating Serial 

Reaction Time (ASRT) Task (J. H. Howard & Howard, 1997; Nemeth, Janacsek, 

Londe, et al., 2010). In the original version a stimulus appears at one of four possible 

locations on the screen, and subjects have to press the button corresponding to that 

location. Unbeknownst to them, the sequence of subsequent locations (and 

correspondingly, the sequence of the responses) follows a predetermined order. Without 

becoming aware of the sequence, subjects learn the regularity - and as they learn, they 
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produce faster and more accurate responses. When the sequence is changed to a random 

series of stimuli, subjects become slower and less accurate in responding. In this 

paradigm, however, it is not clear what exactly the subjects learn: they might learn the 

sequence of the stimuli ( perceptual learning), the sequence of their own eye movements 

(oculomotor learning), the sequence of response locations (response-based learning) or 

the sequence of given fingers’ movements (effector-based learning) (Cohen, Ivry, & 

Keele, 1990; Remillard, 2003; Willingham, 1999). 

In a SRT study Willingham (1999) used two conditions to examine the 

perceptual and the motor factors of learning. In one condition the stimuluseresponse 

mapping was changed in the transfer (test) phase that followed the learning phase, so 

that half of the subjects had to press the same sequence of keys as in the learning phase 

but saw new stimuli, whereas the other half had to press a different sequence of keys as 

in the learning phase but saw the same stimuli as before. Willingham (1999) found that 

transfer was shown only when the motor sequence was kept constant, but not when the 

perceptual sequence was constant. In a previous study, Nemeth et al. (2009) compared 

the magnitude of perceptual and motor implicit sequence learning using a modification 

of the ASRT-task in a similar design. This task (ASRT-Race) contains second-order 

probabilistic sequences compared to classical SRT tasks that use deterministic 

sequences. ASRTRace allows measuring “pure” sequence learning separate from 

general skill improvements, where sequence learning is reflected in the difference 

between the reaction times to more predictable events as opposed to less predictable 

ones. In addition, this task eliminates the possibility of oculomotor learning as stimuli 

always appear in the same central position on the screen. In contrast to Willingham’s 

findings, Nemeth et al. (2009) demonstrated that not only motor, but perceptual learning 

of second-order probabilistic sequences is possible. Furthermore, Nemeth et al. (2009) 

showed that the two types of learning do not differ significantly in magnitude. The 

weakness of the above mentioned perceptual-motor studies (Deroost & Soetens, 2006; 

Mayr, 1996; Nemeth et al., 2009; Remillard, 2003, 2009; Song et al., 2008; Willingham, 

1999) is that experiments were conducted in one session. Using only one session for 

measuring skill learning relates to short-term performance changes in behavior and not 

to more permanent changes associated with learning. Consequently, it is important to 

address the question of the role of offline periods in perceptual and motor skill learning. 
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Recent reviews indicate that whether offline improvements occur at all, and 

whether they are sleep-dependent, varies with factors such as awareness, the formation 

of contextual associations and type of information to be learned (Debas et al., 2010; 

Doyon, Korman, et al., 2009; Nemeth, Janacsek, Londe, et al., 2010; Edwin M. 

Robertson, 2009; Edwin M. Robertson, Pascual-Leone, & Press, 2004; Siengsukon & 

Boyd, 2008; Song, 2009; Song et al., 2007b). For example, Robertson (2009) argues 

that the consolidation of explicit (goal-directed) and implicit (movement-based) 

learning is differentially affected by sleep and wakefulness. In implicit learning when 

there is no declarative knowledge about the task, consolidation may occur during both 

wakefulness and sleep. In line with the predictions of this theory, recent SRT studies 

found similar consolidation of implicit skills during both sleep and wakefulness 

(Nemeth, Janacsek, Londe, et al., 2010; Edwin M. Robertson et al., 2004; Song et al., 

2007b).  

Although many researches have investigated the perceptual and motor 

components of “online skill learning”, to our knowledge, the effect of consolidation on 

perceptual and motor characteristics of skill acquisition has not been investigated so far 

(Deroost & Soetens, 2006; Mayr, 1996; Nemeth et al., 2009; Remillard, 2003, 2009; 

Song et al., 2008). In our study we used the ASRT-Race task (Nemeth et al., 2009) to 

examine the possible difference in the magnitude of motor and perceptual learning after 

a 12-h and a 24-h retention period. In addition, we also aimed at exploring the role of 

sleep in offline consolidation of these two factors of skill learning. Therefore a 12-h 

delay was administered between the Learning Phase and Transfer Phase of the 

experiment, during which participants either had a sleep (night group) or they were 

awake (day group). If both groups acquire the same level of skill in the Learning Phase, 

any difference between them in the Transfer Phase will answer the question whether the 

perceptual or the motor component stabilizes more effectively during the offline period. 

In order to avoid a time-of-day effect we also administered a 24-h delay condition. 

III/3. Methods 

III/3.1. Participants 

There were 102 individuals (students attending the University of Szeged) in the 

experiment (mean age M = 22.34, standard deviation SD = 3.82; 44 males, 58 females). 

None of them suffered from any developmental, psychiatric or neurological disorders. 
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Participants were randomly assigned to the perceptual group or to the motor group. The 

perceptual and motor groups were further divided by the length of delay (12- or 24-h 

delay) and by the daytime (morning-first, AM-PM/ AM-AM and evening-first, PM-

AM/PM-PM) (see Table III/1). The eight experimental groups did not differ in their 

sleep quality, F(7,89) = 0.98, p = 0.45, measured by the Pittsburgh Sleep Quality Index 

(Buysse, Reynolds, Monk, Berman, & Kupfer, 1989) (Due to data collection scheduling 

problems five out of 102 participants failed to administer this test). All individuals 

provided signed informed consent, and received no financial compensation for their 

participation. 

Table III/1. General data of participants 

Condition Delay Daytime Mean age (SD) N (Male/Female) 

Perceptual 

12-h 

Morning-first (AM-PM) 20.82 (1.60) 11 (4/7) 

Evening-first (PM-AM) 22.75 (3.74) 11 (7/4) 

24-h 

Morning-first (AM-PM) 23.72 (5.66) 14 (4/10) 

Evening-first (PM-AM) 21.63 (2.16) 14 (6/8) 

Motor 

12-h 

Morning-first (AM-PM) 22.62 (3.98) 12 (8/4) 

Evening-first (PM-AM) 22.00 (1.84) 11 (4/7) 

24-h 

Morning-first (AM-PM) 20.40 (2.01) 12 (3/9) 

Evening-first (PM-AM) 23.93 (5.48) 17 (8/9) 

 

III/3.2. Procedure 

All participants completed two sessions: a Learning Phase (Session 1) and a 

Transfer Phase (Session 2), separated by a 12- h or a 24-h delay (Fig. III/1). For the 

night groups, Session 1 was in the evening (between 7 pm and 9 pm), and Session 2 was 

in the morning (between 7 am and 9 am), with the opposite arrangement for the day 

groups. Thus, the offline period of the night group contained sleep, while the day group 

was awake during the offline period (Fig. III/1). Although previous studies with similar 

tasks and experimental designs showed no timeof-day effect either on general reaction 
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times or on learning measures (Nemeth, Janacsek, Londe, et al., 2010; Press, Casement, 

Pascual-Leone, & Robertson, 2005; Edwin M. Robertson et al., 2004; Song et al., 

2007b), we administered a 24-h delay condition. For the morning diurnal groups, both 

Session 1 and Session 2 were in the morning (between 7 am and 9 am) and for the 

evening diurnal groups, both Session 1 and Session 2 took place in the evening 

(between 7 pm and 9 pm). 

III/3.3. Task 

A modified version of the original ASRT (J. H. Howard & Howard, 1997) was 

used, the so-called ASRT-Race (Nemeth et al., 2009) in which the participants were 

instructed to drive an imaginary car on the road, as fast and as accurately as possible. 

The stimuli were the left, right, up and down arrows (5 cm long and 3 cm wide) 

appearing in the center of the screen, and representing the direction the car had to be 

steered. For example, when the subjects saw the right arrow, they had to press the right 

button on the keyboard to make a right turn with the car. All participants pressed the 

keys with their right hand. Session 1 consisted of 22 blocks, starting with a block 

containing 85 random presses (excluded from data analysis), after which the individuals 

were told that there was a car crash and the steering wheel failed. Due to the defective 

steering wheel they had to mentally rotate the arrows appearing on the screen by 90, and 

press the keyboard button designated to the rotated arrow, in order to maneuver the car 

in the right direction (Fig. III/1/a). For instance, if they saw the up arrow on the screen 

they had to press the right arrow on the keyboard, if they saw the right arrow they had to 

press the down arrow button, and so on (Fig. III/1/c). After the change in the 

instruction, there were 21 blocks, starting with one random block, in which participants 

could practice the new rules regarding the mental rotation, followed by 20 learning 

blocks (Learning phase). Each of the 20 learning blocks contained 85 key presses. The 

initial five stimuli were random (warm-up; excluded from data analysis), then an eight-

element sequence alternated 10 times. Since the ASRT-task is based on a nonadjacent 

sequence, random and sequence elements alternate one after the other. For example 2-

R-3-R-1-R-4-R, where R represents random trials and the numbers represent the 

sequence-specific elements, implicating the arrows’ direction (1-up, 2-right, 3-down, 4-

left). The stimulus remained on the screen until the participant pressed the correct 

button. The next arrow appeared following a 120-msec delay (response to stimulus 

interval) after the subject’s correct response. These parameters are consistent with the 
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original task presented by Howard and Howard (1997). During this delay, a fixation 

cross was displayed on the screen. Participants were told to respond as fast and as 

accurately as they could. 

 

 

Figure III/1. Design of the experiment. (a) All participants completed the ASRT-Race sequence learning 

task in two sessions. There were 20 learning blocks in Session 1 and five testing blocks in Session 2. (b) 

The two sessions were separated by either a 12-h delay (in which participants had or had not slept) or a 

24-h delay. (c) In Session 2, half of the subjects were administered in a new sequence which they had not 

seen before, but whose motor information corresponded to that of they had practiced in Session 1 (motor 

condition), while the other half of subjects were administered to the same perceptual information as in 

Session 1, but the pattern of motor responses changed due to the lack of mental rotation (perceptual 

condition). 

 

 

Session 2 (Transfer Phase) took place either after a 12-h or a 24-h delay. The 

Transfer Phase consisted of five blocks. In this session participants were told that the 

car had been taken to a mechanic, and the steering wheel had been fixed, so they could 

use the answer keys corresponding to the arrows appearing on the screen (right button 

for right arrow, down button for down arrow, etc.). Half of the subjects participated in 

the motor condition, while the other half was assigned to the perceptual condition. 

Subjects in the motor condition were administered a new sequence which they had not 

seen before, but whose motor information corresponded to the one of they had practiced 

in Session 1, while subjects in the perceptual condition were administered to the same 

perceptual information as in Session 1, but the pattern of motor responses changed due 



 

 

32 

 

to the lack of mental rotation (Fig. III/1/c). Thus, while in Session 1 all subjects 

performed the same task, in Session 2 they were divided into two groups (perceptual vs 

motor). The difference between the two groups allowed us to separate the motor and the 

perceptual information of the sequence previously learnt by the subjects. In this way we 

could determine whether the perceptual and the motor component had the same or 

different effects on learning. All the stimuli were displayed in the center of the screen in 

order to exclude the possible oculomotor aspect of learning. After Session 2, we 

administered a short questionnaire regarding the participants’ possible explicit 

knowledge about the task (Song et al., 2007b). In keeping with other probabilistic SRT 

studies (Jiménez, Vaquero, & Lupiáñez, 2006; Nemeth, Janacsek, Londe, et al., 2010; 

Song et al., 2007b), none of them reported having noticed the sequences. 

III/3.4.  Data Analysis 

Since the core structure of the tasks was the same as in the original ASRT, we 

followed the same procedures in our analysis (J. H. Howard & Howard, 1997; Nemeth, 

Janacsek, Londe, et al., 2010). As there is a fixed sequence in the ASRT-Race with 

alternating random elements (also known as non-adjacent sequence) (Remillard, 2008), 

for example 2-R-3-R-1-R-4-R, some triplets or runs of three events occur more 

frequently than others. For instance, following the illustration above, triplets such as 

2_3, 3_1, 1_4, 4_2 (where “_” indicates the middle element of the triplet) can occur 

more often, because the third element (bold numbers) could be derived from the 

sequence, or could also be a random element. In contrast, triplets such as 4_1, 4_4 

would occur infrequently, because in this case the third element could only be random. 

Following previous studies, we refer to the former as high-frequency triplets and the 

latter as low-frequency triplets. Because of this difference in frequencies of certain 

triplets, after observing two stimuli, a certain third stimulus can be expected with 62,5% 

probability (for example, 223 is five times more probable than 221 or 222 or 224). In 

our analysis, we determined for every stimulus if it was the more probable or the less 

probable continuation for the previous trials (see Fig. III/2). Participants are faster at 

the probable stimuli than at the less probable ones, revealing sequence learning in the 

ASRT paradigm (D. V. Howard et al., 2004; Song et al., 2007b).  
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Figure III/2. In a typical ASRT sequence, there are more frequent (high frequency) triplets and less 

frequent (low-frequency) triplets. In other words, if we know what were the last two elements of the 

sequence (in this case 2-3-?), there is a 62.5% probability of a certain element as continuation, and only 

12.5% probability of all of the other elements. 

 

 

Similar to prior investigations, two kinds of lowfrequency triplets were excluded 

from the analysis; trills (e.g., 121, 434) and repetitions (e.g., 111, 222). These triplets 

are low frequency for all individuals, and people often show pre-existing response 

tendencies to them. By eliminating these triplets, we can assure that any high versus 

lowfrequency differences are due to learning, and not preexisting tendencies (D. V. 

Howard et al., 2004; Nemeth et al., 2009; Nemeth, Janacsek, Londe, et al., 2010). 

Since the accuracy of the participants was very high (average over 94.92% in all 

groups, in all phases), our analysis focused on RT data. For statistical analysis, median 

RTs were calculated for correct responses only, for each subject for every five blocks, 

both for the low-frequency and highfrequency elements. 
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To define the index for Sequence Learning Effect (SLE )(Nemeth & Janacsek, 

2011; Nemeth, Janacsek, Balogh, et al., 2010; Song et al., 2007b; Song, Marks, 

Howard, & Howard, 2009), we calculated the RT difference between the low and high-

frequency triplets separately in the Learning Phase (Session 1) and in the Transfer Phase 

(Session 2) for every five blocks. As we subtracted mean RT of high frequency from 

low-frequency triplets, SLE was a positive number only if sequence learning occurred, a 

larger value indicating a stronger effect. 

III/4. Results 

III/4.1. Learning in Session 1 

To be able to investigate the effect of transfer after 12- and 24-h delay, the 

learning in Session 1 must be similar in the groups. From this point of view, the end of 

Session 1 is crucial (Nemeth and Janacsek, 2011; Nemeth et al., 2010b; Press et al., 

2005; Song et al., 2007). Therefore, we analyzed the SLE of the last five blocks of the 

Learning Phase for every group. Univariate analysis of variance (ANOVA) was 

conducted with CONDITION (perceptual vs motor), DAYTIME (morning-first vs 

evening-first groups) and DELAY (12- and 24-h) as betweensubject factors. ANOVA 

revealed significant sequence learning, F(1,94) = 32.31, p < 0.001, which is inferred 

from the test whether the overall mean is different from zero (Mean SLE = 11.16 msec). 

There were no other significant main effects or interactions involving CONDITION, 

DAYTIME and DELAY (all p > 0.32), thus these between-subject factors had no 

significant effect on sequence learning. 

III/4.2. Transfer of SLE from Session 1 to Session 2 

To determine whether the performance in Session 2 declined, improved, or was 

constant in relationship to the end of Session 1, we subtracted the SLE-score of the last 

five blocks of the Learning Phase from the SLE-score of the Transfer Phase (Transfer-

SLE). As the groups were similar in SLE at the end of Session 1 (Learning Phase), any 

difference among groups in Transfer-SLE could be attributed to the differential effects 

of consolidation. We conducted a univariate ANOVA for this Transfer-SLE-score with 

CONDITION (perceptual vs motor), DAYTIME (morning-first vs eveningfirst groups) 

and DELAY (12- and 24-h) as between-subject factors. ANOVA revealed a main effect 

of CONDITION, F(1,94) = 4.92, p = 0.029], the motor group showing larger SLE than 



 

 

35 

 

the perceptual group (Fig. III/3). ANOVA showed no significant main effect or 

interaction with DAYTIME (all p > 0.45), suggesting that the AM-PM, PM-AM, AM-

AM and PM-PM groups did not differ in their SLE. In addition, main effect and 

interactions with DELAY were not significant either (all p > 0.25), suggesting that 12- 

and 24-h delay groups performed at a similar level. 

 

 

Figure III/3. (a) SLE-score of each experimental group in the last five blocks of the Learning Phase. (b) 

SLE-score of each experimental group in the Transfer Phase (Session 2). (c) Difference between SLE-

scores of the five blocks of Transfer phase and the last five blocks of Learning phase (Transfer-SLE-

score). The perceptual groups showed weaker transfer effect than the motor groups both after 12 and 24 h. 

Error bars indicate Standard Error of Mean. 
 

 

Thus, the only significant effect in the ANOVA was the main effect of 

CONDITION, suggesting differential consolidation of perceptual and motor groups 

with better consolidation for the motor group, irrespective of the delay or daytime. 

Despite this difference in consolidation, SLE in Session 2 was significantly different 

from zero for both the perceptual and motor groups (one-sample t-tests for SLEscores: 
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t(49) = 5.25, p < 0.001 and t(51) = 8.72, p < 0.001 respectively). Thus, in spite of the 

weaker consolidation in the perceptual group, they still showed significant SLE in the 

Transfer Phase (Session 2). For detailed descriptive statistics see Supplementary Table 

ST-III/1 in the Supplementary Materials. 

III/4.3. Transfer or new motor learning in the Perceptual Group? 

In order to find out whether the significant learning effect in Transfer Phase 

(Session 2) is due to new motor learning in the perceptual group we investigated the 

learning effect at the beginning of the Learning Phase (Session 1 - the first two 

sequence blocks) and learning effect in the Transfer Phase (Session 2 - Block 1-2) 

separately. We calculated SLE-scores for the first two blocks of Session 1 and Session 

2. We submitted these scores to a one-sample t-test separately for Session 1 and Session 

2. If we can show a significant learning effect in Session 1 - Block 1-2, the learning is 

very fast; and the results in Session 2 can be due to new motor learning. However, we 

found no significant learning effect in Session 1 - Block 1-2 in the perceptual group 

(one-sample t-test for SLE-score: t(49) = 1.069, p = 0.291, Mean SLE = 9.27). In 

contrast we found a significant learning effect in Session 2 - Block 1-2 (onesample t-test 

for SLE-score: t(49) = 3.523, p = 0.001, Mean SLE = 8.33). Hence it is likely that the 

learning effect in Session 2 (Transfer Phase) is attributable to preserved perceptual 

learning rather than to new motor learning. We found the same pattern in the motor 

condition (one-sample t-test for SLE-score in Session 1 - Block 1-2: t(51) = 0.30, p = 

0.765, Mean SLE = 3.89; Session 2 - Block 1-2: t(51) = 5.087, p < 0.001, Mean SLE = 

14.77). For detailed descriptive statistics see Supplementary Table ST-III/2 in the 

Supplementary Materials. 

III/5. Discussion 

Our study investigated the role of 12-h and 24-h delay on perceptual and motor 

components of implicit skill learning, while eliminating oculomotor learning. In this 

way we connect two debates together: (1) one on the relative importance of perceptual 

and motor learning (2) the other on the effect of sleep on skill acquisition. We used the 

same method as Nemeth et al.’s study (Nemeth et al., 2009), except that in our research 

there was a 12-h (during which participants either had sleep or they were awake) or a 

24-h (diurnal) offline period between the Learning and the Transfer Phase. We found 

significant sequence learning in the Learning Phase. After the 12-h and the 24-h offline 
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period we found significant learning effect in both the perceptual and the motor 

conditions, however transfer in the motor condition was more effective compared to the 

perceptual condition. We did not find any sleep-effect on sequence learning in either 

condition. 

The weaker consolidation of perceptual learning is in agreement with the results 

of Deroost and Soetens (2006) and Willingham (1999), who found no evidence of 

perceptual learning except for specific conditions. According to previous studies, 

perceptual learning only takes place when the structure of the sequence is simple, but in 

case of deterministic sequences with second-order dependencies and probabilistic 

sequences with first-order dependencies perceptual learning is not or only weakly 

present (Deroost & Soetens, 2006; Mayr, 1996; Remillard, 2003). Also, previous 

studies found perceptual learning in explicit conditions (Rüsseler & Rösler, 2000), and 

when a motor sequence was learnt concurrently (Mayr, 1996). In our study participants 

had no conscious awareness at all of the structure of the sequence, as the ASRTtask 

uses probabilistic sequences with second-order dependencies. The only condition that 

met Deroost and Soetens (2006) criteria is that in the Learning Phase participants learnt 

the perceptual and motor components concurrently. Compared to Nemeth et al. (2009) 

who found similar magnitudes of perceptual and motor learning immediately after the 

Learning Phase, we found a weaker perceptual learning effect in the Transfer phase both 

after a 12-h and a 24-h delay. Because the only difference was the delay duration, we 

can suppose that the differences between the results of the two studies can be related to 

the consolidation period. Thus, this one criterion (i.e., participants in the Learning Phase 

learnt the perceptual and motor components concurrently) can be enough for finding 

significant perceptual learning immediately after the Learning Phase (Meier & Cock, 

2010; Nemeth et al., 2009; Weiermann, Cock, & Meier, 2010), however, it might result 

in weaker consolidation after the delay period. To put the puzzle together, based on the 

present study we can propose that the consolidation period has a differential effect on 

motor and perceptual components of learning, such that in the Transfer Phase the motor 

learning effect is larger than the perceptual one. 

Song et al. (2008); Nemeth et al. (2009) and the present study are similar in the 

nature of the sequence structure and the implicitness of the task. Furthermore, the 

present study and the study of Nemeth et al. (2009) also eliminated the possibility of 

oculomotor learning. Because we focused only on the perceptual and motor learning 
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while controlling for the oculomotor learning, the role of response-based learning and 

effector-based learning remained unclear (Cohen et al., 1990; Remillard, 2003; 

Willingham, 1999); therefore the exact nature of the underlying mechanism still needs 

to be investigated. 

In addition to the question of perceptual and motor components of learning, our 

study has relevance for the sleep debate in skill consolidation (Debas et al., 2010; 

Doyon, Korman, et al., 2009; Gerván & Kovács, 2007; Karni, Tanne, Rubenstein, 

Askenasy, & Sagi, 1994; Edwin M. Robertson, 2009; Song, 2009; Stickgold & Walker, 

2005; M. P. Walker, Brakefield, Morgan, Hobson, & Stickgold, 2002). As pointed out 

by Robertson (2009) and supported by Song et al. (2007b) and Nemeth et al. (2010), we 

found that sleep does not support sequence learning. In addition, sleep has no different 

role in the consolidation of motor and perceptual factors of implicit sequence learning. 

A plausible explanation can be that in the probabilistic sequence learning task used in 

this study, besides primary sensory and motor brain regions, sub-cortical structures and 

cerebellum are more involved (Doyon, 2008; Hikosaka et al., 1999, 2002), opposed to 

the more basic finger tapping tasks where sleep-dependent improvement was usually 

found (M. P. Walker et al., 2002). 

To conclude, despite the 12-h or the 24-h offline period we found a significant 

perceptual and motor learning effect in the Transfer Phase, however the transfer of 

motor knowledge was more robust, irrespective of whether sleep occurred in the 

consolidation period or not. These results have important implications for the 

perceptual/motor and also for the sleep debate in skill learning in the following ways: 

(1) Previous experiments in this field included only one session which can reveal short-

term performance changes in behavior. Consequently, it is important to use more 

sessions with many hours (even a day) delay between sessions for measuring permanent 

changes in neural plasticity. (2) Sleep has no contribution to this type of learning. 

However, further investigations need to explore more deeply conditions (including 

nature of sequence, awareness, perceptual/motor learning) in which sleep has a 

significant role in skill learning. (3) The retention period itself (regardless of sleep) has 

a modifying effect on the consolidation of perceptual/motor knowledge and the 

underlying brain networks. 
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IV. EXPLICIT INSTRUCTIONS AND CONSOLIDATION PROMOTE 

REWIRING OF AUTOMATIC BEHAVIORS IN THE HUMAN MIND 

(Study 3)
8
 

 

IV/1. Abstract 

One major challenge in human behavior and brain sciences is to understand how 

we can rewire already existing perceptual, motor, cognitive, and social skills or habits. 

Here we aimed to characterize one aspect of rewiring, namely, how we can update our 

knowledge of sequential/statistical regularities when they change. The dynamics of 

rewiring was explored from learning to consolidation using a unique experimental 

design which is suitable to capture the effect of implicit and explicit processing and the 

proactive and retroactive interference. Our results indicate that humans can rewire their 

knowledge of such regularities incidentally, and consolidation has a critical role in this 

process. Moreover, old and new knowledge can coexist, leading to effective adaptivity 

of the human mind in the changing environment, although the execution of the recently 

acquired knowledge may be more fluent than the execution of the previously learned 

one. These findings can contribute to a better understanding of the cognitive processes 

underlying behavior change, and can provide insights into how we can boost behavior 

change in various contexts, such as sports, educational settings or psychotherapy. 

 

 

 

 

                                                 
8
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Hompoth, E. A., … Németh, D. (2017). Explicit instructions and consolidation 

promote rewiring of automatic behaviors in the human mind. Scientific Reports, 

7(1), 1–7. https://doi.org/10.1038/s41598-017-04500-3 
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IV/2. Introduction 

French drivers face a real challenge when they have to drive in England for the 

first time. They might look in the wrong direction when checking the traffic, and 

incorrectly assume that there is no other vehicle, so they are free to go ahead at a 

crossroad. Their already well-developed perceptual-motor skill of driving becomes 

ineffectual or even harmful by leading them to false predictions in the new 

environment. Our study can contribute to a better understanding of how we can rewire 

our perceptual-motor skills in such situations. Can we adapt to the changed regularities 

of the environment without any external help, purely implicitly? 

The aim of our study was to test, in a controlled experimental setting, how we 

can update – rewire – our knowledge of sequential/statistical regularities that thought to 

be an essential aspect of many everyday skills, such as playing a musical instrument or 

video games (Bergstrom, Howard, & Howard, 2012), learning/processing languages 

(Kaufman et al., 2010; Nemeth et al., 2011), and social skills (Heerey & Velani, 2010; 

Norman & Price, 2012). Modification of such knowledge can be empirically tested by 

teaching two differing sets of regularities (i.e., sequences) to participants. 

Characterizing the interference between the first-learned sequence and the newly 

encountered one is the key to understand the rewiring process. Retroactive interference 

can hinder our ability to activate old sequence knowledge once new reguralities have 

been learned (Dorfberger, Adi-Japha, & Karni, 2007; Goedert & Willingham, 2002; 

Yotsumoto, Watanabe, Chang, & Sasaki, 2013; M. P. Walker, Brakefield, Hobson, & 

Stickgold, 2003; Handa, Rhee, & Wright, 2016). Likewise, our previously developed 

automatisms can make it more difficult to learn new regularities, termed as proactive 

interference. Proactive interference effects were found even after limited practice when 

sequence A and sequence B were highly dissimilar (Goedert & Willingham, 2002); and 

it was also detected by contrasting performance on those chunks of movements that 

were common to both sequences with those that differed (Verneau, van der Kamp, 

Savelsbergh, & de Looze, 2015). While retroactive interference can be beneficial for 

overwriting old knowledge of sequential regularities, proactive interference works 

against successful rewiring. 

To date no study has focused on the entire process of rewiring in humans that 

captured both retroactive and proactive interference effects, and at the same time 



 

 

43 

 

assessed the impact of explicit processes in one experimental design. Here we present a 

study with such a design to tackle the question whether we can overcome the negative 

consequences of the interference without conscious effort (i.e., implicitly) or the 

awareness about the changed reguralities (i.e., explicitness) is essential for rewiring. 

Eighty-four healthy young adults performed a four-choice reaction time task 

(Fig. IV/1/a) on three consecutive days. The presentation order of the stimuli followed a 

probabilistic sequence on the first day (Sequence A in the Learning Phase), then this 

sequence changed to a different one on the second day (Sequence B in the Rewiring 

Phase). The two sequences shared some of their transitional probabilities (for details see 

Methods and Fig. IV/1/b), meaning that at some points in Sequence B the most 

probable upcoming stimulus was the same as in Sequence A (unchanged sequence 

parts). Other transitional probabilities changed: the most probable continuation of the 

previous trials was different from that on the previous day (changed sequence parts). 

This way we could compare learning with and without interference from the previous 

day (more details in Supplementary Methods SM-IV/1.2 in the Supplementary 

Materials). In addition, to assess the impact of explicit information processing, 

sequences were learned either explicitly or implicitly: implicit learners were not aware 

of the sequence structures, while explicit learners were provided with cues that could be 

used on half of the trials (Fig. IV/1/c). We hypothesized that – if explicitness does help 

rewiring – it should be expected that explicit learners perform better even on those trials 

on which they did not have any explicit advantage over the implicit learners. Three 

groups of participants were compared: the Implicit-Implicit group learned both 

sequences implicitly (thus rewiring was also implicit); the Implicit-Explicit group 

learned the first sequence implicitly and the second sequence explicitly; the Explicit-

Explicit group learned both sequences explicitly (Fig. IV/1/d). 
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Figure IV/1 

Methods and procedure. (a) ASRT task: participants were asked to respond to stimuli appearing on one of 

four locations, and press the corresponding key as fast and as accurately as they could. (b) Examples of 

sequences and their shared/differing transitions. Numbers indicate the locations of stimuli (1, 2, 3 or 4). 

The notation “R” indicates a random location out of the four possible ones. Knowing what stimulus 

appeared two trials before enables participants to anticipate the next stimulus as there is always a highly 

probable continuation (highlighted) and three less probable continuations. In Sequence A, for example, 

two trials after encountering a stimulus on the 2nd location, the most probable stimulus is one on the 3rd 

location (all the remaining possibilities being equally less likely). Sequence A and Sequence B share 

some of their transitional probabilities (e.g. encountering stimulus on the 4th location two trials after 

encountering one on the 1st location); and they differ on others (e.g. encountering stimulus on the 3rd 

location predicts a stimulus on the 2nd location two trials later in Sequence B, but not in Sequence A). 

Interference effects could be detected by contrasting the magnitude of learning of changed and unchanged 

sequence parts. (c) In the implicit version of the task, random and pattern trials appeared in the same 

color, thus they were indistinguishable to participants. In the explicit version of the task, random and 

pattern trials were of different colors, and participants were asked to keep track of the repeating pattern. 

(d) There were 85 trials in a block. There were 45 blocks in the Learning and Rewiring Phase, collapsed 

into bigger sections (epochs) for analysis. Probe epochs were implicit for all participants. Here we focus 

on experimental epochs (probe epochs led to similar results, for details see Supplementary Results SR-

IV/2.3 and SR-IV/2.4 in the Supplementary Materials). In the Follow-up Phase, we aimed to test 

participants’ performance on both sequences after equal amount of practice on each, without introducing 

much relearning. Therefore only 5 + 5 blocks of both sequences were presented on the third day. Two of 

these blocks were probe blocks. 
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IV/3. Methods 

IV/3.1. Participants 

Eighty-four healthy young adults took part in the experiment. Participants were 

recruited at University of Szeged and were randomly assigned to one of three groups: 

the Implicit-Implicit group (N = 28; 20 females; Age: M = 20.46 years, SD = 2.10), the 

Implicit-Explicit group (N = 28; 17 females; Age: M = 22.14 years, SD = 1.96), and the 

Explicit-Explicit group (N = 27; 18 females; Age: M = 22.54 years, SD = 3.33). One 

participant was excluded from the analysis because errorneously the same sequence was 

administered to him on each day of the study. Three groups did not differ in their scores 

on standard working memory and executive function tests (Digit 

Span: p = 0.443, ηp 
2
 = 0.021; Counting Span: p = 0.440, ηp 

2
 = 0.022; perseveration rates 

on the Wisconsin Card Sorting Task: p = 0.710, ηp 
2
 = 0.010; Stroop 

Test: p = 0.578, ηp 
2
 = 0.015). Participants did not suffer from any psychiatric or 

neurological disorders. None of the participants were aware of the purpose of the 

experiment. Prior to their inclusion in the study, participants provided informed consent 

to the procedure as approved by the research ethics committee of University of Szeged, 

Szeged, Hungary. The study was conducted in accordance with the Declaration of 

Helsinki and participants received course credits for taking part in the experiment. 

IV/3.2. Task and Procedure 

Participants performed a modified version of the Alternating Serial Reaction 

Time (ASRT) task (J. H. Howard & Howard, 1997). The program was coded in 

Psychopy
 
(Peirce, 2007). In the Implicit variant of the task, four light grey circles were 

arranged horizontally on the screen. Four buttons on the keyboard corresponded to the 

four locations on the screen: Z, C, B, and M, respectively. Intervening buttons were 

removed to minimize false buttonpresses. Participants used their left and right middle 

and index fingers to respond to the targets. The stimulus stayed on the screen until a 

correct buttonpress was made (but it remained on the screen after an unapt button was 

pressed). Response to stimulus interval (RSI) was set to 120 ms. One block of trials 

consisted of five random (preparatory) trials followed by ten repetitions of a 

probabilistic sequence (10 × 8 trials). After each block, there was a pause of at least 

10 seconds (terminated by participants) during which the average reaction time of 

correct buttonpresses and the percentage of erroneous buttonpresses were displayed. 
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Unbeknownst to the participants, the ASRT sequence consisted of a four-elements-long 

sequential pattern (e.g., 3–1–4–2) intersparsed with random elements (3–R–1–R–4–R–

2–R). Because of the alternating pattern and random trials, the ASRT sequence can be 

regarded as a second order probabilistic sequence, meaning that the identity of the 

upcoming stimulus can be anticipated based on the n-2 trial (one of the four possibilities 

is always more probable than the remaining three), regardless of the stimulus being a 

random or a pattern element (for more details see Supplementary Methods SM-IV/1.1 

in the Supplementary Materials). 

In the Explicit variants, participants performed a cued version of the ASRT task 

(Nemeth, Janacsek, & Fiser, 2013; Song et al., 2007a, 2009). This version differed from 

the implicit task in three respects: firstly, random and pattern stimuli appeared in 

different colors (pattern elements appeared green while random elements appeared 

blue). Secondly, participants were instructed to pay attention primarily to the four-

element long pattern (the green trials) to be able to report it after each block. Also they 

were told to constantly monitor this pattern and report if it changed during the course of 

a block (actually it never changed within a given block). Finally, the feedback after the 

blocks did not contain information about RTs and erroneous buttonpresses on random 

trials as the instruction highlighted performance on the pattern trials. 

After learning an ASRT sequence (referred to as Sequence A) on the first day of 

the study (in the Learning Phase), participants were given a different ASRT sequence 

(referred to as Sequence B) on the second day (in the Rewiring Phase). Twelve different 

sequence combinations were used in the experiment in a counterbalanced order. All 

these combinations are presented in Supplementary Methods SM-IV/1.3 in the 

Supplementary Materials. Three groups were compared based on the instructions they 

received each day: The Implicit-Implicit group performed the implicit version of the 

task in both the Learning Phase and in the Rewiring Phase; the Implicit-Explicitgroup 

performed the implicit version in the Learning Phase and the explicit version in 

the Rewiring Phase;finally, the Explicit-Explicit group performed the explicit version in 

both phases. 

On the third day of the study – in the Follow-up Phase – the magnitude of 

statistical knowledge for both sequences was assessed to investigate possible retroactive 

interference effects after a 24-hour consolidation period. Then the Triplet Sorting 
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Task and the Free Generation Task were administered to assess the amount of explicit 

knowledge participants gained about both sequences (see descriptions of the tasks in 

Supplementary Methods SM-IV/1.6 in the Supplementary Materials). The analysis of 

these tasks showed that participants indeed gained more explicit knowledge about the 

regularities when they performed the explicit version of the task, and that the explicit 

cues indeed can help differentiate between the two sequences and use the acquired 

knowledge more appropriately in the relevant context (for details see Supplementary 

Results SR-IV/2.5 in the Supplementary Materials). 

Finally, working memory and executive functions were also assessed on the 

third day. We wanted to ensure that the three groups had similar performance on these 

general cognitive functions, and thus the obtained results of rewiring could not be 

attributed to differences in these functions (see also the Participants section). The 

experiment took place in a quiet laboratory at University of Szeged (one participant a 

time). The whole procedure lasted approximately 60 minutes on the first and second day 

of the experiment, and an additional 40 minutes on the third day. 

IV/4. Results 

We measured statistical learning as (a) difference in reaction times (RTs) given 

to anticipated (probable) stimuli in contrast to unexpected (less probable) stimuli, 

termed as Statistical Learning Effect (SLE), and (b) by determining whether erroneous 

responses reflect anticipations of the most probable stimuli in cases when less probable 

trials came up (more details in Supplementary Methods SM-IV/1.4 and SM-IV/1.5 in 

the Supplementary Materials). Statistical learning measured by the SLE score was 

evident in both the Learning and Rewiring Phase (see 95% confidence intervals, CIs, on 

Fig. IV/2/a). In the Learning Phase, there could not possibly be any interference effects 

as only Sequence A had been introduced yet, we nevertheless contrasted the magnitude 

of learning of those transitional probabilities that were common during both Phases 

(unchanged sequence parts) and those that were about to change in the Rewiring Phase 

(changed sequence parts). As expected, there was no difference between the two 

(p = 0.568, Cohen’s d = 0.080), indicating that they were equally easy to learn 

(Fig. IV/2/a, light vs. dark grey bars). In the Rewiring Phase, however, we found 

smaller statistical learning for the changed sequence parts (p < 0.001, d = 0.829) 

compared to the unchanged sequence parts (Fig. IV/2/a, light grey vs. blue bars). This 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig2/
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was apparent in the Implicit-Implicit (p < 0.001, d = 1.425) and Explicit-Explicit groups 

(p = 0.008, d = 0.737), but not in the Implicit-Explicit group (p = 0.128, d = 0.406). 

These results suggest that the Implicit-Explicit group was the most successful in 

adapting to the new statistical regularities, even to the extent that their rewired 

knowledge was not much different than that of the unchanged sequence parts. 

Interference effects were most clearly shown by contrasting the magnitude of learning 

of the same transitional types (changed vs. unchanged) over the two Phases. As 

expected, learning of the unchanged sequence parts did not decline in the Rewiring 

Phase (p = 0.151, d = 0.021, Fig. IV/2/a, light grey bars in the Learning vs. Rewiring 

Phase), while learning of the changed sequence parts was significantly lower in 

Rewiring Phase than the original learning in the Learning Phase (p < 0.001, d = 0.729, 

Fig. IV/2/a dark grey vs. blue bars). This pattern was apparent in the Implicit-Implicit 

(p < 0.001, d = 1.562) and Explicit-Explicit (p = 0.028, d = 0.850) groups, but not in the 

Implicit-Explicit group (p = 0.561, d = 0.155) – indicating, again, that the Implicit-

Explicit group was the most successful in adapting to the changes in the sequence 

structure. The least successful group was the Implicit-Implicit group, evidenced by their 

statistical knowledge of the changed sequence parts in the Rewiring Phase (Fig. IV/2/a, 

blue bars) being significantly smaller than both the Explicit-Explicit 

(p = 0.028, d = 0.743) and Implicit-Explicit groups’ (p < 0.001, d = 1.198). Additional 

analysis of the time course of rewiring revealed that the Implicit-Implicit group showed 

significant learning of the changed transitional probabilities only in the second half of 

the Rewiring Phase, suggesting slower updating of the previously acquired statistical 

knowledge (i.e., larger proactive interference) compared to the other two groups (for 

more details see Supplementary Results SR-IV/2.1.1 in the Supplementary Materials). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig2/


 

 

 

 

 

Figure IV/2. Learning and Rewiring. (a) Statistical learning effect (SLE) in the Learning and Rewiring Phase. The magnitude of SLE indicates the difference of reaction 

times (RTs) given to frequent transitions (more probable stimuli) in contrast to infrequent transitions (less probable stimuli). Some of the transitions had constant frequency in 

the Learning Phase and Rewiring Phase (unchanged transitions, light grey bars), while other transitions swapped their frequency – previously infrequent transitions became 

frequent in the Rewiring Phase, and vice versa (changed transitions, dark grey bars – before the change, blue bars – after the change occurred ). Adapting to the changed 

statistical structure in the Rewiring Phase was shown to be more difficult than learning the contingencies in the first place in the Learning Phase. This was shown by SLEs 

being – on average – smaller for the changed transitions after the change in frequencies took place in the Rewiring Phase (blue bars) than before the change (dark grey bars). 

The Implicit-Explicit group did not show signs of such difficulty. (b) When a less probable stimulus came up, participants sometimes erroneously pressed the key 

corresponding to the most probable stimulus, termed as anticipatory errors. As two (partly) different sequences were taught, we differentiated between anticipations of 

Sequence A’s most probable stimuli, and that of Sequence B’s. Percentage of anticipatory errors of Sequence A (learned in the Learning Phase, grey bars) and Sequence B 

(learned in the Rewiring Phase, blue bars) over the two Phases, and chance level for anticipatory errors (dotted line) are shown. Each group showed adaptation to the current 

sequence, as anticipations for Sequence A were above chance level in the Learning Phase, while anticipations of Sequence B were above chance level in the Rewiring Phase. 

The Implicit-Implicit group additionaly showed above chance level anticipations of Sequence A during the Rewiring Phase, indicating the continuing influence of their 

knowledge gained in the Learning Phase. The solid lines connecting the bars indicate significant differences (p < 0.05). Error bars represent 95% confidence intervals (CIs). 
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On some of the trials, participants pressed a key that did not correspond to the 

stimulus. Some of these errors reflected anticipations of the most probable stimulus 

when the actual stimulus was a less probable one, termed as anticipatory errors. As two 

sequences were taught, we can measure anticipations of Sequence A’s most probable 

transitions and those of Sequence B’s (errors that could be regarded as anticipations of 

both sequences were not analysed). We compared the proportion of anticipatory errors 

to each other (anticipations of Sequence A vs. anticipations of Sequence B), and to a 

baseline proportion that could be expected by chance (16.67%, see Fig. IV/2/b). As 

expected, the Learning Phase was dominated by anticipations of Sequence A (dark grey 

bars on Fig. IV/2/b), while the Rewiring phase was dominated by anticipations of 

Sequence B (both p < 0.001, both d > 1.061, blue bars on Fig. IV/2/b). From another 

point of view, there were less anticipations of Sequence B in the Learning Phase than in 

the Rewiring Phase, and vice versa (both p < 0.001, both d > 0.979). This pattern of 

results was observed in all groups, although effect sizes were substantially smaller in 

the the Implicit-Implicit group (both d < 0.672) than in the other groups (all d > 1.226). 

Most importantly, anticipations of Sequence B in the Rewiring Phase (that indicate 

adaptation to the new sequence structure) were less pronounced in the Implicit-Implicit 

group than in the Implicit-Explicit group (p = 0.047, d = 0.721), while anticipations of 

Sequence A in the same Phase (indicating the continuing influence of the knowledge 

gained in the Learning Phase) were more pronounced in the Implicit-Implicit group than 

in the Implicit-Explicit and the Explicit-Explicit groups (both p < 0.036, both d > 0.795). 

The Implicit-Implicit group showed no significant difference in proportions of 

anticipating Sequence A and Sequence B during the Rewiring Phase 

(p = 0.529, d = 0.225), both being above chance level (see 95% CIs on Fig. IV/2/b). 

These results clearly point to the continuing influence of the no-longer valid statistical 

knowledge gained in the Learning Phase – that is, proactive interference – in the 

Implicit-Implicit group (see also Supplementary Results SR-IV/2.1.2 in the 

Supplementary Materials). The remaining two groups who performed the Rewiring 

Phase explicitly showed no signs of such interference, indicating a beneficial effect of 

awareness about the sequence structures. 

Participants were retested on the third day (in the Follow-up Phase, Fig. IV/1/d) 

for both sequences to test whether the first one became overwritten by the second one. 

Participants showed better performance on the transitions that were frequent in both the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig1/
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Learning and Rewiring Phases (Fig. IV/3/a, light grey bars) than on those that were 

frequent in only one of the Phases (Fig. IV/3/a, dark grey and blue 

bars; p = 0.003, d = 0.506), which is not surprising given that the former ones were 

practiced almost twice as much. More importantly, better performance was expressed 

for Sequence B than for Sequence A (p = 0.015, d = 0.404). This pattern of results may 

indicate that statistical knowledge for Sequence A became partly overwritten by 

knowledge of Sequence B, showing retroactive interference which is beneficial for the 

rewiring process. No group differences were observed (ps > 0.303; see also 

Supplementary Results SR-IV/2.2.1 in the Supplementary Materials). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig3/


 

 

 

 

 

Figure IV/3. Testing the efficiency of the rewiring process after a 24-hour consolidation period, in the Follow-up Phase. (a) Overall, SLEs for the changed sequence 

parts (dark grey and blue bars) were smaller than that of the unchanged sequence parts (light grey bars). In the case of the changed sequence parts, statistical structure that 

corresponded to Sequence B (that was learned in the Rewiring Phase) was retained better than statistical structure that corresponded to Sequence A (that was learned in the 

Learning Phase) – the latter not reliably differing from zero (as shown by 95% CIs). This pattern indicates adaptation to the changed statistical regularities of Sequence B 

taking place in the Rewiring Phase, and no observable proactive interference of Sequence A, thus, overall successful rewiring. No group differences were observed. (b) 

Chance level for anticipatory errors are shown by the dotted line. Each group showed adaptation to the current sequence as anticipations for Sequence A were above chance 

level when performing Sequence A in the Follow-up Phase; while anticipations for Sequence B were above chance level when performing Sequence B. This pattern suggests 

that the old and new knowledge, acquired on the first and second day of the experiment, coexisted after a 24-hour delay period, and were accessible when required. The solid 

lines connecting the bars indicate significant differences (p < 0.05). Dotted lines indicate trend level differences (p < 0.10). Error bars represent 95% CIs. 
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When performing Sequence A on the third day of the study, anticipations of 

Sequence A were more common than anticipations of Sequence B 

(p = 0.004, d = 0.533), and than what might have been expected by chance (Fig. IV/3/b, 

dark grey bars). When performing Sequence B, on the other hand, anticipations of 

Sequence B outnumbered anticipations of Sequence A (p = 0.009, d = 0.503), and were 

more numerous than expected by chance (Fig. IV/3/b, blue bars). From another point of 

view, anticipations of Sequence A were significantly more pronounced when 

performing Sequence A than when performing Sequence B, and vice versa 

(both p < 0.003, d > 0.494). This pattern of results indicate no proactive or retroactive 

interference effects, as participants were able to quickly adapt to changes in the 

statistical structure, and suggests that knowledge about the two statistical structures 

coexist and can be adaptively used in the appropriate situation. No group differences 

were observed (p = 0.745; see also Supplementary Results SR-IV/2.2.2 in the 

Supplementary Materials). 

In our study, we compared performance of groups that learned/rewired their 

knowledge with vs. without explicit cues. The Free Generation and the Triplet Sorting 

Tasks were used to explore to what extent their knowledge remained implicit or became 

explicit (see Supplementary Methods SM-IV/1.6.1 and SM-IV/1.6.2 in the 

Supplementary Materials). In the Free Generation Task, they were asked to generate 

alternating sequences similar/dissimilar to the ones they encountered during the 

experiment. The results revealed clear group differences with participants in the explicit 

conditions exhibiting better performance, as a result of the explicit cues and 

instructions. Participants who learned/rewired their knowledge without explicit cues 

(i.e., implicitly) might have also gained some explicit knowledge about the regularities 

as well, although we cannot rule out the possibility that they used different strategies 

during task compared to the explicit group, and those strategies resulted in a somewhat 

similar performance in the end (for details see Supplementary Results SR-IV/2.5.1 in 

Supplemetary Materials). The Triplet Sorting Task more directly tested their knowledge 

about the same statistical structures (triplets) that also provided the basis of the RT and 

anticipatory error analyses. The results of this task support the interpretation that 

knowledge of these statistical structures remained implicit for the implicit learners 

(Supplementary Results SR-IV/2.5.2 in the Supplementary Materials). This 

interpretation is also in line with previous ASRT studies showing that participants 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491510/figure/Fig3/
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remain unaware of the stimulus structure if it is not explicitly cued (Song et al., 2007b), 

and even after extended practice (e.g., ten days, D. V. Howard et al., 2004). 

Nevertheless, we can never totally exclude the possibility that some degree of explicit 

knowledge developed even if the sequence structure was not cued. 

IV/5. Discussion 

In summary, we found successful rewiring of the acquired knowledge in all three 

experimental groups. In the Rewiring Phase the group that learned implicitly and 

rewired with the help of explicit cues (i.e., the Implicit-Explicit group) showed better 

performance than the other groups. In other words, explicit cues during the rewiring 

process led to faster adaptation to the changed reguralities, evidenced both in the cued 

part of the task (experimental epochs) as well as in the uncued part (probe epochs, see 

Supplementary Results SR-IV/2.3 in the Supplementary Materials). By the end of the 

rewiring period, all groups showed similar performance suggesting an efficient but 

slower rewiring in the Implicit-Implicit group as well. We also found evidence that the 

first learned sequence was accessible when needed, shown by sequence specific 

anticipatory errors in the Follow-up Phase, although the motor execution of it was not as 

fluent as the execution of the secondly learned sequence. 

The aim of our study was to test, in a controlled experimental setting, how we 

can update – rewire – our knowledge of sequential/statistical regularities that thought to 

be an essential aspect of many everyday skills, such as playing a musical instrument or 

video games
 
(Bergstrom et al., 2012), learning/processing languages (Kaufman et al., 

2010; Nemeth et al., 2011), and social skills (Heerey & Velani, 2010; Norman & Price, 

2012). Nevertheless, these skills are far more complex than the task employed in the 

current study, and they may encompass other types of sequential/statistical knowledge, 

have longer/more variable “practice schedule”, and may combine different regularities 

coming from different domains (such perceptual and motor). Although in our study 

participants were presented with regularities both in the perceptual and motor domains 

(correlated visual and motor stimulus streams), here we did not aim to separate the 

knowledge acquired in these two domains. Previous ASRT studies have showed that 

participants acquire both the perceptual and motor knowledge and they also retain their 

knowledge after a delay period (Nemeth et al., 2009; Hallgató, Győri-Dani, Pekár, 

Janacsek, & Nemeth, 2013; Song et al., 2008). Future studies need to directly test how 
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various types and complexity of sequential/statistical knowledge can be updated when 

the underlying regularities change, whether and how sequence complexity interacts with 

the explicit advantage observed in our study, and whether and how these processes 

differ across domains. 

Based on our findings, rewiring of a relatively simple statistical knowledge – 

that we tested in the current study – show a complex picture: proactive interference, 

which works against the adaptation to the changed regularities, is stronger when 

learning and rewiring is implicit, while explicit cues about these changed regularities 

can help speed up the rewiring process. After a 24-hour delay period, proactive 

interference is volumed down, while retroactive interference is volumed up, suggesting 

that consolidation of the updated knowledge about the changed regularities has a critical 

role in successful rewiring. The fact that both the old and new, updated knowledge 

seems to remain accessible highlights the adaptive nature of the human mind, making it 

possible to dynamically use the appropriate procedures corresponding to various 

environments. Our findings can contribute to a better understanding of the cognitive 

processes underlying behavior change. 
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V. DIFFERENT LEVELS OF STATISTICAL LEARNING – HIDDEN 

POTENTIALS OF SEQUENCE LEARNING TASKS 

(Study 4)
9
 

 

V/1. Abstract 

In this paper, we reexamined the typical analysis methods of a visuomotor 

sequence learning task, namely the ASRT task (J. H. Howard & Howard, 1997). We 

pointed out that the current analysis of data could be improved by paying more attention 

to pre-existing biases (i.e. by eliminating artifacts by using new filters) and by 

introducing a new data grouping that is more in line with the task’s inherent statistical 

structure. These suggestions result in more types of learning scores that can be 

quantified and also in purer measures. Importantly, the filtering method proposed in this 

paper also results in higher individual variability, possibly indicating that it had been 

masked previously with the usual methods. The implications of our findings relate to 

other sequence learning tasks as well, and opens up opportunities to study different 

types of implicit learning phenomena. 

 

Keywords: ASRT task, sequence learning, statistical learning, analysis methods, 

data filtering, individual differences, types of learning. 

 

 

 

 

 

 

                                                 
9
  Szegedi-Hallgató, E., Janacsek, K., & Nemeth, D. (2019). Different levels of 

statistical learning—Hidden potentials of sequence learning tasks. PloS One, 

14(9), e0221966. https://doi.org/10.1371/journal.pone.0221966 
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V/2. Introduction 

When previous experiences facilitate performance even though the current task 

does not require conscious or intentional recollection of those experiences, implicit 

memory is revealed  (Schacter, 1987). The Serial Reaction Time (SRT) task (Nissen & 

Bullemer, 1987) is a commonly used task measuring implicit learning and memory in 

the visuomotor domain; people are instructed to respond to a sequence of stimuli by 

pressing a corresponding button (usually having a 1:1 stimulus-response mapping), and 

even though they are not aware that the same pattern of successive trials is repeated 

over and over again, they nevertheless show improvement compared to their reactions 

to random (or pseudorandom) streams of stimuli. A drawback of the design is that 

learning can only be assessed at certain points (via inserting blocks of random stimuli), 

and that, due to the simplicity of the SRT sequences, people may become aware of them 

after all, in which case explicit memory is being measured instead of or in addition to 

implicit learning(D. V. Howard & Howard, 1992). 

 A modified version of the task, namely the Alternating Serial Reaction Time 

task (ASRT),  has been introduced twenty years ago as a possible solution to the 

aforementioned problems (J. H. Howard & Howard, 1997); and it turned out that even 

the test-retest reliability is better using this variant (Stark-Inbar, Raza, Taylor, & Ivry, 

2016). At the time of writing these lines, that article introducing the ASRT task had 

been cited three hundred times (317, to be precise), and Google Scholar has about 200 

results for the expression „alternating serial reaction time”, out of which 87 has been 

published since 2015. Clearly, the task gained popularity as a research tool recently, 

which is not surprising given its advantages over the classical SRT.  Having a lot of 

experience with it ourselves, we began to feel there is even more to it than currently 

recognized. In the present paper, we aim to discuss the potential challenges of its 

currently used analysis methods and to provide some ideas about how to overcome 

these flaws. Importantly, most of the concerns (and solutions) discussed in this paper 

are directly applicable to other sequence learning tasks as well. 

V/2.1. About the ASRT Task 

In the ASRT – to make the predetermined sequence less apparent - a four 

element long pattern (e.g. 1-4-2-3) is intervened by random elements (i.e. 1-R-4-R-2-R-
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3-R). Participants generally don’t recognize the pattern (or the fact that there is a 

pattern), and still react to pattern trials faster and more accurately than to random trials 

(referred to as pattern learning). Moreover, the relative advantage of pattern trials can 

be assessed at any point of learning, or continuously throughout learning. 

 At first, the typical result may seem like evidence that people are capable of 

somehow detecting the pattern – and thus being able to respond to these elements more 

efficiently – even though pattern trials are hidden between random elements), but this is 

not necessarily the case. As a consequence of the alternation of pattern and random 

trials, some stimulus combinations are more frequent than others and some trials are 

more predictable than others, possibly leading to faster and more accurate responses to 

them (referred to as statistical learning). When assessing stimulus combinations of at 

least three consecutive trials, the variability of such combinations depends on the 

number of random elements they contain. For example, random-ending triplets (three 

consecutive trials, i.e. R-P-R) are four times as variable as pattern-ending triplets (i.e. P-

R-P), since they contain two random elements instead of one. Accordingly, particular R-

P-R combinations occur with a much lower frequency than particular P-R-P 

combinations. Moreover, some of the R-P-R triplets mimic P-R-P triplets (e.g. 1-2-2 

can occur as both an R-P-R and a P-R-P triplet) further increasing the frequency of 

those instances, and further increasing the difference between the so-called „high-

frequency triplets” and „low-frequency triplets”. What’s important is that most of the 

high-frequency combinations end on pattern trials, while all of the low-frequency 

combinations end on random trials, and this way trial type (pattern vs. random) and 

statistical features of stimuli are heavily confounded. Not surprisingly then, learning can 

be detected by contrasting trial types or by contrasting triplet types (irrespective of 

which of the two information types drive learning). Both methods can be found in the 

literature: some researchers treat the ASRT as a pattern-learning task, which is revealed 

by making comparisons solely on the basis of trial type (pattern vs. random) (e.g. 

Barnes et al., 2008; D. V. Howard & Howard, 2001; Japikse, Negash, Howard, & 

Howard, 2003; Negash, Howard, Japikse, & Howard, 2003). Others treat the task as a 

statistical learning task, since their comparisons are being made solely on the basis of 

triplet type (frequent vs. infrequent) while ignoring trial type (pattern vs. random) (e.g. 

Nemeth et al., 2009; Nemeth, Janacsek, Londe, et al., 2010; Nemeth et al., 2011; 

Janacsek, Fiser, & Nemeth, 2012; Hallgató et al., 2013; Nemeth, Janacsek, Polner, et 
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al., 2013; Stark-Inbar et al., 2016). Finally, in the minority of cases, both factors (trial 

type and triplet type) are considered simultaneously, (e.g. Horvath, Torok, Pesthy, 

Nemeth, & Janacsek, 2018; Janacsek et al., 2012; Kóbor et al., 2018; Nemeth, Janacsek, 

& Fiser, 2013; Schwartz et al., 2003; Simor et al., 2019), making it possible to assess 

the relative contribution of the two learning types. 

Howard and Howard (1997), for example, compared high-frequency triplets that 

end on random trials (hereinafter RH), high-frequency triplets that end on pattern trials 

(hereinafter PH) and low-frequency triplets always ending on random trials (hereinafter 

RL). They found that RH trials were responded to faster and more accurately than RL 

trials - thus triplet frequency learning did occur. This result couldn’t be attributed to 

pattern learning since only responses to random trials were compared. At the same time, 

they also found that PH trials were reacted to faster and more accurately than RH trials, 

possibly indicating pattern (rule) learning. As a reminder, these trials are the ending 

trials of the same triplets (e.g. 1-2-2), but one of the triplets is an R-P-R triplet (thus the 

critical, final trial is a random trial) while the other is a P-R-P triplet (thus the final trial 

being a pattern trial). But here is the catch: although triplet level statistical information 

couldn’t act as a confound in this measure, higher order statistical information could 

(i.e. although the trials being compared are the ending trials of identical triplets, they 

differ on the N-3
th

 trial). The authors, recognizing this, used the term higher order 

learning when referring to the measure derived from contrasting RH and PH trials.  

 From Howard & Howard’s (1997) work we do know now that triplet level 

statistical learning occurs in the task, but we still don’t know whether it’s pattern 

learning and/or higher order statistical learning that explains improvement of 

performance that cannot be attributed to triplet level statistical learning (i.e. higher 

order learning). We only know that there is a little extra to triplet learning. And albeit 

being little, this extra is not marginal; this measure differentiates between age groups (J. 

H. Howard & Howard, 1997). From modified versions of the ASRT task we also know 

that higher order statistical learning is possible: it has been shown that even third-order 

statistical regularities can be learned by humans, and also that such learning is reduced 

in the old compared to the young (D. V. Howard et al., 2004; Bennett et al., 2007),  just 

as the higher order learning measure is reduced in elderly. But, of course, this does not 

exclude the possibility that pattern learning also occurs in the ASRT. 
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 Despite the uncertainty that remains about this measure, it is still surprising that 

only a handful of studies quantified it at all, as it costs nothing to do so and it opens new 

opportunities for data interpretation. First, if overall differences exist between groups, it 

can be determined whether differences arise from triplet level learning, higher order 

learning or both; and second, when no overall differences are detected with the simpler 

methods, it may be due to decreased sensitivity to detect higher order (subtler) learning. 

Indeed, only a few studies reported group differences in the ASRT literature using the 

less elaborate analysis methods, (Barnes et al., 2010; Bergstrom et al., 2012; Hedenius 

et al., 2011; J. H. Howard et al., 2006; Janacsek, Ambrus, Paulus, Antal, & Nemeth, 

2015; Janacsek, Borbély-Ipkovich, Nemeth, & Gonda, 2018; Japikse et al., 2003; 

Marvel, Schwartz, Howard, & Howard, 2005; Negash et al., 2007; Nemeth, Janacsek, 

Király, et al., 2013; Schwartz et al., 2003; Takács et al., 2018). We need to increase the 

sensitivity of the employed analysis methods in order to make the ASRT a truly 

effective tool measuring implicit learning capabilities. One way of doing so is 

differentiating between different kinds and levels of learning that can be detected, and 

that are confounded in the typical analyses. Not only would this result in more diverse 

information about a particular participant’s learning ability, but also in purer measures. 

The ASRT task might be a goldmine, we should stop digging coal. 

V/2.2. Statistical properties and analysis methods of the task 

We have talked about how pattern learning is confounded by statistical learning, 

and how unclear it is what constitutes „higher order learning”. The story is however 

even more complex. For example, in the typical analyses of ASRT data no distinction is 

being made between joint probability learning (how frequent a particular combination 

is, e.g. 1-2-2) and conditional probability learning (how often does 1-2-… end with 2), 

and although the terminology points to the former (e.g. the terms „low-frequency 

triplet” and „high-frequency triplet”), the way we typically analyze data is more in line 

with the latter (since we analyze reaction times given to the final elements of triplets; 

i.e. we measure whether a particular response is faster following a specific set of trials 

contrasted with different sets of trials). Humans are capable of both kinds of statistical 

learning (J. H. Howard et al., 2008), and as we will show, the ASRT task has the 

potential to distinguish between the two. Furthermore, pattern learning and higher than 

second-order statistical learning can also be separated (even if not perfectly, but at least 

to a higher degree than we used to). 
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We summarized trial probabilities and combination frequencies on Fig. V/1 

using two color scales (shades of gray representing combinations frequencies and 

shades of blue representing the predictability of a given trial; darker shades represent 

higher frequencies/probabilities) on four levels (0-3 preceding trials taken into 

consideration). Each bar represents the total number of trials/combinations on a given 

level (e.g. one-third of a bar represents one-third of the combinations on that level). The 

upper half of the bars represent combinations that end on a random trial, while the lower 

half represents combinations that end on a pattern trial. The points of the bars that are at 

the same height represent the same trials (considering 0-3 antecedent trials when 

moving from left two right); four examples are shown in boxes connected via red lines. 

  

 

Figure V/1.  Statistical properties of the ASRT trials and trial combinations. Shades of gray represent 

combination frequencies. Shades of blue represent the predictability of a given trial. Darker shades 

represent higher frequencies/probabilities. Zero to three preceding trials are taken into consideration – see 

clusters of bars from left to right). Each bar represents the total number of trials/combinations on a given 

level (e.g. one-third of a bar represents one-third of the combinations on that level). The upper half of the 

bars represent combinations that end on a random trial, while the lower half represents combinations that 

end on a pattern trial. The points of the bars that are at the same height represent the same trials 

(considering 0-3 antecedent trials when moving from left two right); connected boxes show specific 

examples of the categories. 
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Several things may be noticed by looking at Fig. V/1: 

1) Single trials (1, 2, 3 or 4) or duplets (e.g. 12, 13, 14, etc.) are of uniform statistical 

properties throughout the sequence since the first two groups of bars are of uniform 

color. In 50% of the cases, these trials/duplets end on pattern trials (bottom halves of 

the bars), in the remaining cases the same combinations end on random trials (top 

halves of the bars; contrast the examples b and c, for example, showing that the 

combination 31 occurs both ways) 

2) When at least two preceding trials are taken into consideration (triplets, quads, etc.) 

some trials are more predictable than others (blue bars are not uniformly colored) 

and some combinations are more frequent than others (gray bars are also not 

uniformly colored either). Moreover, these categories do not overlap perfectly, as, 

for example, when considering quads, there are only two different shades of gray 

but three shades of blue (meaning two categories on the basis of combination 

frequencies, and three categories on the basis of conditional probabilities). Higher 

joint probabilities sometimes correspond to higher conditional probabilities, e.g. 

when considering triplets; other times they go in different directions, e.g. when 

considering quads. 

3) On the level of triplets, two categories can be distinguished based on joint 

probabilities, and the same category boundaries separate trials with different 

conditional probabilities. E.g. the combination 332 is less frequent than the 

combination 331 (light gray vs. darker gray part of the first bar), and 

simultaneously, after the preceding trials 33 it is more probable that a stimulus 1 

will follow and not the stimulus 2 (light blue vs. dark blue part of the second bar). 

The category with the higher probabilities (both joint and conditional) is denoted as 

H, while the category with the lower probabilities is denoted as L, see the examples 

a vs. [b and c and d] on Fig. V/1.    

 

Members of the H category can further be divided into two subcategories when the 

N-3
th

 trial is considered (the new categories being H1 and H2 quads, respectively). With 

the usual analysis methods, there was no distinction being made between these two 

quad types. As it can be read from the figure, H1 quads are more frequent than H2 

quads (see the dark vs. light gray colors of the first bar), but the final trial of H1 

combinations is less probable given its antecedents than the final trial of H2 
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combinations (see the light blue vs. darker blue colors of the second bar). So, for 

example, 2331 is a more frequent combination than 4331, but while combinations 

starting with 433 consistently end with 1, combinations starting with 233 can end with 

1, 2, 3 or 4.  

As noted earlier, some researchers analyze the data gathered with the ASRT task 

by contrasting trials of different Trial Type, i.e. pattern and random trials, (e.g. Barnes 

et al., 2008; D. V. Howard & Howard, 2001; Japikse et al., 2003; Negash et al., 2003), 

resulting in a learning measure called Pattern Learning or Trial Type Effect. On Fig. 

V/1 this corresponds to contrasting the upper half of the trials/combinations with the 

lower half, i.e. contrasting the exemplars a, b with c, d. This kind of analysis bears on 

the implicit assumption that the ASRT is primarily a rule-learning (pattern-learning) 

task, and does not take statistical properties into consideration, albeit being heavily 

confounded by them; e.g. when considering triplets, members of the H category (e.g. 

331, examples c, d) are contrasted with a mix of H and L category members (331 and 

332, examples a, b). We will refer to this analysis method as Model 1.  

Other times the assumption is that the ASRT is primarily a triplet learning task 

(thus a statistical learning task). The learning measure is derived from contrasting 

performance on H vs. L category members resulting in a measure called sequence-

specific learning, sequence learning effect or triplet type effect (Barnes et al., 2008; 

Hallgató et al., 2013; D. V. Howard & Howard, 1992, 2001; J. H. Howard & Howard, 

1997; Japikse et al., 2003; Negash et al., 2003; Song et al., 2007b). This model does not 

explicitly deal with the possibility of higher-order learning (e.g. quad level and higher), 

and thus it does not differentiate between combination frequency learning and trial 

probability learning (since the correlation between the two is 100% up to the level of 

triplets). It also doesn’t take Trial Type (pattern vs. random) into consideration, albeit 

these factors are confounded; e.g. 332 only occurs as a combination ending on a random 

trial (example a on Fig. V/1), but 331 occurs both ways (examples b, c, d on Fig. V/1). 

Hereinafter we will refer to this analysis method as Model 2.  

A third analysis tradition considers both triplet level statistical information,(i.e. 

Triplet Type; H and L categories) and Trial Type (pattern vs. random trials) (Janacsek et 

al., 2012; Kóbor et al., 2018; Nemeth, Janacsek, & Fiser, 2013; Schwartz et al., 2003; 

Simor et al., 2019). This model distinguishes three categories and three learning 
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measures: the difference between performance on random-ending L (LR)and random-

ending H (HR) trials is usually called pure statistical learning (examples a vs. b on Fig. 

V/1) , the difference between random-ending H (HR) and pattern-ending H (HP) trials 

is called higher order sequence learning (examples b vs. [c and d] on Fig. V/1), while 

the difference between LR and HP trials is called maximized learning (Nemeth, 

Janacsek, & Fiser, 2013) (examples a vs. d on Fig. V/1). Hereinafter we will refer to 

this analysis method as Model 3. Importantly, this method treats pattern trials as a 

uniform category, while in reality pattern trials can be divided into the subcategories H1 

and H2 considering quad level statistical information (e.g. high frequency triplets such 

as 331 may be part of quads 2331 – H1 category – or  1331 / 3331 / 4331 – H2 

category, see Fig. V/1 examples b, c and d). This is particularly important as the Higher 

Order Learning measure was the one to differentiate between age groups (J. H. Howard 

& Howard, 1997), and the authors raised the possibility themselves that the measure 

might include higher level statistical learning in addition to or instead of pattern 

learning. The problem is that the Higher Order Sequence Learning measure contrasts 

quads from the H1 statistical category with quads from both H1 and H2 categories. If 

the driving force of learning is indeed statistical information, it is plausible to assume 

that this measure is underestimated, as the difference between H1 and (H1+H2) quads 

must be smaller than the difference between pure groups of H1 and H2 quads. Thus, we 

suggest that „higher order statistical learning” (i.e. quad learning) could be detected 

more efficiently if H1 quads would be contrasted with H2 quads instead of contrasting 

HP and HR trials (i.e. we suggest contrasting a vs. [b and c] vs. d instead of contrasting 

a vs. b vs. [c and d] on Fig. V/1).   

 For this reason, we introduce Model 4 and Model 5 in this paper as possibly 

better analysis methods. In Model 4, quad level statistical information is considered, but 

Trial Type (random vs. pattern) is not. Thus, it treats the ASRT as a solely statistical 

learning task with no rule-learning (pattern-learning) component. The categories being 

compared are L, H1 and H2 (a vs. [b and c] vs. d on Fig. V/1, quad columns). 

Importantly, trial predictability (i.e. conditional probabilities) and combination 

frequencies dissociate clearly in this case: H2 combinations are less frequent than H1 

combinations but their final trial can be anticipated with much higher probability given 

the first three trials of the combination The difference between L and H1 trials could be 

called triplet learning (+ pattern learning), the difference between H1 and H2 trials 
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quad learning (+ pattern learning), while the difference between L and H2 trials could 

be called maximized learning. In this Model, the categories differ more clearly in the 

statistical aspect and less clearly in Trial Type, while the opposite was true in Model 3 

(hence the parentheses in the suggested names for the learning measures; trial type 

learning is secondary in Model 4). Thus, if the primary driving force of learning is 

sensitivity to statistical information (rather then sensitivity to the hidden pattern), Model 

4 should fare better than Model 3, and vice versa. 

Lastly, Model 5 would consider both Trial Type (pattern or random) and Quad 

Type (L, H1 and H2 categories), resulting in four categories (examples a vs. b vs. c vs. d 

on Fig. V/1, quad columns, considering whether the combination ends on a pattern or 

random trial as well). Again, on the level of quads, trial predictability and combination 

frequency dissociate (they point in the opposite direction), thus their relative impact 

might be assessed just as with Model 4. As a bonus, random-ending H1 trials (H1R) can 

be contrasted with pattern-ending H1 trials (H1P), leading to a pattern-learning measure 

that is less confounded by statistical information than the pattern-learning measures of 

the previous models. We propose the following names for the resulting learning 

measures: triplet learning (LR vs. H1R; examples a vs. b on Fig. V/1), pattern learning 

(H1R vs. H1P; examples b vs. c on Fig. V/1), quad learning (H1P vs H2P; examples c 

vs. d on Fig. V/1) and maximized learning (LR vs. H2P; examples a vs. d on Fig. V/1).   

An overview of Model 1 to Model 5 is illustrated on Fig. V/2. One of the aims 

of the current study was to compare these models in terms of goodness of fit, thus to 

decide whether it pays off to use a more elaborate model when analyzing ASRT data. 
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Figure V/2.  Different models of the ASRT task as a basis of extracting different learning scores. P – 

pattern trials, R – random trials, L – low probability trials, H – high probability trials (H1 and  H2 being 

subcategories of the latter; H2 trials are more probable than H1 trials, but at the same time triplets that 

end on a H2 trial are less frequent than triplets that end on a H1 trial). Models 1-3 has been typically used 

as a basis of data analysis; Model 4-5 are introduced in this paper. 

 

V/2.3. Confounding variables in the ASRT task 

The ASRT task is a reaction time task, and reaction times vary as a function of 

many factors.  Fatigue (its effects could be approached as in (Török, Janacsek, Nagy, 

Orbán, & Nemeth, 2017)), boredom, stimulus timing, the number of response locations 

etc. may all affect the magnitude and variability of reaction times (E. Hick, 1952; 

Grosjean, Rosenbaum, & Elsinger, 2001; Woods, Wyma, Yund, Herron, & Reed, 

2015), and thus our ability to detect learning on the task, or even learning itself. But 

these factors at least have a similar impact on the groups of trials that are to be 

contrasted in the ASRT task - either because they are constant (e.g. response-stimulus 

interval), or because the different trial types are evenly distributed throughout the task, 

thus even time-dependent factors such as fatigue have similar effects on the different 

trial types in a given time window. 

 There is, however, at least one factor which may act as a confounding variable: 

for some stimulus combinations, e.g. serial repetitions of the same stimuli, response 

facilitation is observed when contrasted with other combinations, e.g. an inconsistent 
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pattern of alternations and repetitions. These so-called sequential effects (Remington, 

1969) are evincible in random streams of stimuli, but also from reaction time tasks in 

which the conditional probabilities of stimuli vary, see (Kornblum, 1973). We have no 

solid idea of exactly which combinations should be relatively „easier” (facilitated) 

compared to others because this phenomenon has mostly been studied in binary-choice 

reaction time tasks (Kirby, 1976; Soetens, Boer, & Hueting, 1985; Vervaeck & Boer, 

1980; but see Lee, Beesley, & Livesey, 2016), those combinations being less numerous 

and less complex than the combinations in the ASRT task. Also, the type and direction 

of these effects depend strongly on the response to stimulus interval (RSI). The 

automatic facilitation effect (that is of interest to us) typically occur with  RSIs of 100 

ms or less, although the exact values tested vary from experiment to experiment, as 

summarized by (Gao, Wong-Lin, Holmes, Simen, & Cohen, 2009), and these results are 

mostly derived from two-choice reaction time tasks and thus might not apply for the 

ASRT. In the absence of concrete expectations of how and to what extent sequential 

effects occur in the ASRT (and bearing in mind that ASRTs with different RSIs may 

differ in this regard), the wisest thing we can do is to ensure that the groups of trials that 

are to be contrasted in the ASRT (e.g. pattern vs. random trials or highly predictable vs. 

moderately/slightly predictable trials, etc.) belong to the same types of combinations 

with respect to local sequential effects (“easy” or “hard”). 

The most influential proposal that aimed at reducing unwanted sequential effects 

was of  Howard et al. (2004) who eliminated spans (also called trills, e.g. a-b-a) and 

repetitions (e.g. a-a-a) from the analysis since these types of triplets always occur as 

random trials for each participant (irrespective of the particular sequence being taught). 

As Song and her coworkers put it, “perfomance on trills and repetitions could reflect 

preexisting biases, rather than sequence learning” (Song et al., 2007a, p. 168.). Each of 

the remaining 48 triplets can be described in the abstract form as cba, bba or baa 

(where different letters represent different stimuli), and the proportion of these types of 

triplets is similar in the groups being compared on the basis of their statistical properties 

(i.e. high- vs. low-frequency triplets). Even if one type of triplets, e.g. baa is easier than 

the other types of triplets (since it ends on a repetition), this shouldn’t pose a problem 

because the proportion of baa triplets is similar across high- and low-frequency triplets. 

Moreover, each of the 48 individual triplets have an equal chance of being a high-

frequency triplet (they are high-frequency triplets in some of the sequences, and low-
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frequency triplets for the remaining sequences), thus, on the group level, pre-existing 

biases shouldn’t prevail. Since in this case filtering is applied at triplet level, hereinafter 

we refer to this method as triplet filtering. 

Interestingly, Song et al. (2007a) found that preexisting biases can be found 

even on the level of quads. At the beginning of their ASRT, RH triplets were 

temporarily faster and more accurately reacted to than PH triplets – for a similar 

finiding see (Nemeth, Janacsek, & Fiser, 2013). In order to eliminate possible 

preexisting biases that could cause this effect, they categorized quads into seven 

categories: “those that contain two repeated pairs (i.e., 1122); a repeated pair in the first 

(1124), second (1224), or last (1244) position; a run of three in the first position (1112); 

a trill in the first position (1213); or no repeated elements (1243)” (p. 170.). After 

removing all the unequally represented quad types of this sort, the unexpected 

difference between RH and PH trials in the first session disappeared, whereas the 

difference between low- and high-frequency triplets remained. Although the 

paradoxical RH-PH difference only manifested in the first session (after 150 repetitions 

of the pattern), and reversed afterward, it is still quite surprising that this method of 

eliminating pre-existing biases on the level of quads did not become commonly used. 

One reason might be that the description of this method was limited to a few words in a 

footnote. 

In this work, we propose the elimination of quad level preexisting biases by 

using a similar method. Our notations were derived the following way: whatever the 

current stimulus was (position 1, 2, 3 or 4), it was denoted as „a”. If the previous 

stimulus was identical to the current one, it was also denoted as „a”, thus the 

combination of the two was denoted as „aa”. Otherwise, if the previous stimulus was 

different, the combination was denoted as „ba”. Going further, if the N-2
th

 trial was 

identical to the N-1
th

 or N
th

 trial, it was denoted with the same letter as the one that it 

was identical to (e.g. „aba” or „bba”); otherwise, it got the following letter from the 

alphabet (e.g. „c”). This way a quad that consistsed of four different stimuli was always 

denoted as „dcba” (irrespective of whether it was derived from 1-2-3-4, 3-1-4-2 or 

else). Importantly, we assigned these letters to stimuli starting with the N
th

 trial and 

going backward in order to be able to match combinations of different lengths. For 
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example, a triplet consisting of three different stimuli was „cba”, and the same triplet 

could be part of a quad „acba”, „bcba”, „ccba” or „dcba”. 

As a difference to Song et al. (2007a), our quad categories rely on the abstract 

structure of the quads, thus differentiating between 1-2-2-1 and 3-2-2-1 quads (abba vs. 

cbba), and between 1-2-1-1 and 3-2-1-1 quads (abaa vs. cbaa), too; moreover we 

observed a category that was not mentioned by Song et al. (2007a), namely acba quads 

(e.g. 1-2-3-1). Only three out of 13 categories are counterbalanced across the groups of 

trials being compared within subjects (e.g. P vs. R in Model 1, L vs. H in Model 2, etc., 

see Fig. V/2) and across participants (i.e. any particular quad having an equal chance of 

belonging to either statistical category). These quad types are dcba, cbba and acba. 

Hereinafter, we will refer to this filtering method as Quad Filtering. As a specific 

example of the possible benefit of using the Quad Filtering is the elimination of bbaa 

quads (e.g. 1122, 1133, 2233, etc.), which seem to be the easiest (fastest) combinations 

of all. These combinations only occur as members of the H1 category, moreover, they 

constitute approximately 25% of that category. Different repetition-ending 

combinations (e.g. abaa, cbaa) do occur in other statistical categories as well (e.g. L, 

H2), and they are also reacted to relatively fast (compared to nonrepetition-ending 

combinations), but they only make up 8-16% of a particular category. In other words, 

H1 category is, on average, easier than the L or H2 categories, which might manifest in 

overestimated Triplet Learning measures and either underestimated Quad Learning 

measures (if dominantly conditional probabilities are being learned) or overestimated 

Quad Learning measures (if dominantly joint probabilities are being learned). Using the 

previous models of ASRT, this bias could have manifested as an overestimation of the 

Pure Statistical Learning measure of Model 3, and either in an underestimation of the 

Higher Order Learning measure - given that learning is driven by conditional 

probabilities (it could also cause the paradoxical negative difference between the HR 

and HP categories), or an overestimation of the same measure (given that learning is 

driven by joint frequencies).     

We would like to highlight, however, that these filtering methods do not 

necessarily eliminate pre-existing biases on the individual level.  Even if the percentage 

of, say, dcba quads is counterbalanced across statistical categories (i.e. within 

participants) and across participants, it is still reasonable to assume that some of these 
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quads are easier than others. For example, Lee, Beesley, & Livesey (2016) observed 

that sequences of trials with many changes in directions (of movements) are harder to 

react to than sequences of trials where the direction of movement does not change (e.g. 

1-4-2-3 is harder than 1-2-3-4). Since quads are not counterbalanced in this respect 

within participants, learning on some or all of the sequences might be confounded by 

such biases despite being controlled for on the group level. This is particularly 

important if we aim is to measure individual differences in ASRT learning: any 

correlation with other measures (or the lack of correlation) might be due to such 

confounds. 

Also, while the elimination of quad level pre-existing biases on the group level 

should make the interpretation of the results more straightforward, one has to keep in 

mind that higher level sequential effects could still act as a confound.  Lee et al. (2016) 

observed that lower level sequential effects had a higher effect size than higher order 

sequential effects (e.g. ηp
2 

= 0.881 on the triplet level vs. ηp
2 

= 0.275 on the quad level 

and ηp
2 

= 0.314 on the quint level), but the latter nevertheless influenced reaction times. 

This indicates that such biases should be controlled for at least on the level of quints, or 

on even higher levels, to minimize their impact when assessing statistical learning. 

Unfortunately, there are no quints that are counterbalanced across all the relevant 

statistical categories across participants, so there is no easy way of assessing the impact 

of preexisting biases on this level.  Further studies should investigate the magnitude of 

such biases, for example by using random series of stimuli in a 4-choice (ASRT-like) 

reaction time tasks and assessing the preexisting tendencies when reacting to quints that 

also occur in the ASRT sequences. 

V/2.4. The aim of the study 

In the previous section, we described how different types of information might 

be the basis of learning or might influence learning in the ASRT task, such as trial type, 

trial probability, combination frequency and preexisting biases to certain stimulus 

combinations. We also noted that there are at least three types of analysis utilized by 

different research groups (we will refer to these as Model 1, Model 2 and Model 3, 

respectively), and we made suggestions on how to improve these methods (we will 

elaborate on these when introducing Model 4 and Model 5 later in this text).   
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In the following sections, we will first review the different analysis methods 

(Model 1 to Model 5) with respect to possible confounds in their learning measures. We 

considered such a detailed description to be helpful not only for deciding which analysis 

method to use for one’s purposes in the future but also for the evaluation (or re-

evaluation) of previous findings. Along with the description of the learning measures of 

these models, we will present data confirming and illustrating the theoretical 

considerations reviewed so far. 

Second, we will compare the models (Model 1 to Model 5) in terms of goodness 

of fit, which might corroborate our proposals from a different perspective (i.e. how 

efficient a Model is in capturing the different aspects of learning) on the ASRT task. 

Although we will present and compare findings got with different filtering methods (No 

Filter, Triplet Filter, and Quad Filter), the main focus of this section will be on 

differences between Models (Model1-5) within Filtering Methods, and not vice versa. 

The reason for this is that the superiority of one filtering method over another cannot 

easily be justified via statistics (i.e. the purer, bias-free effect size might be smaller than 

the biased; it should nevertheless be preferred. Statistics can only tell us about the 

magnitude of effects, but not their purity). 

Third, we will elaborate on the specific learning effects in each Model (Model1-

Model5). These measures cannot be directly compared (remember, the reason for 

introducing Model4 and Model5 was the fact that specific learning measures in Model 

1-3 might reflect the mixed learning of different types of information), and so the main 

focus of this section will be the comparison of different Filtering Methods within the 

Models. We will discuss the effect of these filters on the magnitude of learning and 

individual variability that can be detected in the task. 

Last but not least, in the fourth section, we will examine the learning scores 

calculated with the methods that we propose. The main focus here will be on whether 

participants (as a group) showed learning of the different statistical properties of the 

sequence, and also the percentage of participants who showed learning of these 

properties (individually). We will also consider the time-course of learning of these 

aspects (e.g. does quad learning occur later in time than triplet learning?). 

 

 



 

 

73 

 

V/3. Methods 

We based our analysis on data originally collected by (and published in) Török, 

Janacsek, Nagy, Orbán, & Németh (2017) with the authors’ permission. Because of this, 

we copied the most relevant parts of their Methods section (not necessarily in the same 

order as originally provided); a more detailed description can be found in the 

aforementioned paper. 

V/3.1. Participants  

One hundred and eighty healthy young adults participated in the study, mean age 

M = 24.64 (SD = 4.11), Minage = 18, Maxage = 48; 28 male/152 female. All participants 

had normal or corrected-to-normal vision and none of them reported a history of any 

neurological and/or psychiatric condition. All participants provided written informed 

consent before enrollment and received course credits for taking part in the experiment. 

The study was approved by the United Ethical Review Committee for Research in 

Psychology (EPKEB) in Hungary (Approval number: 30/2012) and by the research 

ethics committee of Eötvös Loránd University, Budapest, Hungary. The study was 

conducted in accordance with the Declaration of Helsinki. 

V/3.2. Equipment 

The Alternating Serial Reaction Time (ASRT) task was used to measure 

statistical learning capabilities of individuals (J. H. Howard & Howard, 1997). 

V/3.3. Procedure 

Participants were instructed to press a corresponding key (Z, C, B, or M on a 

QWERTY keyboard) as quickly and accurately as they could after the stimulus was 

presented. The target remained on the screen until the participant pressed the correct 

button. The response to stimulus interval (RSI) was 120 msec. The ASRT task consisted 

of 45 presentation blocks in total, with 85 stimulus presentations per block. After each 

of these training blocks, participants received feedback about their overall RT and 

accuracy for 5 seconds, and then they were given a 10-s rest before starting a new 

block. Each of the three sets of 15 training blocks constitutes a training session. 

Between training sessions, a longer (3–5 min) break was introduced.  
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Each participant was given a randomly chosen ASRT sequence (out of the six 

possible sequences). This way 32 of the participants got the sequence 1-r-2-r-3-r-4-r, 29 

participants got 1-r-2-r-4-r-3-r, 31 participants got 1-r-3-r-2-r-4-r, 33 participants got 

1-r-3-r-4-r-2-r, 29 participants got 1-r-4-r-2-r-3-r and 26 participants got 1-r-4-r-3-r-2-

r. EPRIME 2.0 was used as a stimulus presentation software (Schneider, Eschman, & 

Zuccolotto, 2012). 

V/3.4. Statistical Analyses 

Probability distributions of continuous variables (subsets a vs. b) were compared 

using the Kolmogorov-Smirnov test and the Mann-Whitney test. Effect sizes for such 

differences were computed in the form of Probability of Superiority, i.e. the probability 

that a randomly chosen value from subset b is higher than a randomly chosen value 

from subset a. Distributions of nominal variables were compared using the Chi-Squared 

test, and Cramer’s V was computed as the corresponding effect size.  

Models’ goodness of fit was computed in the form of adjusted R-squared values 

(in the case of reaction times) and Cramer’s V values (in the case of error data).  

Variability was computed in the form of standard deviations (SD) and coefficients of 

variation (CV). Specific learning scores were quantified as Cohen’s d effect sizes 

(reaction times) and Cramer’s V values (error data). For the comparison of these values 

(within Models or within Filtering Methods) we used ANOVAs, and we reported partial 

eta squared effect sizes along with p values.  

To assess whether the variability of two data sets is different we used the 

Levene-test.  The reliability of the measures was assessed via the split-half method. 

V/4. Results 

V/4.1. Variables that contribute to the learning scores of different Models using 

different filtering methods 

In this section we aimed to statistically confirm the considerations we discussed 

so far on a theoretical basis, which is not only important in order to strengthen our 

message, but also because the ASRT sequence is not fully pre-determined (as half of the 

trials are randomly determined), thus the actual sequence varies from participant to 

participant. While it is always true that there is 25% chance for a random stimulus to be 
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1, 2, 3 or 4, it is not guaranteed that in a particular sequence these outcomes will have 

frequencies that match their probabilities (e.g. stimulus 2 might come 32% of the time 

for a particular participant). According to the law of large numbers, the more trials we 

have, the more the actual frequencies will approach theoretical probabilities. In this 

study, participants performed 45 blocks of ASRT which corresponds to approximately 

1750 random trials that shape the overall statistical properties of the sequence. We 

aimed to assess to what extent do previously described considerations apply on the 

individual level with this amount of random trials. Is it possible, for example, that for 

some participants there is a difference in actual statistical properties between two 

categories that should not differ based on theory (e.g. H1 and H2 trials differing in 

triplet level conditional probabilities)? Or is it possible that for some participants quad 

filtering is not effective in balancing out combination types across statistical categories? 

How often do these kinds of anomalies occur with the three different filtering methods? 

V/4.1.1. Trial Type Proportions 

As it can be read from Fig. V/2, most of the statistical categories in the different 

models contain only P trials (Model 1 P; Model 3 HP; Model 4 H2; Model 5 H1P and 

H2P) or only R trials (Model 1 R; Model 2 L; Model 3 LR and HR; Model 4 L; Model 5 

LR and H1R). The only exceptions are Model 2’s H category and Model 4’s H1 

category which contain both P and R trials; the H1 category is made up of 50% R and 

50% P trials (regardless of the filter being used); while the H category of Model 2 

consists of 20% R and 80% P trials when No Filter or Triplet Filtering is applied; and it 

contains 33% R and 67% P when the Quad Filter is applied (see Supplementary Table 

ST-V/1 in the Supplementary Materials for corresponding statistics).   

Ideally only those categories should differ in the P/R proportions that are used to 

compute Pattern Learning scores, i.e. the learning that (possibly) occurs if participants 

are sensitive to the trial type (P or R) in addition to statistical information, such as the P 

vs. R category in Model 1 and the H1P vs. H1R categories of Model 5. In other cases, 

the differences in P/R proportions are not of a concern because the contrasts admittedly 

assess mixed effects of different learning types (e.g. the HP vs. HR categories of Model 

3 or the Maximized Learning scores of Models 3-5). The only problematic contrasts are 

the L vs. H categories in Model 2 and the L vs. H1 and H1 vs. H2 categories of Model 4 

(see Supplementary Table ST-V/1 in the Supplementary Materials). Remember, these 
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models treat the ASRT as a primarily statistical learning task; nevertheless, the Triplet 

Learning and Quad Learning scores might be confounded by pattern learning resulting 

in an overestimation of statistical learning.  

V/4.1.2. Combination Frequencies (Joint Frequencies) 

As described earlier, some combinations of consecutive trials are more frequent 

than others – and the longer combinations we assess, the more clusters we find, see Fig. 

V/3 for illustration. On this figure, histograms of combination frequencies are shown for 

each Model’s every category. It can be seen that from Model 1 to Model 5 the 

distributions are getting „narrower” (indicating a better categorization based on 

statistical properties).  

Since learning scores are based on contrasting different categories within 

models, it is crucial that those categories should differ in combination frequencies that 

explicitly try to capture this aspect of learning (e.g. the H vs. L categories in Model 2; 

the LR vs. HR category of Model 3, the L vs. H1 categories of Model 4, and the LR vs. 

H1R categories of Model 5 when assessing triplet level learning; and the H1 vs. H2 

categories of Model 4; and H1P vs. H2P categories of Model 5 when assessing quad 

learning). Some contrasts admittedly assess mixed effects, such as the HP vs. HR 

contrast of Model 3 and the Maximized Learning scores of Model 3-5.  

 As it can be seen on Fig. V/3 (and read from Supplementary Table ST-V/2 in 

the Supplementary Materials), these criteria are mostly met. However, for a small subset 

of participants, triplet level frequencies also differed between the HR vs. HP categories 

of Model 3 (~3% of participants); between the H1 and H2 categories of Model 4 (~ 4-

8% of participants); between H1R and H1P categories of Model 5 (~2-4% of 

participants) and between H1P and H2P categories of Model 5 (~5-7% of participants). 

On a positive note, many of the previously discussed (predicted) effects were also 

confirmed; e.g. that Model 2 is better in capturing the triplet level statistical properties 

of the sequence than Model 1 (since effect sizes are higher for the former); and that the 

H1 vs. H2 distinction of Model 4 (and the H1P vs. H2P distinction of Model 5) also 

leads to higher quad level differences than the distinction HR vs. HP in Model 3 (for 

these statistics, see SupplementaryTable ST-V/2 in the Supplementary Materials).  



 

 

 

 

 

 

Figure V/3.  Combination Frequency.  M1 – Model 1; M2 – Model 2; M3 – Model 3; M4 – Model 4; M5 – Model 5. Combination frequency histograms are based on the 

ninth epoch (final ~400 trials) of a randomly chosen subject (subject number 111). The X axis shows the combination frequencies that occured in the given epoch of the ASRT 

task; the Y axis represent the frequency with which these occured. Two (triplet level) or three (quad level) preceding trials were taken into consideration when calculating joint 

probabilities (represented in different columns). Different rows represent different statistical categories within Models. 
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V/4.1.3. Trial Probabilities (Conditional Probabilities) 

Here the same conditions apply as described in the Combination Frequencies 

subsection since category boundaries are the same for joint frequencies and conditional 

probabilities (even though the direction of differences are not always the same). E.g. 

based on joint probabilities it could be expected that participants perform better on H1 

than on H2 trials (since H1 combinations are more frequent than H2 combinations); 

based on conditional probabilities, however, better performance could be expected on 

H2 trials (since conditional probabilities are higher than for H1 trials).  

 The results are illustrated in Fig. V/4 and the corresponding statistics can be 

found in Supplementary Table ST-V/3 in the Supplementary Materials; these are all 

very similar to those discussed earlier at Combination Frequencies. As a plus, it was 

shown that quad level statistical information has a higher impact on Model 1 and Model 

2 learning scores when assessing trial probabilities then when assessing combination 

frequencies (in line with the theoretical predictions; see Supplementary Tables ST-V/2 

vs. ST-V/3 in the Supplementary Materials).  



 

 

 

 

 

Figure V/4.  Trial Probability. M1 – Model 1; M2 – Model 2; M3 – Model 3; M4 – Model 4; M5 – Model 5. Trial probability histograms are based on the ninth epoch (final 

~400 trials) of a randomly chosen subject (subject number 111). The X axis shows trial probabilities that occured in the given epoch of the ASRT task; the Y axis represent the 

frequency with which these occured. Two (triplet level) or three (quad level) preceding trials were taken into consideration when calculating joint probabilities (represented in 

different columns). Different rows represent different statistical categories within Models. 
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V/4.1.4. Abstract Structure of the Combinations 

Ideally, all of the categories (within models) should consist of similar 

combination types with regard to the combinations’ abstract structure, since pre-existing 

biases are not something we aim to measure in this task. The nevertheless existing 

differences can be reduced by applying filters (the usual Triplet Filter or the now-

proposed, stricter, Quad Filter), see Fig. V/5. However, as can be read from 

Supplementary Table ST-V/4 in the Supplementary Materials, some differences remain. 

When the triplet filter is applied, and only three consecutive trials are considered, the 

most affected learning scores are those got by contrasting the P vs. R categories in 

Model 1 (affecting the scores of ~11% of participants), the HR vs. HP categories of 

Model 3 (~11% of participants); and the H1R vs. H1P categories of Model 5 (~15% of 

participants). By applying the stricter quad filter, the percentage of affected participants 

was reduced to 2%, 6%, and 5%, respectively. When considering four consecutive trials 

(i.e. quads), almost all of the learning scores are affected with Triplet Filtering (100% of 

participants showing such differences between the contrasted categories, with the 

exception of H1R vs. H1P learning in Model 5, which was only affected in 26% of 

participants). Evidently, by applying quad filtering, these numbers are greatly reduced. 

The most affected learning scores are the HR vs. HP learning in Model 3, and the H1R 

vs. H1P learning of Model 5 (affecting 14% and 19% of participants, respectively).  



 

 

 

 

 

 

 

Figure V/5. Abstract Structure of the Combinations. M1 – Model 1; M2 – Model 2; M3 – Model 3; M4 – Model 4; M5 – Model 5. The abstract structure of the 

combinations were defined the following way: the final trial of a combination was always denoted as a; the preceding trial as either a (if it was the same as the final trial) or b 

(in all other cases). If the N-2th trial was identical to the Nth or N-1th trial, the same notation was used as before (e.g. a or b), in all other cases a new notation was introduced 

(eg. c), etc. Bars indicate the mean number of category members in an epoch (~400 trials) calculated for each epoch of each participant. The black boxes at the top of the bars 

indicate the 95% confidence intervals of these means. The relative proportion of categories colored rose is identical in the Model’s subcategories. Dark blue boxes indicate the 

95% confidence intervals of means of median RT values corresponding to the different categories (again, computed separately for each epoch of each participant). Red and 

purple arrows point to categories that are analyzed with Triplet Filter and Quad Filter, respectively. 
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The fact that around 20% of participants show differences in combinations’ 

distribution (based on their abstract structure) for these Pattern Learning scores is 

important, and it should be taken as a warning to interpret these learning scores with 

caution. 

In sum, only some of the learning scores fare well in measuring purely that 

factor that they aim to. The best model in this aspect is Model 5 which results in 4 

(relatively) pure measures given that all factors contribute to learning. If, however, 

some of the information types are not picked up by participants, then less complex 

models could fare just as well as Model 5. For example, if pattern learning does not 

occur in the task (meaning that people do not differentiate pattern and random trials in 

addition to differences in statistical properties), then Model 4 should fare as good as 

Model 5. The question of which model results in highest explanatory power is assessed 

in the following section. 

V/4.2. Comparison of the Models’ goodness of fit  

As described in the previous section, Models 1-5 distinguish between an 

increasing number of categories (based on Trial Type and/or Statistical Information), 

and the main question is whether it’s worth to use the more elaborate models or there is 

no difference in how well they capture the essense of learning on the task. E.g. 

differentiating betweeen H1 and H2 trials (in Model 4 and Model 5) only makes sense if 

participants (or people, in general) are able to differentiate betweeen these categories 

when performing the task, which, on the other hand, should be reflected in differences 

in mean reaction times and/or accuracy. A way of assessing the goodness of fit of a 

model is by computing Adjusted R
2
 values (for reaction times data) and by computing 

Cramer’s Vs (for error data), and this is what we did for each model. If introducing or 

changing sub-categories explains the variability of data to a higher degree (i.e. there is a 

difference between H1 and H2 trials), the fit of the model will be higher, thus the 

goodness of models can be directly compared. 

In this section the focus is on the goodness of models and not the effect of 

filtering; nevertheless we calculated the aforementioned effect sizes separately for each 

filtering method (no filter, triplet filter, quad filter), mainly to examine whether the 

change in effect sizes shows a similar pattern irrespective of the filtering being used.  
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V/4.2.1. Reaction Times data 

Each block consisted of 85 trials, five warm-up (random) trials and 80 ASRT 

trials (the alternation of pattern and random trials). Warm-up trials were not analysed, 

neither were trials 6-8 in a block (since it is only from trial 9 that the first full ASRT-

quad is reached). This way 9.4% of trials were excluded. Out of the remaining trials, 

additional 18 percent was excluded due to errorneous responses on any of the quads 

trials (in other words, only those reaction time data points were analysed which 

corresponded to correct answers preceeded by another three correct answers in a row). 

Reaction times higher than 1000ms or lower than 150ms were also excluded from 

analysis (0.1 percent of the remaining data). Additionally, reaction times having a Z 

score higher than 2 or lower than -2 were removed from each epoch from each 

statistical category of the most sophisticated Model (i.e. Model 5,  LR, H1R, H1P and 

H2P) for each participant to minimize the effect of outliers. This way 4.5 % of the 

remaining data was removed when using no filter; 16% when using the triplet filter and 

64.6% when using the quad filter (the high percentage of excluded trials using the triplet 

filter and quad filter results from the filters themselves, not from so many Z-scores 

having a high absolute value). At the end, an average of 2710 trials were analysed per 

participant when using no filter; an average of 2384 trials when using triplet filter and 

an average of 1006 trials when using the quad filter.  

We computed individual adjusted R
2
-s for each epoch of each participant as a 

way of assessing the goodness of fit of each Model; since there were nine epochs, this 

resulted in nine values per participant. These were than averaged to yield a single value 

for everyone. The effect of different filtering methods was also taken into account by 

computing these effect sizes for each filtering type separately (No Filter, Triplet Filter 

and Quad Filter). The goodness of fits were then compared by a FILTER TYPE (3 

levels: No Filter, Triplet Filter, Quad Filter) x MODEL (5 levels: Model 1 - Model 5) 

Repeated Measures ANOVA. Sphericity was assessed with Mauchly’s Test, and if this 

precondition was not met, degrees of freedom were adjusted with the Greenhouse-

Geisser method. Bonferroni-corrected post hoc tests were performed whenever the 

omnibus ANOVA showed significant main effects or interactions. Partial eta squared 

effect sizes are reported in line with significant main effects or interactions in the 

ANOVA.  
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The main effect of FILTER TYPE was significant, F(1.553, 278.066) = 25.562, 

MSE < 0.001, p < 0.001, ηp
2 

= 0.125, indicating that, on average, the goodness of fits 

differed as a function of the filter used. These differences were better captured with a 

quadratic model than with a linear one (p  < 0.001 vs. p = 0.190 and ηp
2 

= 0.271 vs. ηp
2 

= 

0.010 respectively). Bonferroni corrected post hoc tests revealed that means of adjusted 

R squared values were highest with the Quad Filter and lowest with the Triplet Filter, all 

contrasts being significant (p < 0.001) except for the contrast No Filter vs. Quad Filter 

(p = 0.569). The main effect of MODEL was also significant, F(1.384, 247.759) = 

408.371, MSE < 0.001, p < 0.001, ηp
2 

= 0.695, indicating that model goodness of fits 

differed as a function of the Model used in the analysis. These differences was best 

explained with a linear model (as compared to quadratic, cubic or higher order models; 

ηp
2 

= 0.778 for the linear model, and ηp
2 

< 0.555 for the other models), as values grew 

monotonicaly from Model 1 to Model 5. Bonferroni corrected post hoc tests revealed 

that all paired comparisons were significant (all p < 0.001). Finally, the interaction of 

FILTER TYPE x MODEL was also significant, F(2.492, 446.058) = 11.122, MSE < 

0.001, p < 0.001, ηp
2 

= 0.058, indicating that the monotonic growth of adjusted R 

squared values as a funtion of MODEL were not equivalent with the three filtering 

methods used. Bonferroni corrected post hoc tests revealed that each Model differed 

from all the others within each filtering method (all p < 0.012). The effect of the 

differing filters was also quite consistent with each Model, showing that both the No 

Filter condition and the Quad filter condition yielded higher fits than the Triplet Filter 

condition (all p < 0.001), the Quad Filter and No Filter condition not differing from 

each other in 4 out of 5 cases (all p > 0.437, except for Model 2 where p = 0.006). The 

results are shown on Fig. V/6/a). A more fine grained, epoch-by-epoch analysis of 

adjusted R
2
 values is shown on Supplementary Figure SF-V/1 in the Supplementary 

Materials.  



 

 

 

 

 

 

 

Figure V/6.  Goodness of fit of the different models within each filtering method. a) Individual Adjusted R2 values based on reaction times. Each Model differed from all 

the other Models within each filtering method (all p < 0.012). b) Individual Cramer’s V values based on error data. Each Model differed from all the others within each filtering 

method, except for the differences Model3 vs. Model4 (no filter p = 0.166, triplet filter p = 0.359, quad filter p = 0.261). Error bars are 95% confidence interval.
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V/4.2.2. Errors 

Warm-up trials were not analysed, neither were trials 6-8 in a block (since it is 

only from trial 9 that the first full ASRT-quad is reached). This way 9.4% of trials were 

excluded. Additionaly, only those data points were included that were preceeded by at 

least three correct responses in a row (this way it could be ensured that the sequence of 

buttonpresses corresponded to the intended combinations before a critical trial); this 

resulted in the removal of additional 13.9% of the remaining trials. When no filtering 

was applyied, an average of 2981 trials were analysed per participant; triplet filtering 

resulted in an average of 2610 trials, while quad filtering in an average of 1113 trials per 

parcitipant. The goodness of fit of the different models were than calculated in the form 

of Cramer’s V values (data from the nine epochs were collapsed into a single category 

due to the small number of errors) separately for each filtering method. To compare the 

obtained Cramer V values, we run a FILTER TYPE (3 levels: No Filter, Triplet Filter, 

Quad Filter) x MODEL (5 levels: Model 1 - Model 5) Repeated Measures ANOVA. 

Sphericity was assessed with Mauchly’s Test, and if this precondition was not met, 

degrees of freedom were adjusted with the Greenhouse-Geisser method. Bonferroni-

corrected post hoc tests were performed whenever the omnibus ANOVA showed 

significant main effects or interactions. Partial eta squared effect sizes are reported in 

line with significant main effects or interactions in the ANOVA.  

The main effect of FILTER TYPE was significant, F(1.472, 263.495) = 489.885, 

MSE = 0.002, p < 0.001, ηp
2 

= 0.732, indicating that, on average, the goodness of fits 

differed as a function of the filter used. These differences were better captured with a 

quadratic model than with a linear one (both p < 0.001, but the effect size for the 

quadratic model is ηp
2 

= 0.828, while it is ηp
2
 = 0.676 for the linear model). Bonferroni 

corrected post hoc tests revealed that means of Cramer V values were highest with the 

Quad Filter and lowest with the Triplet Filter, all contrasts being significant (p < 0.001). 

The main effect of MODEL was also significant, F(1.598, 286.124) = 281.264, MSE = 

0.001, p < 0.001, ηp
2 

= 0.611, indicating that model goodness of fits differed as a 

function of the Model used in the analysis. These differences were best explained with a 

linear model (as compared to quadratic, cubic or higher order models, ηp
2
 = 0.688 for 

the linear model, and 0.503, 0.470 and 0.047 for the higher order models, respecitvely); 

values grew monotonicaly from Model 1 to Model 5. Bonferroni corrected post hoc 

tests revealed that all paired comparisons were significant (all p < 0.001) except for the 
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difference between Model3 and Model4 (p = 0.231). Finally, the interaction of FILTER 

TYPE x MODEL was also significant, F(1.747, 312.721) = 40.517, MSE < 0.001, p < 

0.001, ηp
2 

= 0.185, indicating that the monotonic growing of adjusted R squared values 

as a funtion of MODEL were not equivalent with the three filtering methods used. 

Bonferroni corrected post hoc tests revealed that each Model differed from all the others 

within each filtering method, except for the differences Model3 vs. Model4 (no filter p 

= 0.166, triplet filter p = 0.359, quad filter p = 0.261). The effect of the differing filters 

was also quite consistent with each Model, showing all filtering methods differed from 

the rest (all p < 0.001). The results are shown on Fig. V/6/b). 

V/4.3. Comparison of the Filters  

V/4.3.1. Mean Reaction Times and Error Percentages belonging to the Models’ 

categories 

To get a more sophisticated picture, we calculated the mean reaction times and 

error percentages broken down by the categories specified by the Models separately for 

each filtering method. This was done for each of the nine epochs for each participant, 

and then these nine values were averaged to yield a single value for each cell for each 

participant. We summarized the means of these mean reaction times and mean error 

percentages, standard deviations (SD) of these means and the coefficients of variations 

of these means (CV = SD/mean in %) (Supplementary Table ST-V/5 in the 

Supplementary Materials). 

Does filtering alter mean reaction times corresponding to the categories 

specified by a certain model? To answer this question, we ran Repeated Measures 

ANOVAs with FILTERING (no filter, triplet filter, quad filter) as an independent 

variable (and categories’ means as dependent variables). Our results showed that all 

category means differed as a function of FILTERING (all p < 0.001, all ηp
2
 > 0.255) 

except for the H2 and H2P categories (in Model4 and Model5, respectively; p = 0.998, 

ηp
2
  < 0.001). In cases of significant omnibus ANOVAs, Bonferroni corrected post hoc 

tests were run. Triplet filtering, in contrast to no filtering, altered the mean reaction 

times in the random (R) category in Model 1 (p < 0.001), and low-frequency triplets’ 

reaction times in Model 2-5 on a trend level (p = 0.095). In all these cases, means got 

lower. Quad filtering, on the other hand, increased means in all of the categories in each 

Model (both relative to no filtering and relative to triplet filtering, all p < 0.001), which 
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indicates that, predominantly, „easy” combinations had been eliminated with this filter 

(see also Fig. V/5 for a similar conclusion). 

A very similar pattern emerged with Repeated Measures ANOVAs performed on 

the mean percentages of errors: a significant main effect of FILTERING was observed 

for each category of each Model (all p < 0.001, all ηp
2 

> 0.113) except for the H2 and 

H2P categories of Model4 and Model5, respectively (p = 0.412, ηp
2 

= 0.005). In cases of 

significant omnibus ANOVAs, Bonferroni corrected post hoc tests were run. Triplet 

filtering, in contrast to no filtering, altered (lowered) the mean error percentages in the 

random (R) category in Model 1 and low-frequency triplets’ reaction times in Model 2-

5 (all p < 0.001). Quad filtering, on the other hand, increased mean percentages of errors 

(both in contrast to no filtering and triplet filtering), and this increase was significant in 

all but one of the cases (all p < 0.001; except for the R category of Model1 where p > 

0.999). 

V/4.3.2. Learning Effects 

Solely the fact that mean reaction times and error percentages are subject to 

change when not all data is included is not surprising, and, in itself, not very 

meaningful. The real question is whether learning effects are subject to change when we 

apply different filters (e.g. whether category means change in parallel or some are 

affected more than others, or in other directions than others, resulting in changed 

learning scores as well). To answer this question, we calculated all the possible learning 

effects in the form of Cohen’s d-s (RT data) and Cramer’s V-s (error data) for each 

Model and each filtering method individually.  In the case of reaction times, these effect 

sizes were calculated separately for the nine epochs and then averaged for each 

participant; in the case of errors, the data from the nine epochs were pooled for each 

participant (due to very low numbers of errors), and thus only one Cramer’s V effect 

size was calculated per cell. SupplementaryTable ST-V/6 (in the Supplementary 

Materials) summarizes the means of the individual effect sizes, the SD of these means 

and the CV of these means. Positive values indicate that the difference between 

categories showed the expected pattern, while negative values indicate the opposite (e.g. 

the easier/more predictable trials being responded to slower or less accurately), usually 

an unexpected result. As an exception, the contrasts H1 vs. H2 in Model 4 and H1P vs. 

H2P in Model 5 might result in negative values if joint probabilty learning is 
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higher/more dominant than conditional probability learning, thus they couldn’t 

automatically be considered false negatives. 

V/4.3.2.1.  Specific learning effects based on reaction times 

To assess whether the filtering method had an effect on individual effect sizes, 

we first run Repeated Measures ANOVA-s on the Cohen’s d values obtained for all the 

possible learning measures of the five Models with FILTER (no filter, triplet filter, quad 

filter) as an independent variable. Filter had an effect in all cases (all p < 0.001, all ηp
2 

> 

0.164), except for the pattern learning measure of Model5 (H1P vs. H1R), which 

remained unchanged (p = 0.626, ηp
2
 = 0.003). In cases of significant omnibus ANOVAs, 

Bonferroni corrected post hoc tests were run. Triplet filtering (in contrast to no filtering) 

left some of the learning measures unaffected (those that are based solely on high-

frequency triplets; i.e. HR vs. HP in Model 3; H1 vs. H2 in Model4; H1P vs. H2P and 

H1R vs. H1P in Model5).  In all the remaining cases individual effect sizes decreased as 

a result of triplet filtering (all p < 0.048).  Quad filtering, on the other hand, resulted in 

mixed effects.  It increased effect sizes obtained in the simple models Model1 and 

Model2 (P vs. R; H vs. L – both of which could be considered quite mixed effects), and 

in the more elaborated Models (3-5) it increased those effects that depicted higher order 

statistical learning measures (HR vs. HP  in Model3, H1 vs. H2  in Model4; and H1P vs. 

H2P in Model5; all p < 0.001). It is worth noting that some of these values not only 

increased but reversed their direction when applying the quad filter, leading to 

qualitatively different conclusions about learning. At the same time when higher order 

statistical learning effects increased, effects that depict the relatively pure measure of 

triplet level statistical learning (LR vs. HR in Model3; L vs. H1 in Model4; and LR vs. 

H1R in Model5) decreased in contrast to other filtering options when applying the quad 

filter (all p < 0.001). Learning measures depicting maximum learning (HP vs. LR in 

Model3, H2 vs. L in Model4 and H2P vs. LR in Model5) showed a significant increase 

(all p < 0.001), but its worth remembering that this is admittedly a mixed effect showing 

the summarized changes in different measures of each Model.     
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V/4.3.2.2.  Specific learning effects based on errors 

Error data showed a similar (although not identical) pattern. In this case, the 

dependent variables were the Cramer’s V values, the independent variable was again the 

way of filtering data (FILTER: no filter, triplet filter, quad filter). The main effect of 

FILTER was significant in most of the cases (all p < 0.006, all ηp
2 

> 0.037) except for 

the triplet learning effects HR vs. LR in Model3 and its equivalent H1R vs. LR in 

Model5 (p = 0.584, ηp
2 

= 0.002) and the pattern learning effect of Model5 (H1P vs. 

H1R, p = 0.335, ηp
2 

= 0.006). In cases of significant omnibus ANOVAs, Bonferroni 

corrected post hoc tests were run. Triplet filtering, in contrast to no filtering, decreased 

effect sizes in all cases except for those that are by definition unaffected by triplet 

filtering (all p < 0.002). Quad filtering, on the other hand, had a differential effect on 

learning measures depending on what kind of learning they depicted. Again, learning 

scores associated with higher order statistical learning (HR vs. HP in Model3; H1 vs. 

H2 in Model4; H1P vs. H2P in Model5) showed an increase when the quad filter was 

applied (all p < 0.001) – and, again, these effects reversed their directions from being on 

average negative to being on average positive. At the same time, the learning measure 

depicting pure triplet level learning (L vs H1 in Model4) decreased (all p < 0.004). 

Effect sizes of the relatively simple models Model1 and Model2 (showing quite mixed 

effects) also decreased when the quad filter was applied, but this decrease was only 

significant relative to the no filter condition (both p < 0.002) but not relative to the 

triplet filtering condition (both p > 0.999). Maximum Learning effects of Model3, 

Model4, and Model5 also showed somewhat mixed effects. When the quad filter was 

applied, there was an increase in effect sizes relative to triplet filtering in the case of 

Model4 and Model5 (both p < 0.001). None of the remaining contrasts approached 

significance (all p > 0.177). The mixed effects of Maximized Learning measures are not 

of a surprise since these reflect the sum of the positive and negative changes of 

individual learning measures of each Model. 

V/4.3.3. Variability 

It is crucial to be able to detect individual differences (i.e. between-subjects 

variability) with any task. One way of doing so is to assess the variability of individual 

learning scores (e.g. standard deviation, SD). If variability decreases with a stricter 

filtering, it might indicate that some of the differences seen in previous studies are 
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attributable to differences in pre-existing biases to certain movement combinations. If, 

however, variability is increased when using a stricter filtering, it might mean that some 

of the variability in implicit learning capabilities were previously masked due to the 

systematic noise attributable to pre-existing tendencies. Importantly, this kind of 

variability may also increase as a result of increased noise (i.e. less precise estimates) on 

the individual level when a stricter filtering comes with a smaller number of trials being 

analysed.  

V/4.3.3.1. How does filtering affect the variability of the learning scores? 

To test the homogeneity of variances, Levene-test was applied on individual 

learning scores with FILTERING (No Filter, Triplet Filter, Quad Filter) as an 

independent variable (for this particular analysis treated as a between-subjects variable). 

According to the test, filtering had a significant effect on variances in most of the cases 

(p < 0.032); the exceptions were Higher Order Learning score of Model 3; F(2, 537) = 

1.683, p = 0.187; and the Quad Learning score in Model 4; F(2, 537) = 1.977, p = 

0.140. To unpack the observed differences, we also computed the Levene test in pairs 

(No Filtering vs. Triplet Filtering; No Filtering vs. Quad Filtering and Triplet Filtering 

vs. Quad Filtering). The results are shown in Table V/1.  
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Table V/1. Between-subjects variability of individual learning scores as a function of filtering 

 

Using the Triplet Filter 

(as opposed to No Filter) 

Using the Quad Filter 

(as opposed to No Filter) 

Using the Quad Filter 

(as opposed to Triplet Filter) 

Variance 

change 
 decrease 

 increase 

Levene 

test 

F value 

Levene 

test 

p value 

Variance 

change 
 decrease 

 increase 

Levene 

test 

F value 

Levene 

test 

p value 

Variance 

change 
 decrease 

 increase 

Levene 

test 

F value 

Levene 

test 

p value 

M1 
Trial Type 
Effect 

 11.019 0.001*  1.064 0.303  4.913 0.027* 

M2 
Sequence 

Specific L. 
 4.892 0.028*  9.386 0.002*  26.676 <0.001* 

M3 

Pure 
Statistical 

Learning 
 0.919 0.338  7.412 0.007*  13.095 <0.001* 

Higher Order 
Seq. Learn. 

= 0.000 > 0.999  2.451 0.118  2.451 0.118 

Maximized 

Learning 
 5.433 0.020*  7.258 0.007*  23.779 <0.001* 

M4 

Triplet Learn. 

(+ Pattern L.) 
 1.131 0.288  7.587 0.006*  14.805 <0.001* 

Quad Learn  
(+ Pattern L.) 

= 0.000 > 0.999  4.872 0.028*  4.872 0.028* 

Maximized 

Learning 
 6.465 0.011*  7.443 0.007*  24.574 <0.001* 

M5 

Triplet 

Learning 
 0.919 0.338  7.412 0.007*  13.095 <0.001* 

Pattern 
Learning 

= 0.000 > 0.999  9.822 0.002*  9.822 0.002* 

Quad 

Learning 
= 0.000 > 0.999  2.734 0.099+  2.734 0.099+ 

Maximized 

Learning 
 6.465 0.011*  7.443 0.007*  24.574 <0.001* 

M1-M5: Model 1 – Model 5 

* significant difference, p < .05 

+ tendency towars significance, p < .10 
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V/4.3.3.2. Is higher variability caused by less precise estimates? 

Standard deviations (SD) of the learning scores and the coefficients of variations 

(CV) are shown in Supplementary Table ST-V/6 in the Supplementary Materials. The 

fact that CVs show a similar pattern to SDs indicates that higher standard deviations are 

not only a straightforward consequence of higher means. Moreover, in the case of triplet 

learning measures, a typical result is that decreased means are associated with increased 

standard deviations (e.g. Model 2 L-H, Model 3 LR-HR, Model 4 L-H1, Model 5 LR-

H1R). This pattern of results was not only consistent across reaction times and error 

data (see Supplementary Table ST-V/6 in the Supplementary Materials), but also across 

the six ASRT sequences when assessed separately (SD and CV in Supplementary Tables 

ST-V/8 and ST-V/9 in the Supplementary Materials; and ST-V/11 and ST-V/12 in the 

Supplementary Materials; while Supplementary Tables ST-V/7 and ST-V/10 shows the 

means of individual effect sized broken down by the six possible ASRT sequences. Note 

that CV values could be inflated in cases when means approach zero).  

Why did these differences arise? In an optimistic scenario, they are the result of 

quad filtering making it possible for us to detect previously undetectable (masked) 

individual differences in learning capabilities. In a pessimistic case, however, higher 

variability stems from other sources. For example, it may be a consequence of noisier 

estimates on the individual level since the number of analyzed trials is smallest with 

quad filtering. In order to check up on this possibility, we calculated the within-subject 

standard deviations (SD) and coefficients of variations (CV) of reaction times for each 

epoch and each statistical category for each participant. We averaged the values 

obtained for the nine epochs in order to get a single value for each category for each 

participant (see Supplementary Table ST-V/13 in the Supplementary Materials). Note 

that we could not compute standard deviations (and CVs) for error data within 

individuals since accuracy is a binary data type (a particular press is either correct or 

incorrect). 

We ran Repeated Measures ANOVAs on these SD values with FILTER (no filter, 

triplet filtering, quad filtering) as a within-subject factor. The main effect was 

significant every time (all p < 0.001, all ηp
2  

> 0.124). To disentangle these omnibus 

effects, Bonferroni corrected post hoc tests were run. Triplet filtering (contrasted with 

no filtering) left some of the SD-s unaffected (since, by definition, triplet filtering does 

not affect high-frequency triplets). In all the remaining categories, SDs decreased as a 
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result of triplet filtering (all p < 0.012). Quad filtering resulted in further decreases in all 

categories (even those unaffected by triplet filtering), all p < 0.001. This effect was quite 

consistent, as participants have shown the previosly described pattern in (on average) 5-

6 epochs out of 9 (see Table V/2). 

Table V/2. Within-subject variability of the estimates (that the learning scores are based on) as a 

function of filtering. 

Model Category 

Mean Number of Epochs 

in which the SD decreased  

with the use of a particular Filter 

for a given individual 

(SD of the Mean) 

Mean Number of Epochs 

in which the CV decreased  

with the use of a particular Filter 

for a given individual 

(SD of the Mean) 

TF 

compared to 

NF 

QF 

compared to 

NF 

QF 

compared to 

TF 

TF 

compared to 

NF 

QF 

compared to 

NF 

QF 

compared to 

TF 

M1 

R 
4.66 

(2.03) 

5.88 

(1.97) 

5.61 

(2.03) 

4.23 

(1.97) 

6.27 

(2.08) 

6.17 

(2.22) 

P 
No  

Diff. 

5.69 

(1.97) 

5.69 

(1.97) 

No  

Diff. 

5.82 

(2.11) 

5.82 

(2.11) 

M2 

L 
4.50 

(1.97) 

5.12 

(2.09) 

5.03 

(2.11) 

4.53 

(1.92) 

5.74 

(2.18) 

5.63 

(2.16) 

H 
No  

Diff. 

5.83 

(2.02) 

5.83 

(2.02) 

No  

Diff. 

6.18 

(2.10) 

6.18 

(2.10) 

M3 

LR 
4.50 

(1.97) 

5.12 

(2.09) 

5.03 

(2.11) 

4.53  

(1.92) 

5.74 

(2.18) 

5.63 

(2.16) 

HR 
No  

Diff. 

5.53 

(2.16) 

5.53 

(2.16) 

No  

Diff. 

6.47 

(2.14) 

6.47 

(2.14) 

HP 
No  

Diff. 

5.69 

(1.97) 

5.69 

(1.97) 

No  

Diff. 

5.82 

(2.11) 

5.82 

(2.11) 

M4 

L 
4.50 

(1.97) 

5.12  

(2.09) 

5.03 

(2.11) 

4.53 

(1.92) 

5.74 

(2.18) 

5.63 

(2.16) 

H1 
No  

Diff. 

5.88 

(2.37) 

5.88 

(2.37) 

No  

Diff. 

6.72 

(2.24) 

6.72 

(2.24) 

H2 
No  

Diff. 

5.38 

(1.83) 

5.38 

(1.83) 

No  

Diff. 

5.32 

(2.03) 

5.32 

(2.03) 

M5 

LR 
4.50 

(1.97) 

5.12 

(2.09) 

5.03 

(2.11) 

4.53 

(1.92) 

5.74 

(2.18) 

5.63 

(2.16) 

H1R 
No  

Diff. 

5.53 

(2.16) 

5.53 

(2.16) 

No  

Diff. 

6.47 

(2.14) 

6.47 

(2.14) 

H1P 
No  

Diff. 

5.54 

(2.20) 

5.54 

(2.20) 

No  

Diff. 

6.37 

(2.13) 

6.37 

(2.13) 

H2P 
No  

Diff. 

5.38 

(1.83) 

5.38 

(1.83) 

No  

Diff. 

5.32 

(2.03) 

5.32 

(2.03) 

M1-M5: Model 1 – Model 5.  NF: No Filter, TF: Triplet Filter, QF: Quad Filter. No Diff: Filtering did not affect the 

category, thus no difference could be observed 
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The decrease of standard deviations should not be attributed to decreased means 

exclusively since some of the means actually increased with the use of filters (see 

Supplementary Table ST-V/5 in the Supplementary Materials). To corroborate this 

thought, we conducted the previously described ANOVAs on CVs, too.  The main effect 

of FILTERING was, again, significant in all cases, all p < 0.001, all ηp
2  

> 0.189. 

Bonferroni corrected post hoc tests showed that triplet filtering has left these values 

largely unaffected (except for the L and LR categories of Model2, Model3, Model4, and 

Model5; a slight decrease on a trend level, p = 0.090). Quad filtering, on the other hand, 

decreased CV-s in all cases (all p < 0.001), indicating that, in this case, standard 

deviations decreased more than the means. This result clearly indicates that higher 

individual differences are not caused by noisier estimates of mean reaction times on the 

individual level. Importantly, this pattern was not specific to a subset of the ASRT 

sequences, as it was observed in all of them (see Supplementary Tables ST-V/14 and  

ST-V/15 in the Supplementary Materials).  

V/4.3.3.3. Does higher variability go in hand with lower reliability? 

Reliability assesses whether the outcome of a test would be similar when 

repeated. Unsystematic noise decreases reliability, while systematic patterns in variation 

increase it. Thus, the higher the systematic variation in our data (relative to 

unsystematic noise), the higher the reliability indices will be. The problem here is that 

pre-existing biases – that we aim to reduce with more strict filtering methods – may 

actually introduce systematic variability rather than unsystematic noise. That being said, 

it is entirely possible that by reducing the variability that is attributable to pre-existing 

biases, reliability indices drop; and this is exactly what we have found. 

We calculated split-half reliability of all of the measures by randomly assigning 

each keypress to one of two categories; the individual effect sizes were then computed 

for both sets, and the correlation of the two values was computed. In the case of reaction 

times, individual Cohen’s d-s were calculated for each Session (Epoch 1-3, Epoch 4-6 

and Epoch 7-9) rather than for each Epoch separately in order to compensate for the low 

number of trials per epoch when the data is split in two, and the three values were then 

averaged to yield a single effect size for both sets. In the case of accuracy, a single 

Cramer’s V was calculated for Epochs 1-9 for both sets (data from the nine epochs 
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collapsed due to low overall error rates). Split-half reliabilities for reaction times are 

shown in Table V/3. 

Table V/3. Split-half reliability of each of the possible learning scores (Models 1-5, all filtering 

types) based on reaction times.  

We assigned each trial one of two possible codes, and the resulting two sets were analysed separately (thus learning, 

fatigue, etc. affected each set similarly). In the case of reaction times, learning scores were computed for each Session 

(epochs 1-3, epochs 4-6 and epochs 7-9), and then averaged. In the case of accuracy, a single Cramer’s V was 

calculated for Epochs 1-9 for both sets (data from the nine epochs collapsed due to low overall error rates). The 

correlation between the two subsets is shown in the table (Pearson correlation coefficients).  

 

Reaction Times Accuracy 

No Filter 
Triplet 

Filter 

Quad 

Filter 

No 

Filter 

Triplet 

Filter 

Quad 

Filter 

M1 
R-P 

TrialType effect 
.770** .545** .365** .514** .354** .267** 

M2 
L-H 

Seq. Spec. L. 
 .843** .713** .614** .576** .459** .416** 

M3 

LR-HR 

Pure Stat. L. 
.691** .630** .556** .356** .336** .270** 

HR-HP 

Higher Ord. L. 
.366** .366** .236** .137 .137 .025 

LR-HP 

Max. Learning 
.835** .687** .581** .573** .446** .400** 

M4 

L-H1 

Triplet L.+ P. L. 
.788** .707** .603** .489** .414** .347** 

H1-H2 

Quad L.+ P. L. 
.595** .595** .374** .176* .176* .008 

L-H2 

Max.Learning 
.828** .680** .538** .535** .423** .337** 

M5 

LR-H1R 

Triplet Learning 
.691** .630** .556** .356** .336** .270** 

H1R-H1P  

Pattern Learning 
.090 .090 .226** .025 .025 .041 

H1P-H2P 

Quad Learning 
.477** .477** .363** .078 .078 .022 

LR-H2P 

Max. Learning 
.828** .680** .538** .535** .423** .337** 

* p < .05, ** p < .01 
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As can be seen, reliability indices dropped substantially when using the quad 

filter. This may be attributable to the possibility that pre-existing biases are a form of a 

systematic artifact (rather than noise), as noted earlier. Conversely, it is also possible 

that the drop is attributable to increased levels of noise (since fewer trials are analyzed 

with stricter filtering). However, even these lower indices are not surprising (at least for 

reaction times data), as the reliability of implicit learning measures is often low (Lebel 

& Paunonen, 2011), and difference scores might also have lower reliabilities than the 

components they are derived from, proportionally to the correlation between the 

original components (Edwards, 2001). As a comparison, Kaufman et al. used a 

probabilistic SRT task that is in many aspects similar to the ASRT used in our study, and 

the split-half reliability of the RT difference score was 0.33 (Kaufman et al., 2010). It is 

worth emphasizing that reliability is a different concept from validity, i.e. whether we 

measure what we aim to measure. For methodological reasons, we argue that quad 

filtering makes the ASRT a less reliable but more valid task for assessing implicit 

learning.  

V/4.4. New insights - What is being learned ASRT task? 

After arguing for the use of the newly proposed analysis methods (Model 5 and 

Quad Filtering), we would like to briefly review its results. The focus here is not 

whether results differ from those gained using the typical analysis (they do, see above), 

but purely descriptively: is there evidence for quad learning, triplet learning and pattern 

learning on the group level? What percentage of participants show learning on these 

measures?  

 In the case of reaction times, the first question was assessed with a Repeated 

Measures ANOVA, with Epochs (1-9) as an independent variable and individual 

Cohen’s d values (in each epoch) as the dependent variable. This way both the overall 

learning and its time course were assessed. In the case of error data, time course 

couldn’t be taken into account due to the low overall number of errors. Thus, in this 

case, a single Cramer’s V value was calculated for each participant (data of Epoch 1-9 

collapsed into a single category), and these values were compared to zero using a one-

sample t-test.  

To assess the second question, we identified participants with individual Cohen’s 

d values and Cramer’s V values exceeding the limit of 0.2 and 0.05, respectively. We 

also quantified the percentage of participants whose effect sizes exceeded these limits 
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but the difference was in the unexpected direction (presumably false negatives). If the 

ratio of false positives is similar to the ratio of false negatives, then the percentage of 

true positives could be gauged by subtracting the (false) negatives from the positives. In 

the case of reaction times, we also calculated the percentage of reliable learners by 

identifying participants who had shown at least a small learning (Cohen’s d > 0.2) in at 

least 5 (out of 9) epochs. Such a detailed analysis was not possible in the case of 

accuracy data due to the low overall error rates. 

For error data, Individual effect sizes (Cramer’s V-s) were calculated for the 

collapsed data of the nine epochs because of the low number of errors (consequently, 

the time-course of learning could not be examined). Since these effect sizes represent 

some kind of an individual average, maximum values are expected to be lower than RT-

related effect sizes. For this reason, we decided to use Cramer’s V > 0.05 as an 

indication of small learning (instead of the conventional Cramer’s V > 0.10).  Our 

results are presented in Table V/4. 
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Table V/4. Average Learning Scores and the percentage of participants who learned particular 

types of information. 

  Triplet Learn. Quad Learn. Pattern Learn. Max Learn. 

RT  

data 

Overall learning 

(descriptive 

statistics, and the 

ANOVA’s 

intercept) 

M = 0.350, 

SEM = 0.014; 

F(1,179) = 

597.78, 

MSE = 0.331, 

p < 0.001, 

ηp
2 = 0.770 

M = 0.056 , 

SEM = 0.010; 

F(1,179) = 30.79, 

MSE = 0.163, 

p < 0.001, 

ηp
2 = 0.147 

M = -0.028 , 

SEM = 0.009; 

F(1, 179) = 10.72, 

MSE = 0.122, 

p = 0.001, 

ηp
2 = 0.057 

M = 0.376, 

SEM = 0.014; 

F(1, 179) = 

767.92, 

MSE = 0.298, 

p < 0.001, 

ηp
2 = 0.811 

ANOVA’s main 

effect of EPOCH 

F(8, 1432) = 

23.03, 

MSE = 0.108, 

p < 0.001, 

ηp
2 = 0.114 

F(8, 1432) = 2.09, 

MSE = 0.104, 

p = 0.033, 

ηp
2 = 0.012 

F(8, 1432) = 1.27, 

MSE = 0.097, 

p = 0.251, 

ηp
2 = 0.007 

F(7, 1333) = 

32.77, 

MSE = 0.097, 

p < 0.001, 

ηp
2 = 0.155 

% of positive 

learners 

 (% of reliably 

positive learners) 

76.77%   

(74.44%) 

12.22%  

(13.33%) 

5.00% 

(5.56%) 

87.22%  

(83.89%) 

% of negative 

learners 

(% of reliably 

negative learners) 

0.00% 

(0.00%) 

4.44% 

(5.00%) 

4.44% 

(10.56%) 

0.00% 

(0.00%) 

% of true learners 

(% of reliably 

true learners) 

76.77% 

(74.44%) 

7.78% 

(8.33%) 

0.56% 

(-5.00%) 

87.22% 

(83.89%) 

Accuracy 

data 

Overall learning 

(descriptive 

statistics, and the 

results of the t-

test) 

M = 0.057, 

SEM = 0.004, 

t(179) = 13.766, 

p < 0.001, 

Cohen’s d = 1.026 

M = 0.012,  

SEM = 0.003,  

t(178) = 3.500,  

p = 0.001,  

Cohen’s d = 0.262 

M = 0.001,  

SEM = 0.03,  

t(178) = 0.233,  

p = 0.816,  

Cohen’s d = 0.018 

M = 0.069,  

SEM = 0.004,  

t(179) = 16.136,  

p < 0.001,  

Cohen’s d = 1.202 

% of positive 

learners 
53.33% 22.35% 14.53% 63.89% 

% of negative 

learners 
3.33% 9.50% 12.29% 1.11% 

% of true learners 50.00% 12.85% 2.24% 62.78% 
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Lastly, we wanted to assess how these results relate to those obtained with the 

typical analysis methods (Model 1, No Filter; and Model 2 and Model 3, Triplet Filter). 

Supplementary Figure SF-V/2 in the Supplementary Materials shows mean effect sizes 

of various learning scores (obtained for reaction times); SF-V/3 in the Supplementary 

Materials shows the percentage of positive and negative learners (broken down by 

epochs) obtained for reaction times data; and SF-V/4 in the Supplementary Materials 

shows the percentage of positive and negative learners obtained for error data. We also 

identified reliably positive learners (based on reaction times) for earlier Models, and 

calculated Phi coefficients between pairs of learning scores of different Models to assess 

whether there is a correspondence of who is considered a reliable learner with the 

different analysis methods. The results showed that the correspondence is low (the 

highest Phi value being around 0.4; see Supplementary Table SF-V/16 in the 

Supplementary Materials.  

V/5. Discussion 

The ASRT (J. H. Howard & Howard, 1997) task is a visuomotor sequence 

learning task designed to measure implicit learning and memory. In this paper, we 

discussed in detail the many possible information types that could be learned (such as 

pattern learning and different levels of joint frequency learning and conditional 

probability learning), and our concerns that these types of learning are not sufficiently 

differentiated by the currently used analysis methods. Moreover, as we have shown, the 

learning measures that are typically extracted from data might be biased by pre-existing 

tendencies to certain stimulus combinations, indicating that the ASRT does not measure 

(only) what it supposed to. We provided a presentation of how different analysis 

methods and filtering methods result in different levels of artifacts and biases, a 

hopefully practical aid for the (re)interpretation of the results obtained with the task. We 

also proposed new analysis methods (with a somewhat new terminology) and a filtering 

method that eliminates at least some of the biases discussed so far and thus can be used 

in future studies (or for reanalyzing already existing datasets). 

V/5.1. Are the new analysis methods better? 

In the second section of the paper, we compared the goodness of fit of models that are 

the basis of the different analysis methods (models already in use, and those that we 

proposed in the current paper). Our results showed that more elaborate models have a 
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better fit indicating that there is a benefit of using these (newly proposed) methods 

instead of the typically used ones. We also looked at the specific effects that could be 

extracted from data (more elaborate models having more and purer measures), and how 

different filtering methods alter the effect sizes of these measures on the individual 

level. Our result indicated that different filtering sometimes leads to both quantitatively 

and qualitatively different conclusions. Importantly, quad filter did not only affect the 

specific effect sizes but also increased the individual variability that could be detected 

with the task. And variability is crucial – if everyone seems to show the same 

performance, there is no need to measure it. 

V/5.2. What did the new analyses reveal? 

With the usual triplet filter, we replicated the findings of Song et al. (2007a) and 

Németh et al. (Nemeth, Janacsek, & Fiser, 2013) who demonstrated that RH trials were 

(at least in the first few epochs of the task) reacted to faster and more accurately than 

PH trials. This paradoxical pattern of results still remained when H1 vs. H2 trials were 

compared instead of PH and RH trials – in the latter case, this could have been 

interpreted as a reflection of higher joint probability learning (contrasted with 

conditional probability learning) on the group level. However, using the quad filter, the 

paradoxical result disappeared, and even turned into its contrary (for a similar result see 

(Song et al., 2007a), indicating that it was conditional probability learning that 

dominated. We here thus argue that the paradoxical pattern of results (RH 

performance > PH performance) is an artifact attributable to pre-existing biases on the 

quad level. This reasoning might be at odds with the fact that the paradoxical result was 

temporary in Song et. al (Song et al., 2007a). However, Soetens, Boer, & Hueting 

(1985) found that practice actually reduces sequential effects (i.e. pre-existing 

tendencies), while it is reasonable to assume that statistical learning would either 

stagnate or increase with practice. 

This is an important finding since the terminology frequently found in ASRT 

studies implies joint frequency learning (e.g. the terms „low-frequency triplet”, „high-

frequency triplet”, etc.) and not conditional probability learning. Such terminology 

might mislead researchers to have the wrong focus when complying stimulus material – 

even with a conservative viewpoint, both factors should be considered. Beside practical 

considerations, these results also add to the theoretical debate whether implicit learning 
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is based on learning chunks (which in this case corresponds to joint probability learning, 

e.g. the relative frequency of different combinations) or statistical computations 

(conditional probability learning) (Perruchet & Pacton, 2006).   

 Our new analysis methods revealed a dissociation between pattern learning and 

quad learning (which were confounded in previously quantified measures, i.e. higher 

order learning). On the group level, there was a significant quad learning effect 

(quantified as the difference between H1P and H2P trials), although smaller in 

magnitude than triplet level learning (quantified as the difference between H1R and LR 

trials); at the same time no pattern learning was observed (H1P vs. H1R) following this 

amount of practice. Moreover, H1P trials were slightly slower than H1R trials, which 

was unexpected. This new paradox might reflect pre-existing biases on the level of 

quints which were not controlled for in this study. 

 Besides these results observed on a group level, we also quantified the 

percentage of participants who showed at least a „small” learning effect (Cohen d > 0.2 

in the cases of reaction times). From these percentages, we subtracted the percentage of 

participants showing similar effect sizes in the opposite directions (e.g. low probability 

trials being reacted to faster than high probability trials). The resulting number could be 

thought of as reflecting true learners (i.e. true positives without false positives). 

Strikingly, the percentage of participants showing at least a small triplet learning effect 

grew from ~25% to ~ 70% as learning progressed from epoch 1 to epoch 9 

(interestingly, Parshina, Obeid, Che, Ricker, & Brooks (2018), with a somewhat 

different methodology and using Model 2 as a basis of their analysis, found that 64.9% 

of their participants showed triplet learning on the ASRT task, corroborating the fact 

that approximately 1/3 of people fail to exhibit such learning). At the same time, the 

percentage of participants showing true pattern learning remained around zero 

throughout. Quad learning was observed for ~5% to ~20% of participants.There was 

fluctuation in these numbers but no gradual increase as learning progressed(a gradual 

increase could be observed in two out of three Sessions, though; see the Methods 

section. Although highly speculative, it is possible that at the beginning of Sessions 

participants are less tired, and their reaction times are faster and less variable, making it 

hard to detect such subtle effects).  It is also possible that both joint frequency learning 

and trial probability learning occur, but since they have opposite effects on reaction 

times, it manifests as very low (near-zero) quad learning effect. The latter possibility 
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should be assessed by a sequence learning task in which the two kinds of probabilities 

are systematically varied.   

 In the case of accuracy, small effect sizes were defined as a Cramer V value > 

0.05. In this case, much smaller percentages of true learners were observed - the 

percentage of true pattern learners was ~2%, the percentage of true quad learners ~15% 

and the percentage of true triplet learners ~50%. Importantly, accuracy data has not 

provided information regarding the time course of learning. 

 It was interesting to see that quad learning was significant on the group level but 

the number of quad learners did not increase over the nine epochs. This result might 

indicate that the observed learning is some kind of artifact (e.g. preexisting biases that 

were not controlled for, e.g. on the level of quints), or that a few participants were able 

to extract quad level information from the very beginning of learning, while, for others, 

45 blocks of ASRT was not enough for this. The latter interpretation is supported by 

data showing that higher order learning occurs slowly over many sessions, as in  (J. H. 

Howard & Howard, 1997; Song et al., 2007a) although the differences seen in these 

studies are the mix of quad learning effects, pattern learning effects and pre-existing 

biases; while the support for the former interpretation comes from the fact that pattern 

learning was negative throughout the task which can only be attributed to pre-existing 

biases (since pattern trials have, on average, higher conditional probabilities/joint 

frequencies than random trials, thus they should be faster anyway). If such pre-existing 

biases affect the pattern learning measure this way, they could also be affecting the 

quad learning measure (but remember that quad learning is higher than pattern learning, 

irrespective of the sign, possibly suggesting true learning in addition to such biases). 

Future studies need to clarify the issue. 

 The finding that no detectable pattern learning occurred during these 45 blocks 

of ASRT is an important one, too. It suggests that the ASRT task is a primarily statistical 

learning task (and not a pattern learning one), at least after this amount of practice. If 

future research corroborates this finding even after extended practice with the task, then 

this measure could be used as an examination whether the hidden sequence remained 

undetected by participants, complementing the sorting tasks, e.g. (A. Destrebecqz & 

Cleeremans, 2001), and production tasks, e.g.  (Song et al., 2008), usually utilized to 

assess explicit knowlegde. For explicit learners, i.e. who become aware of the hidden 

sequence and thus are able to consciously anticipate pattern trials but not random trials, 
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this measure should have a positive value - as observed in the explicit variants of the 

ASRT task when assessing the higher order learning measure (Nemeth, Janacsek, & 

Fiser, 2013; Song et al., 2007a). For implicit learners, on the other hand, the value of the 

measure should remain around zero. 

 Finally, we would like to draw attention to our way of quantifying individual 

learning as standardized effect sizes (Cohen’s d and Cramer’s V values) instead of just 

raw differences. This way the comparison of groups having different overall reaction 

times could be fairer; it’s easier to identify people who truly learned or at least the 

percentage of true learners (e.g. by selecting participants showing at least a small effect 

size throughout the task, e.g. Cohen’s d > 0.2). Due to increased individual variability, 

we could have missed the overall benefits of the newly proposed method looking only 

at group level effect sizes (e.g. when computing Cohen’s d, a higher difference score 

increases the effect size but higher variability decreases it), so it might have looked as if 

our method have no benefit over the typically used methods). 

 In sum, we believe that the analysis and filtering methods that we proposed have 

several advantages over the typically used methods. First, more types and more levels of 

learning can be detected, and thus it becomes possible to differentiate between people 

with similar overall learning scores but different learning profiles. Also, if two groups 

differ in overall scores, it becomes possible to disentangle which learning type causes 

the overall difference, and, in the long run, may help us build better models of implicit 

learning. Second, more strict filtering results in purer measures of learning and more 

expressed individual differences. The fact that individual variability is higher using the 

stricter filtering shows that some of the variability had been masked with typical 

filtering methods, which in turn questions the results showing weak or no correlation 

between statistical learning on the ASRT task and other measures, e.g. (Stark-Inbar et 

al., 2016; Parshina et al., 2018).  

V/5.3. Limitations and future directions  

As a limitation for the newly proposed filtering method (but also for the typically used 

triplet filtering), it is important to note that these filters work on the group level when 

the six ASRT sequences are given to participants in the same proportions, but they do 

not necessarily work on the individual level (or when sequences are not 

counterbalanced across participants). The quads that are being compared within 
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participants are similar in their abstract structure (consisting of dcba, cbba and acba 

quads), but some of the, say, dcba quads might still be easier than other exemplars of 

the same type. Also, as our results clearly indicated in the case of the pattern learning 

measure, the amount of biases may be modified even by the N-4
th

 trials (i.e. quint level 

pre-existing biases). Furthermore, the direction and magnitude of such biases may vary 

as a function of the ASRT sequence administered. Bearing this in mind, if the main 

focus of a study is measuring individual differences (rather than group differences and 

relatively bias-free average learning scores) than the same ASRT sequence should be 

given to all participants. Further studies should address which of the six sequences 

should be preferred (bearing the lowest amount of pre-existing biases), and they should 

clarify the relationship between sensitivity to such biases and learning capacity in the 

ASRT task (if there is any).  

 We only moved one step forward from the usual filtering – quad level 

information being considered on the group level instead of triplet level information. We 

decided to stop here, and not to go deeper, for two reasons. First, there are no quints that 

are part of each of the six ASRT sequences, thus full counterbalancing isn’t possible on 

the group level. Second, although some measures could be quantified in a more bias-

free manner on the individual level if quint level information was considered, this 

would involve massive reduction in the number of trials being analyzed, and we 

speculated that the costs (increased noise) would be higher than the benefits (even 

smaller magnitude of pre-existing biases) of doing so.  

 Similarly, quint level statistical information could also have been considered but 

we decided not to go for it. The reason for this was that pre-existing biases could not 

have been ruled out even if we quantified this measure, and based on the small number 

of participants who actually learned quad level statistical information (~10-20%, see 

above), we speculated that quint level learning is probably close to zero after this 

amount of practice (thus this additional measure wouldn’t be of much use). On the other 

hand, such comparisons could only be made based on a smaller number of trials being 

analyzed, which could, in turn, result in increased noise.  

 The ASRT data analyzed in this paper consists of 45 blocks of 80 trials for each 

participant. Both shorter, e.g.  (Nemeth et al., 2009), and longer, e.g. (J. H. Howard & 

Howard, 1997; Schwartz et al., 2003), ASRT-s have been used in the past, but it is 

reasonable to assume that higher order learning, i.e. quad learning and/or pattern 
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learning occurs over longer periods of time; see the results of (J. H. Howard & Howard, 

1997; Song et al., 2007a). The analysis method proposed in this paper should be applied 

to data gained from extended practice to verify this hypothesis. This could reveal 

individual differences even in the dynamics of joint frequency vs. conditional 

probability learning, which would be an important step in understanding the nature of 

implicit statistical learning.  

 Future studies using longer ASRTs should clarify what types of learning are 

typical to humans and in what proportions. It should also be assessed whether these 

different types of learning correlate with each other and whether they rely on different 

brain structures (or on different kinds of connectivity/brain activity) (Kóbor et al., 

2018).  

V/5.4. General conclusion 

We believe that the ASRT task is a great tool for measuring implicit sequence learning 

and memory – it might even be more promising than we ever thought. However, in 

order to get more out of it, we need to improve our analysis methods and take possible 

confounding factors more seriously. In this paper, we provided a possible solution to 

these problems. Our results point to the ASRT being primarily a statistical learning task 

(at least in the short term), where triplet learning occurs for most of the participants but 

quad learning is the privilege of fewer. We have also shown that these results depend 

strongly on the filter being used, and for methodological reasons, we suggest the usage 

of the Quad Filter in the future.  

Importantly, the concerns outlined in this work are not specific to the ASRT task. 

It is reasonable to assume that pre-existing biases are present in other sequence learning 

tasks as well, such as the serial reaction time task (Nissen & Bullemer, 1987) or the 

finger tapping task (C. M. Walker, Walker, & Sunderland, 2003); and also that at least 

some people are sensitive to higher order statistics (e.g. third order statistical 

information), which should also be taken into consideration when complying stimulus 

material for all kinds of sequence learning tasks. 
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VI. GENERAL DISCUSSION 

 

VI/1. Summary of findings: Study 1 – Study 4  

The goal of the presented experiments was to learn about the nature of implicit 

statistical learning and the resulting representation; besides theoretical questions (such 

as whether statistical learning is domain-general; what factors influence it; etc) we were 

also interested in methodological questions (how to improve the tasks that measure it 

and/or how to make data analysis more efficient in identifying different aspects of 

learning).  

VI/1.1. Study 1 

In Study 1 the main question was whether the implicit knowledge in a 

visuomotor sequence learning task stems from response-related information (what 

button should be pressed next, which finger should be moved next) or also perceptual 

information (at which location should we expect the next stimulus). To answer the 

question, we modified the ASRT task in such a way that, although motor and perceptual 

information remained correlated, they were not identical anymore. By changing either 

the perceptual or the motor sequence, and by assessing its possible negative impact on 

the performance of participants, we could indirectly assess the role of particular 

information types in performing a sequence learning task. In this experiment, we were 

able to show statistically detectable implicit knowledge both when the motor or the 

perceptual information was changed, implying that both factors contribute to implicit 

learning in such paradigms (and that they do so to a similar degree).  

VI/1.2. Study 2 

 In Study 2 we extended our findings of Study 1 by introducing an offline period 

before changing one of the information streams.  We found that the transfer of 

perceptual information was weaker (but nevertheless significant) than the transfer of 

motor information both after 12 hours and 24 hours. Sleep had no impact on  the 

consolidation of learning (as no differences were observed between groups of 

participants who slept and those who didn’t sleep during the offline period). 
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VI/1.3. Study 3 

 In Study 3 we assessed the impact of interfering information from previous 

learning episodes (i.e. proactive interference) by analyzing performance on chunks of 

sequences that were either similarly frequent across the subsequent sessions or changed 

their frequency. Three groups were compared: the implicit-implicit group performed the 

ASRT implicitly in each session; the implicit-explicit group learned the first sequence 

implicitly but proceeded with the second explicitly; while the explicit-explicit group 

performed the explicit version of the ASRT in every session. Importantly, the 

explicitness of the ASRT meant that pattern trials were shown with a different color, 

and so the four-element long pattern was easy to spot, and pattern trials were easy to 

anticipate. However, since we were interested in statistical learning rather than pattern 

learning, only the intervening random elements were analyzed for all groups as a 

function of their statistical properties (probable trial or not so probable given the 

previous trials). Thus, we were interested in whether explicit knowledge about the 

sequence’s structure has an impact on the implicit learning of the statistical structure (in 

other words, whether the implicit and explicit memory systems somehow cooperate; or 

whether the different kinds of operations under the different conditions affect implicit 

learning differently).  

 The most important result of the experiment was that „rewiring” (i.e. learning 

information that interfered with previous learning) was most successful in the Implicit-

Explicit group and least successful in the Implicit-Implicit group. In the Implicit-

Explicit group, learning of the new (interfering) information was as successful as 

learning the first information (where no interference could have been in play), while 

participants in the Implicit-Implicit group showed less rewiring (and slower update of 

no-longer-valid knowledge) than the other two groups. The analysis of errors (rather 

than reaction times) also corroborated these findings.    

 On the third day of the study, knowledge for both information sets (both 

sequences) was assessed. By evaluating performance on those chunks that were subject 

to interference, it was found that participants do better when the later-learned sequence 

was assessed, possibly indicating forgetting of the previously-valid skill (or it might be 

a retroactive interference). No group differences were observed. 
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VI/1.4. Study 4 

 One of the goals of Study 4 was to improve the analysis methods of the ASRT 

task in order to separate different levels of implicit statistical learning (e.g. triplet-level 

learning from quad-level learning) and the learning of the embedded pattern (i.e. pattern 

learning). We also proposed the use of a stricter data filtering to minimize the effect of 

pre-existing biases when calculating different learning scores.  

 The most important finding was that the proposed analysis method resulted in 

higher goodness of fit (quantified as adjusted R
2
 values) than the previous methods, and 

the pattern of results differed qualitatively with the use of the stricter filter. For 

example, a learning score which was typically (paradoxically) negative with the typical 

analysis methods, became positive with the new filter. These results point out the effect 

of pre-existing biases in this paradigm, and the need to reanalyze previous findings to 

minimize the artifacts. 

 As a separate goal, we also assessed the psychometric properties of the ASRT 

task. Paradoxically (but not inexplicably) reliability of the learning scores decreased 

with the new analysis method. We attribute these changes to the fact that pre-existing 

biases introduced a systematic artifact to the previous analysis methods, and when this 

systematic pattern was eliminated, individual differences in statistical learning became 

unmasked, and higher variability resulted in poorer reliability scores. However, we 

argue that with the newly proposed analysis method, the ASRT also became a better 

tool in measuring implicit statistical learning (even if the scores are less reliable, they 

are more valid, i.e. less affected by artifacts).  

VI/2. Discussion of findings  

Our studies aimed to gain a better understanding of implicit statistical learning 

phenomena, and about the diversity of findings of seemingly similar processes. We also 

emphasized the need to assess the psychometric properties of the measures of implicit 

statistical learning, since many findings – or null findings – could be a result of some 

methodological rather than theoretical issues. In this Dissertation, we addressed many of 

these topics, such as modality specificity in implicit learning; the (in)dependence from 

other cognitive domains, types of statistics that could be learned, and methodological 

considerations in the measurement.  
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VI/2.1. Implicit learning – One or Many? 

VI/2.1.1. Modality specificity 

In Study 1 and Study 2 we found that both the visual and the motor sequence 

had been learned by participants, and although similar magnitudes of transfer have been 

observed for the two types of information when performance was assessed in a single 

session (without delay), the consolidation of the perceptual information seemed to be 

weaker than the consolidation of the motor information after a delay of 12 or 24 hours.   

Importantly, the existence of perceptual statistical learning was inferred from the 

fact that – in spite of the interference caused by the change of the motor sequence – 

learning scores in the second phase was greater than zero. However, two further 

possibilities could have led to the observed results.  

First, it is possible that no perceptual transfer occurred, only motor learning of 

the new (interfering) sequence. In Study 2, we quantified learning scores in the first two 

blocks of Session 1 (before the change in either the perceptual or the motor information 

had taken place), and in the first two blocks of Session 2 (i.e. immediately after the 

changes occurred). We found significant learning effects in the latter but not in the 

former case – therefore these results might indicate that the learning scores of Session 2 

are transferred from Session 1, and not learned anew, since learning of the motor 

information was not this fast even without interfering information in Session 1.  

Second, it is also possible that the transfer is not perceptual in nature, but motor 

transfer, since the two interfering motor sequences had a few similar chunks that were 

frequent throughout (a possibility we did not address at the time of publication). 

However, we analyzed the data and found similar results even when controlling for this 

possibility (unpublished results). 

In sum, it has been shown that both kinds of learning occur, and consolidation is 

different for the two types of learning. These results support the notion of multiple 

implicit statistical learning submodules rather than a single system that is responsible 

for all kinds of implicit learning phenomena (in line with Emberson et al., 2011; Li et 

al., 2018; Walk & Conway, 2016). 
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VI/2.1.2. Independency from other cognitive abilities 

 In Study 3 we compared the implicit statistical learning abilities of participants 

who were either given information about the embedded sequence in the ASRT or not. 

Importantly, even participants performing the explicit version of the task could only 

anticipate pattern trials explicitly – any statistical learning effects detected on random 

trials were implicit nevertheless.  

 We found that the implicit statistical learning was similar across groups when 

learning the first sequence, thus knowledge about pattern trials did not help participants 

learn the statistical properties of the task when assessed on random trials. However, 

when a new sequence was introduced, and proactive interference from the first learning 

episode had to be overcome, the explicit groups outperformed the implicit group (or 

more precisely, the implicit group needed more time to overcome the interference than 

the explicit groups).  

 One possibility is that those receiving explicit information about every second 

trial had a different attitude, or were less bored, than the implicit groups, and they might 

have concentrated more even on random trials, leading to better performance. As an 

alternative, it is also possible that telling participants about the embedded structure 

somehow emphasized the statistical structure of the sequence, too. It has been found, for 

example, that the exaggeration of some features of speech acts as a perceptual catalyst 

whereby it helps infants discriminate between similar inputs (Karzon, 1985), and that 

infant-directed speech (e.g. motherese, which also exaggerates important aspects of 

speech) is a more effective signal for learning phonetic categories than adult-directed 

speech (de Boer & Kuhl, 2003). Our results could have been similarly caused by the 

emphasis that explicitly shown pattern trials created. 

 The fact that knowledge about the sequence in the ASRT somehow affected the 

implicit processes indicates that implicit and explicit processes are not independent  (for 

a similar conclusion, see Boyd & Winstein, 2003; Arnaud Destrebecqz et al., 2005; 

Lagarde et al., 2002). Our results are in line with Boyd & Winstein (2003) who also 

found facilitation of implicit learning following explicit information in healthy adults – 

however, they used a deterministic 10 elements long sequence, and hence from the point 

when the sequence was explicitly stated, each element of the sequence could have been 

consciously anticipated. In our case, however, those trials where explicit anticipations 
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could have been in play were eliminated. For this reason, we think that our results are 

stronger support for the notion of interacting systems, although the exact mechanism 

has to be identified. 

VI/2.1.3. Type of statistics – Does it matter? 

 It has been known that humans are capable of both conditional probability 

learning and joint frequency learning (J. H. Howard et al., 2008; Thiessen et al., 2013; 

Thiessen, 2017) and it has been suggested that they are results of independent processes 

(Thiessen, 2017). In Study 4 we have shown that the ASRT task is adequate to 

distinguish between the two types of learning (or at least in showing which one 

dominates for a given individual), and that results point towards a greater dominance of 

conditional probability learning (13% vs. 5% of participants showing reliable pattern for 

conditional probability learning and joint frequency learning, respectively).  

 Furthermore, it has also been shown that humans are able to learn higher-order 

statistical structure (e.g. four consecutive trials – quads – or even higher levels) 

(Remillard, 2008, 2010, 2011), moreover, that learning of higher-order information can 

be selectively impaired (in dyslexia: W. Du & Kelly, 2013; J. H. Howard et al., 2006; in 

Parkinson’s disease: Smith & McDowall, 2004; in Schizophrenia: Schwartz et al., 2003; 

with age: J. H. Howard et al., 2007; D. V. Howard et al., 2004; Feeney et al., 2002; J. H. 

Howard & Howard, 1997; Urry et al., 2018). In Study 4 we have shown that – although 

traditionally only the level of triplets is assessed – quad-level learning could also be 

quantified without any modification to the task, simply by applying a different analysis 

method (and this is independent from the question of joint versus conditional 

probabilities). By reanalyzing the huge amount of already existing ASRT datasets, we 

could get closer to understand the nature of quad learning, and whether triplet level 

learning and quad level learning are degrees of the same capability, or they dissociate 

within subjects. This could be assessed by verifying the correlation between the two in 

large samples; or by examining the learning curves, e.g. whether quad learning follows 

triplet level learning or it happens in parallel (for those who are sensitive to these 

statistics).   
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VI/2.2. The psychometric properties of the ASRT task 

VI/2.2.1. Low reliability 

Although the relatively low reliability of implicit compared to explicit measures 

has been acknowledged (Lebel & Paunonen, 2011), reliability indices are rarely 

included in implicit learning research (but see Siegelman & Frost, 2015). In Study 4 we 

have shown that the split-half reliability indices of ASRT learning scores vary from 

0.02 to 0.84 depending on the type of the analysis (e.g. data grouping and filtering) and 

on type of learning that is being assessed (e.g. triplet-level learning or quad-level 

learning). In general, triplet learning scores are more reliable than quad learning scores 

(~0.6 vs. ~0.4), and the reliability of pattern learning is the worst – downright unreliable 

(~0.15). By using a stricter filter to eliminate the effects of pre-existing biases, 

individual variability got higher and reliability indices typically got lower, underscoring 

that without the strict filtering, the performance of different participants is more similar 

than their true learning abilities – differences are just being masked. Thus, there is a 

trade-off between validity and reliability, and this needs to be considered for analysis. 

VI/2.2.2. Low individual variability 

It has been assumed that implicit learning is robust and shows small inter- and 

intraindividual variability (A. S. Reber, 1993; A. S. Reber & Allen, 2000). Accordingly, 

individual differences in implicit cognition remain largely unexplored (A. S. Reber & 

Allen, 2000; but see Kaufman et al., 2010; and Kalra et al., 2019). 

 We contribute to this field of research by providing inter-individual variability 

indices for different learning scores in Study 4. We quantified the spread in data both in 

absolute (standard deviation) and in relative (coefficients of variation) terms; 

unfortunately, we are not aware of any standards by which we could tell whether the 

values that we found refute the hypothesis of „small individual variability”. We would 

need similar descriptions of individual variability in other fields of cognitive 

psychology (e.g. explicit learning capacity) to draw any conclusions.  

 Another important message of Study 4 is that the variability of performance is 

sometimes shaped by factors we do not intend to measure (artifacts; e.g. pre-existing 
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biases); in the ASRT such biases make the detectable differences smaller – an effect 

that has implications from the interpretation of result to the theories of implicit learning. 

VI/2.2.3. Issues related to reaction-time based measures 

It has been suggested that accuracy is a better measure than difference scores 

derived from reaction times (Urry et al., 2015, 2018). We did not directly test this 

hypothesis, but nevertheless contributed to this debate by showing that accuracy 

measures are less reliable than reaction time measures (Study 4, reliability indices). 

Also, generally speaking, we found reaction time based and error ratio based measures 

to point in the same direction in our studies, although sometimes complementing each 

other. For example in Study 3, by looking at reaction time based measures, we found 

that the implicit-implicit group showed reduced rewiring (compared to the other two 

groups). By looking at anticipatory errors, we found that this effect was due to the 

implicit-implicit group still expecting stimuli that were no longer probable, while the 

other two groups stopped expecting them shortly after the change in sequences. Thus, 

we were able to find a possible explanation for an effect that we also detected with 

reaction-time based measures.  

In sum, we did not find unequivocal evidence that accuracy-based measures fare 

better than reaction-time based measures, and we even found that their reliability is 

substantially smaller. It is possible that accuracy-based measures in ASRT are actually 

prone to result in floor effects (contrary to the claims of Urry et al., 2015) because of the 

very high accuracy rates that are expected from participants in this task.  

We also assessed the impact of pre-existing biases in serial reaction time 

measures (requiring serial motor responding). Such biases were acknowledged by Song 

et al. (2007a) in the context of ASRT, but, to our knowledge, their impact has not been 

systematically studied. In Study 4, we found that even the N-3
rd

 stimulus has an effect 

on the reaction times measured on the N
th

 trial and that accounting for this (by using a 

filter that we named quadfilter) reverses the previously puzzling patterns observed for 

higher-order learning. Apart from affecting the magnitude of learning scores, higher 

individual variability could be detected by using this filter. This result indicates that the 

variability issue on this particular task could be attributed to people’s susceptibility to 

pre-existing biases rather than to their similarity in their statistical learning capacity. We 
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would like to underscore the need to address this question in every task that requires 

serial motor responding since the artifact that is introduced by these biases seems to be 

substantial.     

VI/3. Strengths of the present Dissertation  

One of the strengths of the present Dissertation (which is also one of its 

limitations) is that variations of the same task (i.e. the ASRT task) were used in all of 

the Studies. Although the results obtained could not be generalized to other implicit 

learning tasks, our work nevertheless expanded our knowledge about implicit statistical 

learning in visuomotor sequence learning tasks, and it could be a promising first step in 

the systematic exploration of implicit learning phenomena.  

Although ASRT was used in all of the Studies presented in this Dissertation, we 

applied some modifications to the task to make it even more suitable for our purposes. 

For example, in Study 1 and Study 2 we introduced the so-called ASRT-RACE 

paradigm which was proven to be effective in separating perceptual and motor factors 

of implicit statistical learning. In Study 3 and Study 4 we did not make modifications to 

the task itself (as the Explicit variant of the ASRT has already been used by other 

authors, e.g. Song et al., 2007a), but we used atypical analysis methods to get the most 

out of the data. For example, in Study 3, we only analyzed random trials, so that any 

differences between groups performing the implicit vs. explicit variants of the task 

could not be attributed to explicit expectations about the upcoming stimuli. This made it 

possible to directly compare the implicit learning of all three groups (even those who 

performed the task explicitly). In Study 4 we suggested changes to the typical analysis 

methods of the ASRT task mainly concerning data filtering (data points that should be 

excluded from analysis) and data grouping (separating more than two groups of data 

based on subtler statistical properties). Our results confirmed that these modifications 

are worth the effort, and sometimes lead to qualitatively different results than the typical 

analyses.  

 In sum, we have highlighted many of the aspects of implicit statistical learning 

that need to be clarified if we aim to understand this process (or these processes) in 

detail.  Although we did not (and could not) give definitive answers to all the emerging 

issues, we nevertheless provided some ideas on how to approach them. We have also 

shown that some practices that are currently widely applied need to be reconsidered due 
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to methodological reasons; that the psychometric properties of the tasks need to be 

routinely assessed and reported; that pre-existing biases need to be considered when 

using reaction time based measures; and that small changes in the way of analysis 

sometimes lead to qualitatively different conclusions, emphasizing the need for prudent, 

methodologically sound analysis methods in order to get valid conclusions.  

VI/4. Limitations and future directions  

One of the strengths of the dissertation is also an important limitation: namely 

that only the ASRT task and its variants were used to examine implicit learning. In 

order to get to the ambitious goal presented earlier (i.e. to identify the possible 

components or submodules of implicit statistical learning), this kind of work that I 

presented in the current Dissertation needs to be done with different measures (different 

tasks) as well. For example, the complexity of the statistical structure embedded in the 

tasks could be varied in a systematic manner in the different types of tasks (e.g. the 

Weather Prediction task, Artificial Grammar Learning task, etc.) to see whether 

statistical complexity leads to similar phenomena in different paradigms and in different 

modalities.    

As a second limitation, we have to emphasize that our results and conclusions 

are based on learning measures having relatively low reliability (as discussed in Study 

4). In spite of having moderately large samples in our studies, we are aware of the need 

to treat our results with a reasonable amount of caution - only future studies will tell 

which results will stand the test of time.  

Third, as part of a more general problem, we need to identify and understand the 

biases that shape our results with different methodologies – e.g. it is not enough if we 

admit that pre-existing biases exist in reaction time based studies, we should design 

experiments explicitly addressing these biases in order to get a better understanding. For 

example, we could ask participants to respond to a stream of statistically unstructured 

(random) stimuli and identify the reasons why some of the combinations are easy and 

others are hard. With such an understanding, we could design experiments that 

minimize such biases from the beginning (without the need to exclude a substantial 

amount of data from the analysis to deal with the problem after the fact).  
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VI/5. Conclusion 

The research of implicit statistical learning (or implicit learning, in general) lead 

to very diverse – and sometimes contradictory – results. In order to understand the 

source of this variability, our duty is twofold: first, we need to improve the tasks that we 

use so that the results of measurements aid our theoretical understanding of implicit 

processes better; and second, based on our ever-expanding theoretical knowledge, we 

need to refine the tasks even more in order to narrow and specify their scope. Only this 

way could we get to the point where we know exactly what we intend to measure, and 

also have means to do it.   
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Supplementary Materials for Study 2 

 ST-III/1. 

Means and SDs for SLEs at the end of the Learning Phase, at the beginning of the Transfer Phase. SLE-change indicates the difference in SLEs 

between the two sessions. 

Condition Delay Daytime N 
SLE (Learning Phase) SLE (Transfer Phase) SLE (Transfer – Learning) 

Mean SD Mean SD Mean SD 

Perceptual 

12-h 
Morning-first 11 8.59 12.57 6.09 12.06 -2.50 17.45 

Evening-first 11 9.68 13.27 9.14 15.68 -.55 18.47 

24-h 
Morning-first 14 14.82 19.39 12.11 8.70 -2.71 16.75 

Evening-first 14 18.64 25.42 8.86 13.64 -9.79 28.29 

 Total  50 13.39 18.87 9.22 12.41 -4.17 20.78 

Motor 

12-h 
Morning-first 12 8.13 22.51 16.29 15.20 8.17 19.14 

Evening-first 11 10.73 27.96 18.36 9.03 7.64 27.58 

24-h 
Morning-first 12 11.63 18.27 16.67 12.18 5.04 24.64 

Evening-first 17 6.68 11.63 7.56 6.79 .88 12.63 

 Total  52 9.01 19.53 13.96 11.54 4.95 20.46 

Total   102 11.16 19.24 11.41 14.45 .48 21.02 
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ST-III/2.  

Means and SDs for the first two sequence blocks of the Learning and Transfer Phase for 

perceptual and motor condition. 

Condition Phase Mean SD 

Perceptual (N = 50) 
Learning -9.27 61.34 

Transfer 8.33 16.72 

Motor (N = 52) 
Learning 3.89 93.46 

Transfer 14.77 20.94 
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Supplementary Materials for Study 3 

Supplementary Methods IV/1. 

SM- IV/1.1. The structure of the ASRT sequences 

In the ASRT task (Howard & Howard, 1997) the probability of each stimulus location 

out of the four possible ones (0
th

 order probability) is equal (25%). For any stimulus n, 

the previous n – 1 trial (1
st
 order transitional probability) has no predictive value either 

(all pairs of stimuli are equally probable). The ASRT sequence is a 2
nd

 order 

probabilistic sequence because for any trial n there is a very probable and three less 

probable continuations of the sequence based on the n – 2
th

 trial. The probabilities add 

up the following way: if a pattern trial comes up, the identity of this trial can be inferred 

with 100% certainty based on the previous pattern trial which occurred two trials before 

(thus 50% of all trials are predetermined as 50% of all trials are pattern trials). For 

example, in the case of a sequence such as 3-R-1-R-4-R-2-R, if the previous pattern trial 

was on the 3
rd

 location, the next pattern trial is going to be on the 1
st
. If a random trial 

comes up, on the other hand, it could be any of the four possible stimuli with 25% 

probability (irrespectively of the stimulus that occurred two trials before) – as this 25% 

refers to random trials only, which makes up 50% of all trials, a particular outcome has 

an overall probability of 12.5% in this case. Taken together, there is always a probable 

outcome regarding the upcoming stimulus (50% + 12.5% = 62.5%) and three less 

probable outcomes (12.5% each) based on trial n–2 (Supplementary Figure SF-IV/1). In 

the conventional (implicit) ASRT task individuals have no clue about the alternating 

nature of the random and pattern trials, they nevertheless learn that it is highly probable 

that they are going to encounter a stimulus on the 1st location if they encountered a 

stimulus on the 3rd location two trials before. Participants use this statistical knowledge 

on random and pattern trials alike.  
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SF-IV/1. The statistical structure of the ASRT sequence. As a result of the alternation of pattern 

(green) and random („R”, blue) trials, there are frequent (more probable) and infrequent (less probable) 

combinations of three consecutive stimuli. Whatever the first two elements are of such a combination (a 

so called triplet), there is always a probable continuation which occurs 62.5% of the time, and three less 

probable continuations with a probability of 12.5% each. Frequent combinations are called high 

frequency triplets, while the infrequent combinations are called low frequency triplets. In the above 

example after encountering two consecutive stimuli on the 3
rd

 location, the most probable upcoming 

stimulus is one on the 1
st
 location: if the upcoming stimulus is a pattern element (green), then it will be on 

the 1
st
 location because of the embedded pattern. As only 50% of trials are pattern elements, there is 50% 

chance that the following stimulus will appear on the 1
st
 location. However, there is another 50% chance 

that the upcoming stimulus is a random element (green). In this case each outcome is equally likely 

(12.5% each). Taken together, there is 50+12.5 = 62.5% chance that the upcoming stimulus will be on the 

1
st
 location – making this the most probable outcome. The comparison of high vs. low frequency triplets 

captures the 2
nd

 order transitional probabilities embedded in the ASRT sequence. In the original (implicit) 

version of the ASRT pattern and random elements are shown in the same color, and participants are not 

told about the embedded regularity. 
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If the predicted stimulus comes up, we can categorize that stimulus as the final stimulus 

of a so called high frequency triplet, while the less probable continuations are 

categorized as the final stimulus of a low frequency triplet. Thus, when we use the terms 

high frequency triplet and low frequency triplet, we refer to the predictability of the 

final element of that triplet, and we quantify participants’ suppositions as reaction times 

(RTs) to these final elements of triplets as a function of their probability (each element 

is categorized this way; the 3
rd

 element of a triplet is also a second element of the 

following triplet, and so on). The typical result is shorter RTs to the last elements of 

high frequency triplets than to the last elements of low frequency triplets.  

  

SM-IV/1.2. Unchanged and changed transitions across the Learning and Rewiring 

Phase 

As each participant encountered two different sequences on the subsequent days of the 

experiment, the same stimuli could be a probable continuation of the same contexts 

during both sequences, or they could change their probability along with the change in 

sequence structure. For example, if the sequences were 3-R-1-R-4-R-2-R and 3-R-2-R-

1-R-4-R, respectively, stimulus on the 4
th

 location could be anticipated whenever a 

stimulus on the 1
st
 location was encountered two trials earlier (1-1-4, 1-2-4, 1-3-4 and 1-

4-4 are all high frequency triplets during both phases of the study). We can refer to such 

stimuli as „high-high” (HH), indicating their probability in the two subsequent phases of 

the study (Supplementary Figure SF-IV/2/a). There are also stimuli that are less 

probable during both phases, for example encountering a stimulus on the 3
rd

 location 

after encountering a stimulus on the 1
st
 location two trials before (i.e. 1-1-3, 1-2-3, 1-3-3 

or 1-4-3). This can only happen on random trials, with an overall probability of 12.5%. 

These trials can be categorized as „low-low” (LL). Finally, there are cases when the 

probability of a stimulus changes with the change in the sequence structure. For 

example, encountering a stimulus on the 1
st
 location is highly probable during the first 

sequence when a participant encountered a stimulus on the 3
rd

 location two trials before 

(i.e. 3-1-1, 3-2-1, 3-3-1 or 3-4-1); however, the same stimulus is less probable during 

the second sequence (encountering a stimulus on the 2
nd

 location would be probable in 

this case: 3-1-2, 3-2-2, 3-3-2 or 3-4-2). If a stimulus is the probable continuation of its 

context during the first sequence, but less probable during the second, we can categorize 

it as „high-low” (HL); if it is less probable during the first sequence and probable during 
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the second, we can categorize it as „low-high” (LH). Thus, the changes introduced 

between the Learning and the Rewiring Phase was based on 2
nd

 order dependencies in 

the ASRT sequence that was captured by these four triplet types. Each pair of sequences 

had the same amount of shared transitions (i.e. the proportion of HH, HL, LH and LL 

triplets was constant across participants). 

 

 

 

 

SF-IV/2. Stimulus types as a function of shared vs. not shared transitional probabilities in Sequence 

A and Sequence B.  (a) Some of the triplets are frequent in both sequences – as they are „high 

frequency” during both Phases, we called them HH („high-high”) triplets (e.g. 1-2-4). Other transitions 

are frequent only in one of the sequences; the ones that are of high frequency in Sequence A but of low 

frequency in Sequence B (e.g. 3-3-1) are called  HL triplets („high-low”); the ones with the opposite 

pattern (e.g. 3-4-2) are called LH triplets („low-high”). Finally, some of the triplets are of low probability 

during both sequences (e.g. 1-4-3) – these are called LL („low-low”) triplets. (b) Reaction times (RTs) to 

the final elements of the high frequency triplets are expected to be faster than RTs to the final elements of 

the low frequency triplets. Statistical Learning Effect (SLE) is the difference between RTs given to the 

two types of events (more probable vs. less probable) in both sequences. As particular transitions changed 

their frequency of occurrence when moving to Sequence B from Sequence A, different SLE-s were 

calculated. The SLE for the never changed transitional probabilities (HH vs. LL, e.g. 1-2-4 vs. 1-4-3) is 

shown by light grey arrows. SLE for the changed sequence parts is shown by two different colors; the 

dark grey arrow represents SLE before the swap in frequencies took place (3-3-1 vs. 3-4-2), while the 

blue arrow represents SLE after the change occurred (3-4-2 vs. 3-3-1). For the sake of clarity, we depicted 

these arrows at the end of learning, although average differences during the whole learning process were 

calculated. 
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SM-IV/1.3. Sequence combinations used in the current study 

Different combinations of sequences were used in the experiment. Only 24 of the 30 

possible combinations result in all four types of triplets (HH, LL, HL and LH) – or 12 

out of 15 if we do not take order into account. The remaining sequence combinations 

would result in only LL, HL and LH triplets, no HH triplets (for example the sequences 

1-R-2-R-3-R-4-R and 1-R-4-R-3-R-2-R have no high frequency triplets in common). 

All adequate combinations were used in the experiment (see Table S1) in a 

counterbalanced order. Importantly, we treated sequences 1-R-4-R-2-R-3-R-, 4-R-2-R-

3-R-1-R-, 3-R-1-R-4-R-2-R- and 2-R-3-R-1-R-4-R- as being identical since they consist 

of the same triplets (just beginning at a different point of the sequence). 
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ST-IV/1. Sequence combinations used in the experiment. 

Sequence combinations HH LH or HL (depending on the order) LL 

1-R-2-R-3-R-4-R and 1-R-2-R-4-R-3-R 

1-X-2 

- 

- 

- 

- 

2-X-3 / 2-X-4 

3-X-4 / 3-X-1 

4-X-1 / 4-X-3 

1-X-1, 1-X-3, 1-X-4, 

2-X-1, 2-X-2, 

3-X-2, 3-X-3, 

4-X-2, 4-X-4 

1-R-3-R-2-R-4-R and 1-R-3-R-4-R-2-R 

1-X-3 

- 

- 

- 

- 

2-X-4 / 2-X-1 

3-X-2 / 3-X-4 

4-X-1 / 4-X-2 

1-X-1, 1-X-2, 1-X-4, 

2-X-2, 2-X-3,  

3-X-1, 3-X-3, 

4-X-3, 4-X-4 

1-R-4-R-2-R-3-R and 1-R-4-R-3-R-2-R 

1-X-4 

- 

- 

- 

- 

2-X-3 / 2-X-1 

3-X-1 / 3-X-2 

4-X-2 / 4-X-3  

 1-X-1, 1-X-2, 1-X-3, 

2-X-2, 2-X-4, 

3-X-3, 3-X-4, 

4-X-1, 4-X-4 

1-R-3-R-4-R-2-R and 1-R-4-R-3-R-2-R 

- 

2-X-1 

- 

- 

1-X-3 / 1-X-4 

- 

3-X-4 / 3-X-2 

4-X-2 / 4-X-3 

1-X-1, 1-X-2, 

2-X-2, 2-X-3, 2-X-4, 

3-X-1, 3-X-3, 

4-X-1, 4-X-4 

1-R-2-R-3-R-4-R and 1-R-4-R-2-R-3-R 

- 

2-X-3 

- 

- 

1-X-2 / 1-X-4 

- 

3-X-4 / 3-X-1 

4-X-1 / 4-X-2 

1-X-1, 1-X-3, 

2-X-1, 2-X-2, 2-X-4, 

3-X-2, 3-X-3, 

4-X-3, 4-X-4 

1-R-2-R-4-R-3-R and 1-R-3-R-2-R-4-R 

- 

2-X-4 

- 

- 

1-X-2 / 1-X-3 

- 

3-X-1 / 3-X-2 

4-X-3 / 4-X-1 

1-X-1, 1-X-4, 

2-X-1, 2-X-2, 2-X-3,  

3-X-3, 3-X-4, 

4-X-2, 4-X-4 
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1-R-2-R-4-R-3-R and 1-R-4-R-2-R-3-R 

- 

- 

3-X-1 

- 

1-X-2 / 1-X-4 

2-X-4 / 2-X-3 

- 

4-X-3 / 4-X-2 

1-X-1, 1-X-3, 

2-X-1, 2-X-2, 

3-X-2, 3-X-3, 3-X-4, 

4-X-1, 4-X-4 

1-R-3-R-2-R-4-R and 1-R-4-R-3-R-2-R 

- 

- 

3-X-2 

- 

1-X-3 / 1-X-4 

2-X-4 / 2-X-1 

- 

4-X-1 / 4-X-3 

1-X-1, 1-X-2, 

2-X-2, 2-X-3, 

3-X-1, 3-X-3, 3-X-4, 

4-X-2, 4-X-4 

1-R-2-R-3-R-4-R and 1-R-3-R-4-R-2-R 

- 

- 

3-X-4 

- 

1-X-2 / 1-X-3 

2-X-3 / 2-X-1 

- 

4-X-1 / 4-X-2 

1-X-1, 1-X-4, 

2-X-2, 2-X-4, 

3-X-1, 3-X-3, 3-X-3, 

4-X-3, 4-X-4 

1-R-2-R-3-R-4-R and 1-R-3-R-2-R-4-R 

- 

- 

- 

4-X-1 

1-X-2 / 1-X-3 

2-X-3 / 2-X-4 

3-X-4 / 3-X-2 

- 

1-X-1, 1-X-4, 

2-X-1, 2-X-2, 

3-X-1, 3-X-3, 

4-X-2, 4-X-3, 4-X-4 

1-R-3-R-4-R-2-R and 1-R-4-R-2-R-3-R 

- 

- 

- 

4-X-2 

1-X-3 / 1-X-4 

2-X-1 / 2-X-3 

3-X-4 / 3-X-1 

- 

1-X-1, 1-X-2, 

2-X-2, 2-X-4, 

3-X-2, 3-X-3, 

4-X-1, 4-X-3, 4-X-4 

1-R-2-R-4-R-3-R and 1-R-4-R-3-R-2-R 

- 

- 

- 

4-X-3 

1-X-2 / 1-X-4 

2-X-4 / 2-X-1 

3-X-1 / 3-X-2 

- 

1-X-1, 1-X-3, 

2-X-2, 2-X-3, 

3-X-3, 3-X-4, 

4-X-1, 4-X-2, 4-X-4 
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The first pattern trial in each block was chosen randomly, so for example if the ASRT 

sequence was 3-R-1-R-4-R-2, then some of the blocks started as 3-R-1-R-4-R-2-R-3-R-

1-R-4-R-2-R- while others started as 1-R-4-R-2-R-3-R-1-R-4-2 or 4-R-3-R-1-R-4-R-2-

R-3-R- or 2-R-3-R-1-R-4-R-2-R-3. Note that the pattern is repeated in the block (10 

times in each), thus changing the starting point does not lead to a different sequence 

(just as 123412341234 is the same as 234123412341). 

In each combination, there was a partial overlap between Sequence A and 

Sequence B. Twenty-five percent of the originally high frequency triplets in Sequence 

A remained high frequency in Sequence B as well, while the remaining 75% became 

low frequency triplets. For example, Sequence A was 1–R–3–R–4–R–2 and Sequence B 

was 1–R–4–R–3–R–2 (see Line 4 in the table above). Following this example, out of 

the 16 originally high frequency triplets (i.e., 2–X–1, 1–X–3, 3–X–4, 4–X–2; X 

indicates the middle element of the triplet; i.e., 2–1–1, 2–2–1, 2–3–1, 2–4–1), four 

remained unchanged (triplets 2–X–1; HH triplets) and 12 high frequency triplets 

became low frequency ones (HL triplets).  

Beyond the 16 high frequency triplets, there were 48 low frequency triplets for a 

given sequence. Out of these 48 low frequency triplets, 12 became high frequency (in 

the above example: 1–X–4, 4–X–3, 3–X–2; LH triplets), and 36 remained low 

frequency (e.g., 2–X–3, 2–X–4, 1–X–2, 4–X–1; LL triplets). In Table S1 we included 

which triplets corresponded to the categories of HH, HL, LH, and LL for each sequence 

pair combinations. 

SM-IV/1.4. Calculation of Statistical Learning Effect (SLE) 

In accordance with the original way of analysis (Howard & Howard, 1997), RTs given 

to repetitions (e.g. 1-1-1) or trills (e.g. 1-3-1) were excluded, along with RTs of 

inaccurate responses and preparatory trials. Unlike the conventional analysis, we also 

excluded RTs given to pattern trials (except for the probe blocks, see Figure IV/1 in the 

main text). If pattern trials were included, average RTs would have been lower for 

individuals performing the Explicit variant of the task, as they could explicitly 

anticipate stimuli on pattern trials (50% of all trials). Our aim was not to compare RTs 

when individuals knew in advance what the next stimulus was going to be versus when 

they had no explicit knowledge about this; we wanted to measure knowledge about the 

statistical structure which accompanies the alternating nature of random and pattern 

trials. Thus, by excluding pattern trials from analysis, we aimed to compare 
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participants’ statistical knowledge under similar conditions (when they could not 

explicitly anticipate the stimuli, irrespective of the type of ASRT) (see “pure statistical 

learning” in Nemeth, Janacsek, & Fiser, 2013). 

We calculated median RTs given to random trials for each participant in each 

epoch for the four possible triplet types: HH, LL, HL and LH.  Statistical Learning 

Effect (SLE) is the RT difference of responding to high frequency (probable) versus low 

frequency (less probable) trials. To get a positive value, we subtracted RTs given to 

high frequency trials from RTs given to low frequency trials that are usually slower. As 

we were specifically interested in the rewiring of learned sequences, we calculated 2 

different SLE-s: one for those transitions (triplets) that did not change their frequency in 

the Rewiring Phase (SLENO REWIRING = RTLL - RTHH in both phases), and one for those 

that changed their frequency in the Rewiring Phase (SLEREWIRING = RTLH - RTHL in the 

Learning Phase, and SLEREWIRING = RTHL - RTLH in the Rewiring Phase), so that we 

obtained a positive value whenever participants showed learning of the currently valid 

statistical structure (Supplementary Figure SF-IV/2/b). The higher the SLE, the bigger 

the difference between RTs given to the more probable stimuli in contrast to the less 

probable stimuli under the current circumstances. In the Learning Phase, theoretically, 

there was no reason for SLEs to differ in magnitude as a function of later rewiring 

(SLENO REWIRING vs. SLEREWIRING). However, in the Rewiring Phase the two types of 

SLEs may differ if participants experience difficulties modifying their skill. 

SM-IV/1.5. Calculation of anticipatory errors 

To test whether participants learned to anticipate the most probable endings of triplets 

we looked at erroneous responses and classified each error either as being 

nonanticipatory (resulting in a low frequency triplet), anticipation of sequence A (when 

the erroneous key press completed a triplet that was frequent during the Learning Phase, 

although the stimulus was on another location), anticipation of sequence B (when the 

erroneous key press completed a triplet that was frequent during the Rewiring Phase, 

although the stimulus was on another location) or anticipation of both sequences (in the 

rare case when the resulting triplet is high frequency during both phases). As before, we 

only analysed those errors that were given to random elements intervening the pattern 

elements (leaving out the initial preparatory random elements in each block); and we 

excluded those errors that were given on trills or repetitions. If all the errors were 

independent of learning (i.e. they occurred randomly), then by chance 16.67% of them 
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were expected to be anticipatory of sequence A; another 16.67% of them were expected 

to be anticipatory of sequence B; 5.56 % were expected to be anticipatory of both 

Sequence A and Sequence B; and the remaining 61.11% were expected to be 

nonanticipatory. A different error proportion was expected in the case of the probe 

epochs: owing to inclusion of the pattern elements (which always corresponded to high 

frequency triplets of the current sequence), chance levels for anticipations of the 

alternative sequence grew substantially. Specifically, the chance level for anticipatory 

errors of Sequence A in the Learning Phase was only 7.41%, while the chance level for 

anticipations of the other sequence (Sequence B) was 21.42% - and the reversed pattern 

hold for the Rewiring Phase. Our critical measure was whether anticipatory errors were 

more numerous than expected by chance, and whether the proportion of anticipations of 

Sequence A and Sequence B corresponded to the expected pattern - so in our analysis 

we only included anticipatory errors of Sequence A and anticipatory errors of Sequence 

B (leaving out anticipatory errors of both sequences and nonanticipatory errors). It must 

be noted that both kinds of anticipations may be above chance level, but these measures 

are related (to each other and to the other two kinds of errors). If one kind of errors is 

more numerous, it lowers the proportion of other kinds. Also, this measure does not tell 

anything about the total number of errors. Participants without errors on some epochs 

are excluded from this analysis due its within subject nature, as error proportions cannot 

be calculated for these epochs. 

  

SM-IV/1.6. Tests for assessing the explicit knowledge about the sequence 

structures 

SM-IV/1.6.1. Free Generation Task 

According to the process dissociation framework (Jacoby, 1991), intentional and 

automatic, nonintentional forms of memory can be separated by asking participants to a) 

intentionally include the learned material in their responses – the inclusion condition, 

and b) to intentionally exclude the previously learned material from their responses – 

the exclusion condition. If participants nevertheless include the learned material in the 

exclusion condition, knowledge of this material should be considered implicit; while 

performance in the inclusion condition is affected by both implicit and explicit 

knowledge. Comparing the performance under the two conditions can give us an 
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estimate about the explicitness of the learning. Destrebecqz & Cleeremans (2001) 

proposed a ‘free generation’ task as a form of the process dissociation procedure 

specifically adapted to sequence learning paradigms. In the free generation task, stimuli 

appeared on the screen as a result of the corresponding buttonpresses, not the other way 

around. Thus, participants generated the sequence, both under inclusion and exclusion 

conditions.  

As participants learned two sequences during the Learning and Rewiring Phase, 

they performed the free generation task twice on the third day, after the completion of 

the ASRT task: once for Sequence A and once for Sequence B, in random order. The 

stimuli that appeared in the free generation task looked exactly like those seen during 

the Learning and Rewiring Phases and mimicked the original task conditions: if a 

sequence was learned explicitly, stimuli appearing in the free generation task also 

alternated between the two colors. If a sequence was learned implicitly, stimuli 

appearing in the free generation task were always presented in the same color.  

In our free generation task both the inclusion and exclusion conditions consisted 

of 4 blocks of 27 trials (that is, 25 triplets) each. Between the blocks, participants could 

pause for a few seconds if they needed. This way we obtained 100 generated triplets for 

both the inclusion and the exclusion conditions; the percentage of high frequency 

triplets could be easily calculated simply by counting the triplets that were high 

frequency transitions during learning. The question was whether participants differed in 

the explicitness they showed by this procedure as a function of the learning conditions 

of the particular sequence (explicit or implicit). 

Even if a sequence remained entirely implicit, participants could have some 

general knowledge about it, for instance, that runs of three identical stimuli (e.g., 111, 

222) were rare or runs of four identical stimuli (e.g., 1111, 2222) never occurred, etc. 

Performance in the free generation task could be affected by this knowledge. For 

example, if a participant pressed the same button in many consecutive trials, s/he could 

be sure that the resulting sequence was fundamentally different from the learned 

sequence. Such strategies result in data that could not be interpreted as reflecting 

explicit knowledge about the statistical structure of sequence (i.e., high vs. low 

frequency triplets), thus we excluded participants who pressed the same button in at 

least 50% of the free generation trials, and those who did not press at least one of the 

response buttons at all during the free generation trials (although these were somewhat 

arbitrary exclusion criteria; for example, when participants pressed the same button 



 

 

151 

 

49% of the trials had to be included by these criteria, even if we know that in the ASRT 

task all four stimuli occur equally often – 25% of trials). Our algorithm sure does not 

eliminate all strategies that may confound the measurement of implicit and explicit 

knowledge in the task, but at least eliminates those that most robustly affected the 

resulting sequences. This way 24 Implicit-Implicit, 19 Implicit-Explicit, and 18 

Explicit-Explicit participants remained in the analysis.  

 

SM-IV/1.6.2. Triplet Sorting Task 

In our main analysis we were interested in participants’ ability to learn the statistical 

structure resulting from an ASRT sequence (some triplets being frequent, other triplets 

being infrequent). Thus, we used a triplet sorting task (Song, Howard, & Howard, 2008) 

in which we presented all the 64 possible triplets (4x4x4) to participants – in each case, 

runs of three consecutive trials appeared on the screen, all initiated by the computer one 

after the other. Stimuli were identical in location and size to those seen during sequence 

learning – but the color of stimuli were always grey (independently of sequence 

learning conditions). When the presentation of the triplet was over, we asked 

participants to categorize that triplet either as a high frequency triplet or a low 

frequency triplet. As our participants actually learned two sequences (Sequence A and 

Sequence B), participants completed two triplet sorting tasks on the third day after the 

completion of the ASRT task: one for Sequence A and one for Sequence B, in random 

order. 

 

SM-IV/1.7. Statistical analysis 

Results were obtained using Mixed Design ANOVAs and Bonferroni-corrected post 

hoc tests if the omnibus ANOVA showed significant main effects or interactions. 

Sphericity was assessed with Mauchly’s Test, and if this precondition was not met, 

degrees of freedom were adjusted with the Greenhouse-Geisser method. Partial eta 

squared effect sizes are reported for significant main effects and interactions in 

ANOVA. Cohen’s d is reported for post hoc pairwise comparisons. 
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Supplementary Results IV/2. 

SR-IV/2.1. Dynamics of the rewiring process in the experimental epochs compared 

across the Learning and Rewiring Phase 

SR-IV/2.1.1. Statistical Learning Effect (SLE) 

To analyse learning and rewiring on the first two days of the Experiment (see 

Supplementary Figure SF-IV/3/a), a 2 x 8 x 2 x 3 Mixed Design ANOVA was 

conducted on SLE-s with PHASE (Learning Phase or Rewiring Phase), EPOCH (1-8), 

REWIRING (change or no change in the frequency of particular transitions; SLENO 

REWIRING vs. SLEREWIRING) as within subject factors, and GROUP (Implicit-Implicit, 

Implicit-Explicit, Explicit-Explicit) as a between subject factor.  

There was a significant main effect of EPOCH, F(5.584, 446.718) = 6.554, 

MSE =1073.133, p < .001, ηp
2
 = .076, as SLE-s increased as learning progressed in the 

two Phases. The significant main effect of REWIRING, F(1, 80) = 9.604, MSE = 

1649.252, p = .003, ηp
2
 = .107, showed that on average SLE-s of the changed part of the 

sequence were lower than SLEs for the unchanged part of the sequence (d = .446). The 

PHASE x GROUP interaction also reached significance, F(2, 80) = 3.353, MSE = 

1793.348, p = .040, ηp
2
 = .077. Post hoc tests showed that the average SLEs were 

significantly lower in the Rewiring Phase than in the Learning Phase in the case of the 

Implicit-Implicit group (p = .031, d = .575), and there was a trend toward the same 

effect in the Explicit-Explicit group (p = .091, d = .457) but not in the Implicit-Explicit 

group (p = .241, d = .309, the difference being in the other direction). Also, average 

SLEs of the Rewiring Phase in the Implicit-Implicit group were significantly lower than 

the same in the Implicit-Explicit group (p = .022, d = .757). No other paired 

comparisons reaching statistical significance (all ps > .373, all ds < .433).  

 There was a significant interaction of PHASE x REWIRING, F(1, 80) = 

19.604, MSE = 1283.176, p < .001, ηp
2
 = .197. Post hoc tests showed that there was no 

difference between average SLEs of the (later) changed transitions and the unchanged 

transitions of the sequence in the Learning Phase (p = .568, d = .080). In the Rewiring 

Phase, on the other hand, the SLEs for the changed transitions were significantly lower 

(p < .001, d = .829). Also, SLEs for the changed part of the sequence was on average 

lower in the Rewiring Phase than in the Learning Phase (p < .001, d = .729), that is, 
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rewiring was not as effective as the original learning, while performance of the 

unchanged transitions was comparable in the two phases (p = .151, d = .021).  

Most importantly, there was a significant PHASE x REWIRING x GROUP 

interaction, F(2, 80) = 4.951, MSE = 1283.176, p = .009, ηp
2
 = .110, showing that the 

previously described difficulty in rewiring the original skill was not homogenous in the 

three groups. Post hoc tests revealed that SLEs for the rewired sequence part in the 

Rewiring Phase were smallest in the Implicit-Implicit group, being significantly lower 

than in the Explicit-Explicit (p = .028, d = .743) or Implicit-Explicit groups (p < .001, d 

= 1.198). The disadvantage of the rewired sequence part in the Rewiring Phase (in 

contrast to the unchanged sequence part in the same Phase) were apparent in the 

Implicit-Implicit (p < .001, d = 1.425) and the Explicit-Explicit groups (p = .008, d = 

.737), but not in the Implicit-Explicit group (p = .128, d = .406). Finally, the rewired 

SLEs in the Rewiring Phase were smaller than the original learning of these transitions 

in the Learning Phase for both the Implicit-Implicit (p < .001, d = 1.562) and Explicit-

Explicit (p = .028, d = .850) groups, but again, such difficulty in rewiring was not 

apparent in the Implicit-Explicit group (p = .561, d = .155). There was no other 

significant main effect or interaction (all ps > .117, all ηp
2
 < .032). 

 In summary, the Implicit-Implicit group had more difficulty in rewiring the 

original skill than the other groups – thus rewiring of such skills may benefit from 

explicit knowledge about the sequence’s structure. As shown by 95% confidence 

intervals (see the blue line on Supplementary Figure SF-IV/3/a) rewiring started later in 

the Implicit-Implicit group, and was not statistically significant in the first half of the 

Rewiring Phase. In contrast, rewiring was evident as early as the first epoch of the 

Rewiring Phase in the case of the Implicit-Explicit and Explicit-Explicit groups.  
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SF-IV/3. Learning and rewiring – detailed graphs. (a) The magnitude of Statistical Learning Effect 

(SLE) indicates the difference of RTs given to frequent transitions (probable stimuli) in contrast to rare 

transitions (less probable stimuli). Some of the transitions had constant frequency in the Learning Phase 

and Rewiring Phase (unchanged transitions, dark grey line), while other transitions swapped their 

frequency – previously rare transitions became frequent in the Rewiring Phase, and vice versa (changed 

transitions). Adapting to the changed statistical structure in the Rewiring Phase was shown to be more 

difficult than learning the contingencies in the first place in the Learning Phase. This was shown by SLEs 

being – on average – lower for the changed transitions after the change in frequencies took place in the 

Rewiring Phase (blue line) than before the change (dark grey line). This difficulty was most pronounced 

in the Implicit-Implicit group, and less pronounced in the Implicit-Explicit group. Error bars represent 

95% confidence intervals. (b) When less probable stimuli came up, participants sometimes errorneously 

pressed the key corresponding to the most probable stimulus – these errors are called anticipatory errors. 

As two (partly) different sequences were taught, we differentiated between anticipations of Sequence A’s 

most probable stimuli (dark grey area), that of Sequence B’s most probable stimuli (blue area), and those 

that could be considered as anticipations of both (light grey area). Chance levels for anticipatory errors 

are shown by the dotted lines. We were mainly interested in anticipations that either corresponded to 

Sequence A or to Sequence B (dark grey and blue areas). Each group showed adaptation to the current 

sequence, as anticipations for Sequence A were above chance level in the Learning Phase, while 

anticipations of Sequence B were above chance level in the Rewiring Phase. The Implicit-Implicit group 

additionaly showed above chance level anticipations of Sequence A during the Rewiring Phase, 

indicating the continuing influence of their knowledge gained in the Learning Phase. 
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SR-IV/2.1.2. Anticipatory Errors 

To look at anticipations of Sequences A and B during the Learning Phase and the 

Rewiring Phase (see Supplementary Figure SF-IV/3/b), a 2 x 8 x 2 x 3 Mixed Design 

ANOVA was conducted with PHASE (Learning Phase or Rewiring Phase), EPOCH 

(1-8) and ANTICIPATION (anticipation of Sequence A vs. anticipation of Sequence 

B) as within subject factors and GROUP (Implicit-Implicit, Implicit-Explicit and 

Explicit-Explicit) as a between subjects factor.  

There were no significant main effects (all ps > .113, all ηp
2
 < .036). The 

interaction of ANTICIPATION x GROUP showed a trend towards significance, F(2, 

71) = 2.544, MSE = 904.244, p = .086, ηp
2
 = .067. Post hoc tests revealed that, overall, 

anticipations of Sequence A and Sequence B did not differ in either group (all ps > .106, 

all ds < .548); however, there was a difference between the Implicit-Implicit and 

Implicit-Explicit groups when anticipating transitions common in Sequence A: the 

Implicit-Implicit group made more such anticipations then the Implicit-Explicit group 

(p = .050, d = .714). No other paired comparison reached significance, all ps > .163, all 

ds < .600).  

 The PHASE x ANTICIPATION interaction was significant, F(1, 71) = 86.707, 

MSE = 572.289, p < .001, ηp
2
 = .550. As expected (and as shown by post hoc 

comparisons), anticipations of Sequence A were more pronounced in the Learning 

Phase than anticipations of Sequence B, and vice versa in the Rewiring Phase (both p < 

.001, both d > 1.061). During the time course of learning, anticipations of Sequence A 

were more common in the Learning Phase than in the Rewiring Phase; while 

anticipations of Sequence B were more common in the Rewiring Phase than in the 

Learning Phase (both p < .001, both d > .979). Most importantly, the PHASE x 

ANTICIPATION x GROUP interaction was also significant, F(2, 71) = 3.917, MSE = 

572.289, p = .024, ηp
2
 = .099. Post hoc tests revealed that the previously described 

pattern was observed in all experimental groups, although effect sizes were substantially 

smaller in the case of the Implicit-Implicit group (both d < 0.672) than in the other 

groups (all ds > 1.226). Looking at the Learning Phase alone, groups did not differ in 

terms of anticipations of Sequence A (all ps > .999, ds < .263) and Sequence B (all ps > 

.999, ds < .285). In all groups, anticipations of Sequence A outnumbered anticipations 

of Sequence B in this Phase (all ps < .001, all ds > 1.058). Looking at the Rewiring 

Phase alone, however, showed us a more complicated pattern. In this phase 
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anticipations of Sequence B outnumbered anticipations of Sequence A only in the 

Explicit-Explicit and Implicit-Explicit groups (both p < .001, both d > .1.133) but not in 

the Implicit-Implicit group (p = .529, d = .225). Anticipations of Sequence B were 

significantly less common in the Implicit-Implicit group than in the Implicit-Explicit 

group (p = .047, d = .721), while anticipations of Sequence A were significantly more 

common in the Implicit-Implicit group than both in the Implicit-Explicit and the 

Explicit-Explicit groups (both p < .036, both d > .795). The latter findings may be 

interpreted as a shift toward anticipating Sequence A at the expense of anticipating 

Sequence B in the case of the Implicit-Implicit group. 

 

SR-IV/2.2. Testing the efficiency of the rewiring process in the experimental 

epochs of the Follow-up Phase  

On the third day of the experiment, participants performed the sequence that was 

learned in the Learning Phase (Sequence A) as well as the sequence that was learned in 

the Rewiring Phase (Sequence B). The order of these mini-epochs was counterbalanced 

across participants. We were interested in the consolidation of their knowledge about 

the statistical structure of the task, and particularly, whether they could re-adapt to the 

characteristics of the Learning Phase or not (that is, whether the statistical learning on 

the first day was overwritten by the statistical learning on the second day, or they 

existed in parallel). This analysis provides information about retroactive interference 

effects (in addition to proactive effects assessed earlier).  

 

SR-IV/2.2.1. Statistical Learning Effect (SLE) 

We conducted a 2 x 2 x 3 Mixed Design ANOVA on SLEs with SEQUENCE (the 

same conditional probabilities as in the Learning Phase - that is, Sequence A; or the 

same conditional probabilities as in the Rewiring Phase - that is, Sequence B) and 

REWIRING (change or no change in the frequency of particular transitions) as within 

subject factors, and GROUP (Implicit-Implicit, Implicit-Explicit, and Explicit-Explicit) 

as a between subject factor.  

There was a significant main effect of SEQUENCE, F(1, 79) = 6.245, MSE = 

891.475, p = .015, ηp
2
 = .073, as higher statistical knowledge was expressed for 

Sequence B (that is, for the conditional probabilities that corresponded to the Rewiring 
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Phase on the second day of the study), than for Sequence A (d = .404). There was also a 

significant main effect of REWIRING, F(1, 79) = 9.574, MSE = 943.423, p = .003, ηp
2
 

= .108, as higher statistical knowledge was expressed for those transitions that never 

changed their frequency of occurrence than for those that changed (d = .506). No other 

main effect or interaction reached significance, all ps > .284, ηp
2
  < .031.  

SR-IV/2.2.2. Anticipatory errors 

There were two participants who made no errors when performing one of the Sequences 

- analysis was conducted on the remaining 27 (Explicit-Explicit), 28 (Explicit-Implicit) 

and 26 (Implicit-Implicit) participants. Chance level for both kinds of anticipations 

(anticipations of Sequence A and anticipations of Sequence B) was 16.67%. To assess 

anticipations on the third day of the study, a 2 x 2 x 3 Mixed Design ANOVA was 

conducted with SEQUENCE (Sequence A vs. Sequence B) and ANTICIPATION 

(anticipation of transitions common to Sequence A only vs. anticipation of transitions 

common to Sequence B only) as within subject factors and GROUP (Implicit-Implicit, 

Implicit-Explicit, and Explicit-Explicit) as a between subjects factor.  

There was a trend towards a main effect of GROUP, F(2, 78) = 2.582, MSE = 

292.754, p = .082, ηp
2
 = .062. However, post hoc pairwise comparisons revealed no 

significant differences between groups, all ps >.141, ds < .574. We also found a 

significant interaction of SEQUENCE x ANTICIPATION, F(1, 78) = 13.815, MSE = 

596.817, p < .001, ηp
2
 = .150. Post hoc tests revealed that when performing Sequence A, 

anticipations of Sequence A were more common than anticipations of Sequence B (p = . 

004, d = .533), and than what might have been expected by chance, CI95% [24.699,  

34.391]. Anticipations of Sequence B did not differ from chance level, CI95% [15.318, 

22.844]. When performing Sequence B, on the other hand, anticipations of Sequence B 

outnumbered anticipations of Sequence A (p = .009, d = .503), and were more 

numerous than expected by chance, CI95% [23.822, 32.291]. Anticipations of Sequence 

A did not differ from chance level, CI95% [14.024, 22.644]. From another point of 

view, anticipations of Sequence A were significantly more pronounced when 

performing Sequence A than when performing Sequence B, and vice versa (both p < 

.003, d > .494). This pattern of results indicate no proactive or retroactive interference, 

as participants were able to quickly adapt to the changed statistical conditions. 
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SR-IV/2.3. Dynamics of the rewiring process in the probe epochscompared across 

the Learning and Rewiring Phase 

SR-IV/2.3.1. Statistical Learning Effect (SLE) 

SLEs were calculated for the probe epochs of the Learning and Rewiring Phase. During 

these short epochs at the beginning, in the middle and at the end of each phase, trials 

were not cued, thus the task remained implicit for all participants. This manipulation 

made it possible to compare groups under uniform experimental conditions. Also, as 

there were no cued trials during these epochs, there was no need to exclude pattern 

trials. Correspondingly, although these epochs were substantially shorter than the 

experimental epochs, about the same number of trials were analysed. It must be noted, 

though, that the proportion of high frequency (more probable) and low frequency (less 

probable) combinations are different if the analysis includes pattern trials, as in this case 

there are more high frequency triplets than low frequency triplets, making the median 

RTs of the latter a bit noisier then the former.  

 Similarly as before, a 2 x 8 x 2 x 3 Mixed Design ANOVA was conducted on 

SLEs shown in Supplementary Figure SF-IV/4/a with PHASE (Learning Phase vs. 

Rewiring Phase), PROBE EPOCH (1-3) and REWIRING (change or no change in the 

frequency of particular transitions) as within subject factors, and GROUP (Implicit-

Implicit, Implicit-Explicit, and Explicit-Explicit) as a between subject factor.  

The main effect of PROBE EPOCH was significant, F(1.633, 130.680) = 

34.447, MSE = 947.431, p < .001, ηp
2
 = .301, as statistical knowledge indicated by SLEs 

became higher as learning progressed. The main effect of REWIRING showed a trend 

towards significance, F(1, 80) = 2.870, MSE = 1157.559, p = .094, ηp
2
 = .035, as overall 

SLEs were higher for the never changed parts of the sequence than for the changed part 

(d = .224). We found a significant PHASE x REWIRING interaction,  F(1, 80) = 

18.905, MSE = 858.840, p < .001, ηp
2
 = .191. Post hoc tests revealed that although there 

was no difference between the later to be changed transitions and the unchanged 

transitions during the Learning Phase (p = .166, d = .202), there was a substantial 

advantage of the unchanged transitions during the Rewiring Phase (p < .001, d = .737). 

During the time course of learning, there was a significant improvement in the 

performance on the unchanged parts of the sequence from the Learning Phase to the 

Rewiring Phase (learning for these transitions continued in the Rewiring Phase, p = 

.001, d = .432); while there was a significant drop in statistical knowledge for the 
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rewired sequence parts in the Rewiring Phase (compared to the original learning in the 

Learning Phase, p = .009, d = .414).  

 There was also a significant PHASE x REWIRING x GROUP interaction, F(2, 

80) = 3.908, MSE = 858.840, p = .024, ηp
2
 = .089, meaning that the previously described 

pattern was not homogenous in the three groups. Post hoc comparisons revealed that the 

Implicit-Implicit group showed an advantage of the later to be rewired sequence parts 

during the Learning Phase (p = .013, d = .654), while no difference between the later 

changed and unchanged sequence parts were observed in the other two groups (both p > 

.809, both d < .063). The difficulty of rewiring was apparent in all three groups, as 

participants responded faster to the unchanged transitions than to the recently changed 

transitional probabilities in the Rewiring phase (Explicit-Explicit group: p = .060, d = 

.541; Implicit-Explicit group: p = .023, d = .645, Implicit-Implicit group: p < .001, d = 

1.097). It could also be observed that learning of the unchanged transitional 

probabilities continued in the Rewiring Phase, as statistical knowledge for these 

transitions were higher in the Rewiring Phase than in the Learning Phase for all groups 

(although this pattern was significant only in the Implicit-Implicit group: p = .001, d = 

.767; a trend was observed for the Explicit-Explicit group: p = .083, d = .389, and 

nonsignificant in the Implicit-Explicit group: p = .405, d = .182). Statistical learning for 

the recently changed transitional probabilities, on the other hand, was smaller than the 

original learning before rewiring for all groups (although it only reached significance in 

the Implicit-Implicit group: p = .001, d = .913; all other p > .287, d < .296). In addition, 

there was an interaction of PROBE EPOCH x REWIRING x GROUP, F(4, 160) = 

2.969, MSE = 649.224, p = .021, ηp
2
 = .069, indicating that the previously described 

effects varied as a function of probe epochs in the Learning and Rewiring Phases. A 

detailed graph depicting all levels of this interaction is shown in Supplementary Figure 

SF-IV/4/a. 

 In summary, analysis of the probe epochs strengthened our results observed in 

the experimental epochs. Rewiring of recently changed transitional probabilities was 

shown to be harder for the Implicit-Implicit group than for the other two groups who 

rewired with the help of explicit cues, although – by the end of the Rewiring Phase – all 

three groups showed adaptation to the new statistical structure (shown by 95% CIs on 

the blue lines on Supplementary Figure SF-IV/4/a). 
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SF-IV/4. Learning and Rewiring in the Probe epochs – detailed graphs. (a) Adapting to the changed 

statistical structure in the Rewiring Phase was shown to be more difficult than learning the contingencies 

in the first place in the Learning Phase. This was shown by SLEs being – on average – lower for the 

changed transitions after the change in frequencies took place in the Rewiring Phase (blue line) than 

before the change (dark grey line). Error bars represent 95% CIs. (b) Anticipatory errors either 

corresponded to Sequence A or to Sequence B (dark grey and blue areas). Participants could adapt to both 

statistical regularities as anticipations of Sequence A were higher than expected by chance when 

performing Sequence A in the Learning Phase; similarly, anticipations of Sequence B were higher then 

expected by chance when performing Sequence B in the Rewiring Phase. Chance levels for anticipatory 

errors are shown by the dotted lines. 

 

 

SR-IV/2.3.2. Anticipatory errors 

Participants without errors on some probe epochs were excluded from the analysis due 

its within subject nature, as error-proportions could not be calculated for these probe 

epochs. Analysis was performed on the remaining 23 (Explicit-Explicit), 26 (Implicit-

Explicit) and 23 (Implicit-Implicit) participants. We conducted a 2 x 3 x 2 x 3 Mixed 

Design ANOVA on the anticipatory data shown in Supplementary Figure SF-IV/4/b 

with PHASE (Learning Phase vs. Rewiring Phase), PROBE EPOCH (1-3) and 

ANTICIPATION (anticipation of Sequence A vs. anticipation of Sequence B) as 

within subject factors and GROUP (Implicit-Implicit, Implicit-Explicit, and Explicit-

Explicit) as a between subject factor.  

 The ANOVA revealed only one significant interaction: a PHASE x 

ANTICIPATION interaction, F(1, 69) = 66.157, MSE = 308.436, p < .001, ηp
2
 = .489. 

Post hoc tests revealed that – as expected even by chance levels – there were 

significantly more anticipations of Sequence B than anticipations of Sequence A during 

the Learning Phase; and vice versa (both p < .001, d > .765); furthermore, 95% 
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confidence intervals indicated that in the Learning Phase the anticipations of Sequence 

A were more pronounced than expected by chance, CI95% [11.139, 14.752], while 

anticipations of Sequence B did not differ from what we might have expected by 

chance, CI95% [18.091, 24.229]. In the Rewiring Phase, anticipatory errors of Sequence 

A did not differ from what we might have expected by chance, CI95% [20.760, 26.173]; 

while anticipations of Sequence B were more numerous than expected by chance, 

CI95% [9.894, 14.525]. Thus, anticipatory errors indicated that participants indeed 

learned to anticipate the most probable continuation of the previous trials both before 

and after rewiring the transitional probabilities. Post hoc tests also indicated that 

anticipations of Sequence A were of greater proportion during the Rewiring Phase than 

during the Learning Phase, and vice versa for anticipations of Sequence B (both p < 

.001, d > .773) – this pattern was expected even by chance, thus not providing 

additional information to our evaluation of the results. Critically, the interaction of 

PHASE x ANTICIPATION x GROUP was not significant, F(2, 69) = 0.580, MSE = 

308.436, p = .563, ηp
2
 = .017, suggesting that the previously described pattern was 

similar across the three experimental groups. This result did not rule out the possibility 

that differences existed, though, as the pattern can be very similar across groups even if 

some anticipations are above or below chance levels for some of the groups – this being 

the most important information we tried to uncover. Finally, there was a trend towards a 

PROBE EPOCH x ANTICIPATION x GROUP interaction, F(4, 138) = 2.013, MSE 

= 300.555, p = .096, ηp
2
 = .055. A detailed graph depicting all levels of the interaction is 

shown in Supplementary Figure SF-IV/4/b. 

 

SR-IV/2.4. Testing the efficiency of the rewiring process in the probe epochs of the 

Follow-up Phase  

SR-IV/2.4.1 Statistical Learning Effect (SLE) 

SLEs were calculated for probe epochs of the Follow-up Phase as previously described 

for the Learning and Rewiring Phase. We conducted a 2 x 2 x 3 Mixed Design ANOVA 

on SLEs shown in Supplementary Figure SF-IV/5/a with SEQUENCE (Sequence A 

vs. Sequence B) and REWIRING (change or no change in the frequency of particular 

transitions) as within subject factors, and GROUP (Implicit-Implicit, Implicit-Explicit, 

and Explicit-Explicit) as a between subject factor.  
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There was a significant main effect of REWIRING, F(1, 80) = 26.449, MSE = 

585.105, p < .001, ηp
2
 = .248, as higher statistical knowledge was expressed for those 

transitions that never changed their transitional probability than for those that changed 

(d = .852). No other main effect or interaction reached significance, all ps > .313, ηp
2
  < 

.030. This pattern of results indicates only proactive but no retroactive interference. 

 

 

 

 

SF-IV/5. Consolidation of learning in the Probe epochs of the Follow-up Phase. (a) The magnitude of 

SLE indicates the difference of RTs given to frequent transitions (probable stimuli) in contrast to rare 

transitions (less probable stimuli). Some of the transitions had constant frequency in both Sequences 

(unchanged transitions, dark grey line), while other transitions were frequent in only one of the 

Sequences, not in the other (changed transitions; dark grey bars for Sequence A and blue bars for 

Sequence B). Performance was better on the unchanged transitions than on changing transitions in all 

groups. No group differences were observed. (b) Anticipatory errors of Sequence A’s most probable 

stimuli are shown in dark grey bars, and that of Sequence B’s most probable stimuli are shown in blue 

bars. Chance levels for anticipatory errors are shown by the dotted lines (there is a lower chance level of 

anticipatory errors of Sequence A when performing Sequence A than when performing Sequence B, and 

vice versa). Participants could readapt to both statistical regularities as anticipations of Sequence A were 

higher than expected by chance when performing Sequence A in the Follow-up Phase; similarly, 

anticipations of Sequence B were higher than expected by chance when performing Sequence B in the 

Follow-up Phase. Error bars represent 95% CIs. 

 

 

SR-IV/2.4.2 Anticipatory errors 

Anticipatory errors for the probe epochs of the Follow-up Phase were calculated as 

previously described for the Learning and Rewiring Phase.  A 2 x 2 x 3 Mixed Design 

ANOVA on the anticipatory errors shown in Supplementary Figure SF-IV/5/b was 

conducted with SEQUENCE (Sequence A vs. Sequence B) and ANTICIPATION 

(anticipation of transitions common to Sequence A only vs. anticipation of transitions 

common to Sequence B only) as within subject factors and GROUP (Implicit-Implicit, 

Implicit-Explicit, and Explicit-Explicit) as a between subjects factor.  
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 The ANOVA revealed a significant main effect of GROUP, F(2, 79) = 3.566, 

MSE = 193.010, p = .033, ηp
2
 = .083. Post hoc tests showed that this was caused by the 

Implicit-Implicit group making – on a trend level - more anticipations of Sequence A 

and B (overall) than the Explicit-Explicit group (p = .070, d = .705). No other paired 

comparison reached statistical significance, both p > .434, d < .444. We also found a 

significant SEQUENCE x ANTICIPATION interaction, F(1, 79) = 17.558, MSE = 

324.940, p < .001, ηp
2
 = .182. Post hoc tests revealed a pattern consistent with chance 

levels, that is, higher levels of anticipations of Sequence B when performing Sequence 

A, and vice versa (both p < .011, d > .468); and higher levels of Sequence B during 

Sequence A than during Sequence B - and vice versa (both p < 0.03, d > .503). Solely 

on the basis of the ANOVA we could not infer anything about anticipatory errors; 

confidence intervals, on the other hand, provide some interesting details. Anticipations 

of Sequence A when performing Sequence A exceeded chance levels, CI95% [10.856, 

17.527], and so did anticipations of Sequence B when performing Sequence B, 

CI95%[11.598, 18.029]. Anticipations of Sequence A, on the other hand, did not exceed 

chance levels when performing Sequence B, CI95%[18.067, 25.015], and vice versa, 

CI95%[20.679, 28.599].  

 Finally, there was a trend towards a SEQUENCE x ANTICIPATIONS x 

GROUP interaction, F(2, 79) = 2.777, MSE = 324.940, p = .068, ηp
2
 = .066, indicating 

that the previously described pattern of results was not the same in the three 

experimental groups. Post hoc tests revealed that the pattern expected by chance was 

apparent in the Explicit-Explicit and Implicit-Explicit groups (all ps < .039, all ds > 

.658), but not in the Implicit-Implicit group where anticipations of Sequence A and 

Sequence B were equally high both when performing Sequence A and when performing 

Sequence B (all ps > .551, ds < .213); additionally, 95% CIs indicated that the Implicit-

Implicit group showed above-chance level of anticipations of Sequence A when 

performing Sequence A, CI95%[ 15.069, 27.189], and above-chance level of 

anticipations of Sequence B when performing Sequence B, CI95%[14.050, 25.736]. 

Based on confidence intervals, the Implicit-Explicit group also showed above-chance 

level anticipations of Sequence B when performing Sequence B, CI95% [8.377, 

19.126].  

 In addition to these effects, there were differences between groups regarding the 

proportion of anticipations of Sequence A (when performing Sequence A); the Implicit-

Implicit group showed significantly higher rates than the Explicit-Explicit group (p = 
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.023, d = 836), and – on a trend level - higher rates than the Implicit-Explicit group (p = 

.080, d = .680). Also, there were differences between groups regarding the proportion of 

anticipations of Sequence B when performing Sequence B; the Implicit-Implicit group 

showed higher rates than the Explicit-Explicit group (on a trend level, p = .080, d = 

688). No other paired comparison reached significance, all ps > .381, all ds < .465. 

 

SR-IV/2.5 Testing the explicit knowledge acquired about the sequence structures 

SR-IV/2.5.1. Free Generation Task 

We conducted a Mixed Design ANOVA on the percentage of generated high frequency 

triplets with SEQUENCE (Sequence A vs. Sequence B) and CONDITION (Inclusion 

vs. Exclusion) as within subjects factors and GROUP (Implicit-Implicit, Implicit-

Explicit, and Explicit-Explicit) as a between subject factor. To understand the results of 

such a factorial ANOVA, we have to keep in mind that the average explicitness of the 

task differed between the sequences and the conditions; the Explicit-Explicit group 

learned both sequences explicitly, thus the average explicitness was highest for this 

group; the Implicit-Explicit group learned Sequence A implicitly but Sequence B 

explicitly; while the Implicit-Implicit group learned both sequences implicitly (thus the 

average explicitness was lowest for this group). On the other hand, Sequence A was 

learned explicitly by only one of the groups (the Explicit-Explicit group), while 

Sequence B was learned explicitly by both the Implicit-Explicit and the Explicit-

Explicit groups, making the average explicitness for Sequence B higher than that of 

Sequence A. 

We found a significant main effect of SEQUENCE, F(1, 58) = 6.611, MSE = 

122.210, p = .013, ηp
2
 = .102, as participants generated – on average – more high 

frequency triplets for Sequence B than for Sequence A (d = .502). There was also a 

significant main effect of GROUP, F(2, 58) = 24.295, MSE = 88.008, p < .001, ηp
2
 = 

.456, as the number of generated high frequency triplets was highest for the Explicit-

Explicit group (CI95% [36.565, 40.991], significantly differing from the other groups, 

both p < .002, d > 1.327); and lowest for the Implicit-Implicit group (CI95% [26.667, 

30.50], significantly differing from the other two groups, p < .014, d > .947).  

More importantly, there was a significant SEQUENCE x GROUP interaction, 

F(2, 58) = 4.623, MSE = 122.210, p = .014, ηp
2
 = .138. Post hoc tests revealed that the 
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interaction was caused by higher explicitness if the learning was explicit than when 

learning was implicit (see Supplementary Figure SF-IV/6). That is, for Sequence A the 

Explicit-Explicit group outperformed the other two groups, both p < .002, d > 1.272 (the 

other groups did not differ from each other, p > .999, d = .137) – in accordance with this 

group being the only one to learn Sequence A explicitly. For Sequence B, on the other 

hand, a disadvantage of the Implicit-Implicit group was apparent – they generated 

significantly less high frequency triplets than the Implicit-Explicit and Explicit-Explicit 

groups, both p < .002, d > 1.262 (the latter two not differing from each other, p = .832, d 

= .379). The number of generated high frequency triplets for the two sequences did not 

differ from each other in the case of the Implicit-Implicit (p = .620, d = .160) and 

Explicit-Explicit (p = .263, d = .428) groups; but it was higher for Sequence B in the 

case of the Implicit-Explicit group (p = .001, d = 1.330) – as this was the only group 

where learning instructions differed for the two sequences. Thus, these results show that 

participants indeed gained more explicit knowledge about the regularities when they 

performed the explicit version of the task and were asked to keep track of these 

regularities. 

 

 

 

 

SF-IV/6. Percentages of generating high frequency triplets in the free generation task. Participants 

in the implicit conditions performed well below of those in the explicit conditions when they were asked 

to generate similar sequences as the ones that they encountered during the experiment. 
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We also found a significant main effect of CONDITION, F(1, 58) = 74.559, 

MSE = 151.926, p < .001, ηp
2
 = .562, as more high frequency triplets were generated 

under the inclusion condition than under the exclusion condition (d = 1.785). In 

addition, there was a significant CONDITION x GROUP interaction, F(2, 58) = 5.615, 

MSE = 853.092, p = .006, ηp
2
 = .162. Post hoc tests revealed that the previously 

described effect was only apparent under the inclusion condition (all ps < .028, all ds > 

.933), and the groups generated similar number of high frequency triplets under the 

exclusion condition (all ps > .163, all ds < .652). Overall, all groups generated more 

high frequency triplets under the inclusion condition than under the exclusion condition 

(all ps < .010, all ds > .900). When participants learned the sequences implicitly, this 

result of more high frequency triplets in the inclusion vs. exclusion conditions can be 

caused by a more general knowledge/belief about the task structure, not the awareness 

of the particular high vs. low frequency transitional probabilities per se (although we 

cannot totally rule this out).  

Inclusion and exclusion strategies may differ for implicit and explicit learners, 

and consequently, the difference between inclusion and exclusion performance may 

mean different things in the two groups. For the explicit group, the instructions are quite 

straightforward as the alternating sequence was explicitly cued for them during the 

Learning/Rewiring Phases. Consequently, they could more easily generate the known 

alternating sequence (inclusion condition) and also could know what sequence to not 

generate (exclusion condition). For the implicit learners the instructions might have 

been more puzzling: they might have generated a seemingly random sequence just as 

they experienced throughout the task (inclusion condition) vs. a sequence intentionally 

so that it does not seem random (exclusion condition). These cases can lead to similar 

outcomes, but it does not necessarily mean explicit knowledge about the alternating 

sequence (actually it may indicate that the sequence was perceived absolutely random, 

and thus the generation under exclusion condition is something (anything) non-random. 

In line with this argument, Fu and collegues showed that the difference between 

inclusion and exclusion scores could be based either on rules and memory (more 

explicit processes) but also on intuition (more implicit processes) (Fu, Dienes, & Fu, 

2010). Consequently, this task alone is not suited to measure the conscious status of 

structural knowledge (Gaillard, Cleeremans, & Destrebecqz, 2014). 

Importantly, significant group differences were found under the inclusion 

condition that reflect the effect of the explicit instructions. The results of the Triplet 
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Sorting Task (see the next section) further supports the interpretation that knowledge of 

the underlying structure in the ASRT task remained implicit for participants in the 

implicit conditions.  

SR-IV/2.5.2 Triplet Sorting Task 

We were interested in how accurately participants sorted transitions (triplets) for 

Sequence A and Sequence B. We conducted a Mixed design ANOVA with 

SEQUENCE (Sequence A vs. Sequence B) as a within-subject factor and GROUP 

(Implicit-Implicit, Implicit-Explicit, and Explicit-Explicit) as a between subject factor. 

Due to technical errors, data for 7 participants were lost, all from the Implicit-Implicit 

group; therefore the ANOVA was conducted on the data from the remaining 

participants. 

 Overall accuracy was 50.208% (SEM = 0.987, CI95% [48.238%, 52.178%]), 

thus not significantly different from what we would expect by chance. There was a 

trend towards a main effect of SEQUENCE, F(1, 69) = 2.791, MSE = 42.823, p = .099, 

ηp
2
 = .039, participants being on average more accurate in the case of Sequence B than 

Sequence A (d = .191) – a fact possibly reflecting that knowledge of Sequence A in part 

became overwritten by the knowledge of Sequence B. In spite of the trend towards 

significance, 95% CIs showed that average accuracy for both Sequence A and Sequence 

B remained around (and not differed significantly from) the 50% chance level; accuracy 

for Sequence A: CI95% [47.310, 51.272], accuracy for Sequence B: CI95% [48.628, 

53.624]. No other main effect or interaction reached significance, all ps > .271, all ηp
2
 < 

.037, suggesting that the groups did not differ in their average accuracy, and that the 

effect of Sequence on accuracy was similar across groups.  

The low performance on this measure could indicate at least two things: first, it 

may indicate that in spite of cueing the pattern trials under explicit task conditions, the 

knowledge of statistical structure (the relative frequency of different transitions) 

remained implicit for the participants. Second, participants may have had a knowledge 

about some triplets being more frequent than others, but they may have not been able to 

tell whether a particular transition was frequent during the Learning Phase (Sequence 

A) or the Rewiring Phase (Sequence B). Thus, low performance might have been 

caused by participants sorting high frequency trials as such, but not being able to 

correctly differentiate between Sequence A and Sequence B. This possibility should not 

be ignored considering that participants – on average – sorted 55.757% as high 
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frequency trials, although in reality only 25% of them were truly high frequency 

(combined over the Learning and Rewiring Phases). 

If a participant knew that a particular transition was frequent during one of the 

phases, but classified it as high frequency for the wrong sequence (e.g. classified it as 

being high frequency during Sequence A while in reality it was high frequency during 

Sequence B), this classification appears as a false alarm reducing overall accuracy 

scores. So we were interested in how many of such false alarms could be detected; we 

rerun the previously described ANOVA, but this time the dependent variable was this 

false alarm rate (correct classification of a transition but for the wrong sequence). The 

overall rate of such errors was 18.296% (SEM = 0.325, CI95% [17.647, 18.946]), thus 

not significantly different from chance level (18.75%). However, we found a significant 

main effect of GROUP, F(2, 69) = 3.946, MSE = 15.027, p = .024, ηp
2
 = 0.103. Post 

hoc tests revealed that the percentage of such errors was significantly lower in the case 

of the Implicit-Explicit group than in the case of the Implicit-Implicit group (p = .022, d 

= .829). The Explicit-Explicit group’s false alarm rate was between these two, not 

significantly different from either (both p > .312, d < .480). This result suggests that the 

interference was highest in the Implicit-Implicit group, and lowest in the Implicit-

Explicit group. In spite of these differences, none of the groups showed more false 

alarms than expected by chance, as the 95% CIs included the 18.75 value.  

In addition, there was a trend towards a main effect of SEQUENCE, F(1, 69) = 

3.438, MSE = 17.459, p = .068, ηp
2
 = .047, as false alarms were more numerous in the 

case of Sequence A than for Sequence B (d = .323). In other terms, retroactive 

interference was higher than proactive interference, possibly reflecting that knowledge 

for Sequence A might become partly overwritten by knowledge for Sequence B. But 

again, despite these differences, false alarm rates remained around chance level (and did 

not differ from it significantly, as the 95% CIs included the 18.75 value). The 

interaction of SEQUENCE x GROUP was not significant, p = .834, ηp
2
 = .005, 

indicating that the previously described main effect of sequence was similar across 

groups. 

In summary, the analysis of false alarms in the triplet sorting task shows that the 

interference caused by learning two, partly overlapping sequences was highest in the 

Implicit-Implicit group. This result suggests that the explicit cues indeed can help 

differentiate between the two sequences and use the acquired knowledge more 

appropriately in the relevant context. 



 

 

169 

 

Supplementary Materials for Study 4 

Description of Supplementary Tables ST-V/1 to ST-V/4 

Tables V/1-V/4 supplement the Results (Section 1, including Fig V/3-V/5) in the main 

text by providing supporting statistics.  

ST-V/1 Trial Type Proportions. For each individual (N = 180) a Chi-Square 

test was run to assess whether random (R) and pattern (P) trials occur 

with the same relative frequency in the different categories present in a 

Model. Effect sizes (Cramer’s V) were also calculated individually. 

These computations were repeated using Triplet Filtering (TF) and Quad 

Filtering (QF). Values in the table represent the percentage of 

participants where the result of the Chi-Squared test was significant (χ
2 

% 

participant significant) and the mean Cramer’s V values and the standard 

deviation of these values (Cramer’s V mean (SD)). 

ST-V/2  Trial Probability. To assess whether the distribution of trial 

probabilities (assessed either on triplet level or on quad level) were equal 

in the categories being contrasted for a particular learning score, 

Kolmogorov-Smirnov tests were run for each individual (N =180).  To 

assess the direction of difference (if a difference was observed), an 

additional Mann-Whitney test was also run. Finally, the AUROC (Area 

Under the Reciever Operating Charachteristic Curve) was also calculated 

individually (AUC = Mann-Whitney U / (n1 x n2); where n1 and n2 refer 

to the two sample sizes). This statistics gives the probability that a 

randomly chosen value from one sample is higher that a randomly chosen 

value from the other sample, which we refer to as the Probability of 

Superiority in the Table. 

The four values reported are then the following:  The percentage of 

participants experiencing significantly different distributions of trial 

probabilities in the contrasted categories (KS % participant significant); 

the percentage of participants experiencing significantly higher trial 

probabilities in the first category (MW % participant significant (a > b)); 

the percentage of participants experiencing significantly higher trial 
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probabilities in the second category  (MW % participant significant (a > 

b)), and the average probability that a randomly chosen member of 

category b is higher than a randomly chosen member of category A, 

along with the standard deviation of these values (Probability of 

Superiority b > a mean % across participants (SD)). 

ST-V/3 Combination Frequency. The same statistics were calculated and 

presented that are described in Table S2. 

ST-V/4  The Abstract Structure of the Combinations. The same statistics were 

calculated and presented as in Table S1, the only difference being that 

instead of trial proportions the relative frequency of abstact categories of 

combinations were compared. 
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ST-V/1. Trial Type 

Proportions. 

χ
2   

% participant significant 

Cramer’s V  

mean (SD) 

NF TF QF NF TF QF 

M1 
R (a) vs. P (b) 

Trial Type Effect 
100.00 100.00 100.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

M2 
L (a) vs. H (b) 

Sequence Spec. L. 
100.00 100.00 100.00 

0.78 

0.01 

0.73 

0.01 

0.58 

0.02 

M3 

LR (a) vs. HR (b) 

Pure Statistical Learn. 
0.00 0.00 0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

HR (a) vs. HP (b) 

Higher Order Seq.L. 
100.00 100.00 100.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

LR (a) vs. HP (b) 

Maximized Learning 
100.00 100.00 100.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

M4 

L (a) vs. H1 (b) 

Triplet L. (+ P. L.) 
100.00 100.00 100.00 

0.62 

0.00 

0.58 

0.01 

0.50 

0.01 

H1 (a) vs. H2 (b)  

Quad L. (+ P. L.) 
100.00 100.00 100.00 

0.61 

0.00 

0.61 

0.00 

0.50 

0.01 

L (a) vs. H2 (b) 

Maximized Learning 
100.00 100.00 100.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

M5 

LR (a) vs. H1R (b) 

Triplet Learning 
0.00 0.00 0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

H1R (a) vs. H1P (b) 

Pattern Learning 
100.00 100.00 100.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

H1P (a) vs. H2P (b) 

Quad Learning 
0.00 0.00 0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

LR (a) vs. H2P (b) 

Maximized Learning 
100.00 100.00 100.00 

1.00 

0.00 

1.00 

0.00 

1.00 

0.00 

NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/2. Combination 

Frequencies. 

Triplet Level Quad Level 

Kolmogorov-S. 
% Participant 

significant 

Mann-Whitney 

% Participant significant 

Probability of 

Superiority 
(b > a) 

mean % across 

participants (SD) 

Kolmogorov-S. 
% Participant 

significant 

Mann-Whitney 
% Participant significant 

 

Probability of 

Superiority 
(b > a) 

mean % across 

participants (SD) 

NF TF QF 

NF TF QF 

NF TF QF NF TF QF 

NF TF QF 

NF TF QF 
a>b b>a a>b a>b b>a a>b a>b b>a a>b b>a a>b b>a 

M1 
R (a) vs. P (b) 

Trial Type Effect 
100 100 100 0.0 100 0.0 100 0.0 100 

87.3 
0.6 

83.1 
0.8 

74.9 
1.3 

31.7 100 50.6 0.0 5.6 91.1 0.0 4.4 17.2 
51.3 
0.4 

46.2 
1.1 

50.8 
2.4 

M2 
L (a) vs. H (b) 

Seq.Spec. L. 
100 100 100 0.0 100 0.0 100 0.0 100 

99.7 

0.2 

99.6 

0.2 

99.6 

0.3 
100 100 100 0.0 100 0.0 100 0.0 100 

68.8 

1.3 

67.2 

2.0 

79.9 

3.7 

M3 

LR (a) vs. HR (b) 

Pure Stat. Learn. 
100 100 100 0.0 100 0.0 100 0.0 100 

99.7 

0.2 

99.6 

0.3 

99.6 

0.3 
100 100 100 0.0 100 0.0 100 0.0 100 

94.0 

2.0 

93.5 

2.3 

93.5 

2.8 

HR (a) vs. HP (b) 

Higher O.Seq.L. 
3.9 3.9 2.8 1.7 1.7 1.7 .17 0.6 2.2 

50.1 

1.4 

50.1 

1.4 

50.1 

1.8 
100 100 100 100 0.0 100 0.0 100 0.0 

17.2 

1.5 

17.2 

1.5 

28.4 

1.8 

LR (a) vs. HP (b) 

Maximized 

Learning 

100 100 100 0.0 100 0.0 100 0.0 100 
99.6 
0.2 

99.6 
0.3 

99.6 
0.3 

100 100 100 0.0 100 0.0 100 0.0 100 
62.7 
1.0 

60.8 
2.1 

73.3 
4.7 

M4 

L (a) vs. H1 (b) 
Triplet L.(+P. L.) 

100 100 100 0.0 100 0.0 100 0.0 100 
99.7 
0.2 

99.6 
0.3 

99.6 
0.3 

100 100 100 0.0 100 0.0 100 0.0 100 
94.0 
2.0 

93.4 
2.3 

93.4 
2.7 

H1 (a) vs. H2 (b)  

Quad L. (+ P. L.) 
8.9 8.9 7.2 3.9 5.6 3.9 5.6 1.1 3.3 

50.3 

1.4 

50.3 

1.4 

50.4 

2.0 
100 100 100 100 0.0 100 0.0 100 0.0 

6.3 

2.1 

6.3 

2.1 

7.1 

3.1 

L (a) vs. H2 (b) 

Maximized 
Learning 

100 100 100 0.0 100 0.0 100 0.0 100 
99.6 

0.2 

99.6 

0.3 

99.6 

0.3 
57.2 45.0 76.7 0.0 47.2 14.4 13.9 18.3 45.6 

52.2 

0.6 

49.9 

2.4 

53.2 

8.4 

M5 

LR(a) vs. H1R(b) 

Triplet Learning 
100 100 100 0.0 100 0.0 100 0.0 100 

99.7 

0.2 

99.6 

0.3 

99.6 

0.3 
100 100 100 0.0 100 0.0 100 0.0 100 

94.0 

2.1 

93.5 

2.3 

93.5 

2.8 

H1R(a) vs. H1P(b) 

Pattern Learning 
1.1 1.1 3.9 0.6 1.1 0.6 1.1 1.7 2.2 

49.9 

1.4 

49.9 

1.4 

49.8 

2.1 
1.1 1.1 1.7 0.6 0.0 0.6 0.0 0.6 0.6 

49.8 

1.3 

49.8 

1.3 

49.8 

2.0 

H1P(a) vs. H2P(b) 
Quad Learning 

4.4 4.4 8.3 1.1 3.9 1.1 3.9 2.8 4.4 
50.3 
1.6 

50.3 
1.6 

50.5 
2.3 

100 100 100 100 0.0 100 0.0 100 0.0 
6.4 
2.1 

6.4 
2.1 

7.2 
3.2 

LR(a) vs. H2P(b) 

Maximized 

Learning 

100 100 100 0.0 100 0.0 100 0.0 100 
99.6 
0.2 

99.6 
0.3 

99.6 
0.3 

57.2 45.0 76.7 0.0 47.2 14.4 13.9 18.3 45.6 
52.2 
0.6 

49.9 
2.4 

53.2 
8.4 

NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/3. Conditional 

Probabilities (Trial 

Probabilities). 

Triplet Level Quad Level 

Kolmogorov-S. 

% Participant 

significant 

Mann-Whitney 

% Participant significant 

Probability of 

Superiority 

(b > a) 

mean % across 

participants (SD) 

Kolmogorov-S. 

% Participant 

significant 

Mann-Whitney 

% Participant significant 

 

Probability of 

Superiority 

(b > a) 

mean % across 

participants (SD) 

NF TF QF 

NF TF QF 

NF TF QF NF TF QF 

NF TF QF 

NF TF QF 
a>b b>a a>b a>b b>a a>b a>b b>a a>b b>a a>b b>a 

M

1 

R (a) vs. P (b) 

Trial Type Effect 
100 100 100 0.0 100 0.0 100 0.0 100 

87.3 

0.6 

83.1 

0.7 

74.9 

1.3 
100 100 100 0.0 100 0.0 100 0.0 100 

94.3 

0.5 

93.1 

0.6 

84.6 

1.2 

M

2 

L (a) vs. H (b) 

Sequence Spec. L. 
100 100 100 0.0 100 0.0 100 0.0 100 

99.7 

0.2 

99.7 

0.2 

99.7 

0.2 
100 100 100 0.0 100 0.0 100 0.0 100 

97.3 

0.8 

97.0 

0.9 

96.2 

1.7 

M

3 

LR (a) vs. HR (b) 

Pure Statistical L. 
100 100 100 0.0 100 0.0 100 0.0 100 

99.7 

0.2 

99.7 

0.2 

99.7 

0.3 
100 100 100 0.0 100 0.0 100 0.0 100 

95.7 

1.8 

95.1 

2.1 

95.2 

2.5 

HR (a) vs. HP (b) 

Higher Order S.L. 
6.7 6.7 5.6 1.7 1.1 1.7 1.1 3.3 1.7 

49.9 

1.5 

49.9 

1.5 

50.1 

2.0 
100 100 100 0.0 100 0.0 100 0.0 100 

84.4 

1.0 

84.4 

1.0 

72.6 

1.6 

LR (a) vs. HP (b) 

Maximized L. 
100 100 100 0.0 100 0.0 100 0.0 100 

99.7 

0.2 

99.7 

0.2 

99.7 

0.2 
100 100 100 0.0 100 0.0 100 0.0 100 

97.7 

0.6 

97.5 

0.7 

96.6 

1.4 

M

4 

L (a) vs. H1 (b) 

Triplet L. (+ P) 
100 100 100 0.0 100 0.0 100 0.0 100 

99.8 

0.2 

99.7 

0.2 

99.7 

0.2 
100 100 100 0.0 100 0.0 100 0.0 100 

95.7 

1.9 

95.1 

2.1 

95.2 

2.6 

H1 (a) vs. H2 (b)  

Quad L. (+ P. L.) 
3.3 3.3 2.8 2.8 1.1 2.8 1.1 0.6 4.4 

50.0 

1.2 

50.0 

1.2 

50.6 

1.9 
100 100 100 0.0 100 0.0 100 0.0 100 

96.0 

0.9 

96.0 

0.9 

96.2 

1.6 

L (a) vs. H2 (b) 

Maximized L. 
100 100 100 0.0 100 0.0 100 0.0 100 

99.7 

0.2 

99.7 

0.2 

99.7 

0.3 
100 100 100 0.0 100 0.0 100 0.0 100 

98.3 

0.4 

98.3 

0.4 

98.2 

0.7 

M

5 

LR (a) vs. H1R (b) 

Triplet Learning 
100 100 100 0.0 100 0.0 100 0.0 100 

99.8 

0.2 

99.7 

0.2 

99.7 

0.3 
100 100 100 0.0 100 0.0 100 0.0 100 

95.7 

1.8 

95.1 

2.1 

95.2 

2.5 

H1R (a) vs. H1P (b) 

Pattern Learning 
7.2 7.2 6.1 0.0 2.2 0.0 2.2 3.9 1.7 

49.9 

1.9 

49.9 

1.9 

49.7 

2.3 
0.6 0.6 1.1 0.6 1.7 0.6 1.7 1.7 0.6 

49.9 

1.7 

49.9 

1.7 

49.8 

2.0 

H1P (a) vs. H2P (b) 

Quad Learning 
2.8 2.8 4.4 0.6 2.8 0.6 2.8 1.1 6.1 

50.1 

1.5 

50.1 

1.5 

50.7 

2.3 
100 100 100 0.0 100 0.0 100 0.0 100 

96.1 

0.8 

96.1 

0.8 

95.2 

1.6 

LR(a) vs. H2P(b) 

Max.Learning 
100 100 100 0.0 100 0.0 100 0.0 100 

99.7 

0.2 

99.7 

0.2 

99.7 

0.3 
100 100 100 0.0 100 0.0 100 0.0 100 

98.3 

0.4 

94.3 

0.4 

98.2 

0.6 

NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/4. Abstract Structure of the 

Combination. 

Triplet Level Quad Level 

χ
2   

% participant significant 

Cramer’s V  

mean (SD) 

χ
2   

% participant significant 

Cramer’s V  

mean (SD) 

NF TF QF NF TF QF NF TF QF NF TF QF 

M1 
R (a) vs. P (b) 

Trial Type Effect 
100.00 10.56 1.67 

0.38 

0.01 

0.03 

0.01 

0.02 

0.01 
100.00 100.00 7.22 

0.50 

0.01 

0.35 

0.01 

0.04 

0.02 

M2 
L (a) vs. H (b) 

Sequence Spec. L. 
100.00 3.89 4.44 

0.49 

0.01 

0.02 

0.01 

0.02 

0.02 
100.00 100.00 1.11 

0.61 

0.01 

0.41 

0.01 

0.03 

0.02 

M3 

LR (a) vs. HP (b) 

Pure Statistical Learn. 
100.00 6.11 5.56 

0.34 

0.01 

0.03 

0.02 

0.03 

0.03 
100.00 100.00 8.89 

0.71 

0.01 

0.66 

0.01 

0.05 

0.03 

HR (a) vs. HP (b) 

Higher Order Seq.L. 
11.11 11.11 6.11 

0.03 

0.02 

0.03 

0.02 

0.03 

0.02 
100.00 100.00 14.44 

0.47 

0.01 

0.47 

0.01 

0.05 

0.03 

LR (a) vs. HP (b) 

Maximized Learning 
100.00 5.56 2.78 

0.47 

0.01 

0.03 

0.01 

0.02 

0.02 
100.00 100.00 0.00 

0.59 

0.01 

0.40 

0.01 

0.03 

0.02 

M4 

L (a) vs. H1 (b) 

Triplet L. (+ P. L.) 
100.00 7.78 6.11 

0.41 

0.01 

0.03 

0.02 

0.03 

0.02 
100.00 100.00 2.78 

0.76 

0.01 

0.71 

0.01 

2.78 

0.02 

H1 (a) vs. H2 (b)  

Quad L. (+ P. L.) 
5.00 5.00 5.56 

0.02 

0.02 

0.02 

0.02 

0.03 

0.02 
100.00 100.00 3.33 

0.76 

0.01 

0.76 

0.01 

0.04 

0.02 

L (a) vs. H2 (b) 

Maximized Learning 
100.00 2.22 2.22 

0.45 

0.01 

0.02 

0.01 

0.03 

0.02 
100.00 100.00 0.56 

0.58 

0.01 

0.41 

0.01 

0.04 

0.02 

M5 

LR (a) vs. H1R (b) 

Triplet Learning 
100.00 6.11 5.56 

0.34 

0.01 

0.03 

0.02 

0.03 

0.03 
100.00 100.00 8.89 

0.71 

0.01 

0.66 

0.01 

0.05 

0.03 

H1R (a) vs. H1P (b) 

Pattern Learning 
15.00 15.00 5.00 

0.05 

0.03 

0.05 

0.03 

5.00 

0.02 
26.11 26.11 19.44 

0.07 

0.04 

0.07 

0.04 

0.07 

0.04 

H1P (a) vs. H2P (b) 

Quad Learning 
5.56 5.56 4.44 

0.03 

0.02 

0.03 

0.02 

0.03 

0.02 
100.00 100.00 6.67 

0.71 

0.01 

0.71 

0.01 

0.05 

0.03 

LR (a) vs. H2P (b) 

Maximized Learning 
100.00 2.22 2.22 

0.45 

0.01 

0.02 

0.01 

0.03 

0.02 
100.00 100.00 0.56 

0.58 

0.01 

0.41 

0.01 

0.04 

0.02 

NF = No Filter, TF = Triplet Filter, QF = Quad Filter
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Description of Supplementary Tables ST-V/5-15 

 

ST-V/5 Mean reaction times were calculated for each Models’ each subcategory in each epoch for 

each participant. Then the nine values belonging to the nine epochs were averaged yielding 

a single value per participant (RT mean). The Standard Deviation (RT SD) and Coefficient 

of Variation (RT CV, SD/mean, %) was also computed based on the spread of these means. 

Similarly, error percentages were calculated for each Models’ each subcategory in each 

epoch for each participant. Then the nine values belonging to the nine epochs were 

averaged yielding a single value per participant (Error %). The Standard Deviation (Error 

SD) and Coefficient of Variation (Error CV) were then computed based on the spread of 

these averages. All of these calculations were done for all three filtering types (NF = No 

Filter, TF = Triplet Filter, QF = Quad Filter). 

 

ST-V/6 Learning scores were calculated for each Model. Learning scores based on reaction times 

are Cohen’s d values, computed separately for each individual and each epoch, and the nine 

values corresponding to the nine epochs were averaged to yield a single value for each 

participant (d mean). The spread of these means were quantified as Standard Deviations (d 

SD) and Coefficients of Variation (d CV).  

 

In the case of error rates, data from the nine epochs was collapsed into a single category 

due to the low overall error rates. Cramer’s V values were computed for each Models’ each 

learning score individually, and the mean of these means is presented in the table (V 

mean). The spread of these means were also assessed (V SD and V CV). 

 

All of these calculations were done for all three filtering types (NF = No Filter, TF = 

Triplet Filter, QF = Quad Filter). 

 

ST-V/7-12  In these tables the same descriptive statistics are shown as in Table ST-V/6 (each new 

table corresponding to the subsequent row in Table ST-V/6), but here they are broken 

down by the ASRT sequence being used (the notations P1-P6 referring to the six pattern 

types). 

 

ST-V/13 Within-subject variability of reaction times were quantified as Standard Deviations (SD 

mean (ms)) and as Coefficients of Variation (CV mean (%)). These descriptive statistics 

were computed for each Models’ each subcategory in each epoch for each participant. Then 

the nine values belonging to the nine epochs were averaged yielding a single value per 

participant. All of these calculations were done for all three filtering types (NF = No Filter, 

TF = Triplet Filter, QF = Quad Filter). 

 

ST-V/14-15  In these tables the same descriptive statistics are shown as in Table ST-V/13 (separate 

tables corresponding to SDs and CVs), but here the statistics are broken down by the ASRT 

sequence being used (the notations P1-P6 referring to the six pattern types). 
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ST-V/5. Descriptive statistics of mean reaction times and error percentages with standard deviations and coefficients of variations for each Models’ each subcategory. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

P R H L HP HR LR H2 H1 L H2P H1P H1R LR 

RT mean 

NF 373.59 381.18 372.07 386.51 373.59 365.92 386.51 375.72 366.77 386.51 375.72 367.57 365.92 386.51 

TF 373.59 379.14 372.07 385.99 373.59 365.92 385.99 375.72 366.77 385.99 375.72 367.57 365.92 385.99 

QF 377.32 385.83 377.43 394.28 377.32 377.57 394.28 375.74 378.29 394.28 375.74 378.90 377.57 394.28 

RT SD 

NF  27.80 28.39 27.73 29.00 27.80 27.81 29.00 27.99 27.64 29.00 27.99 27.66 27.81 29.00 

TF 27.80 28.24 27.73 28.93 27.80 27.81 28.93 27.99 27.64 28.93 27.99 27.66 27.81 28.93 

QF 29.96 31.52 30.30 32.58 29.96 31.36 32.58 29.79 30.83 32.58 29.79 30.56 31.36 32.58 

RT CV 

NF 7.44 7.45 7.45 7.50 7.44 7.60 7.50 7.45 7.54 7.50 7.45 7.53 7.60 7.50 

TF 7.44 7.45 7.45 7.49 7.44 7.60 7.50 7.45 7.54 7.49 7.45 7.53 7.60 7.49 

QF 7.94 8.17 8.03 8.26 7.94 8.31 8.26 7.93 8.15 8.26 7.93 8.07 8.31 8.26 

Error (%) 

NF 3.95 6.15 3.89 6.99 3.95 3.65 6.99 4.05 3.70 6.99 4.05 3.69 3.65 6.99 

TF 3.95 5.60 3.89 6.59 3.95 3.65 6.59 4.05 3.70 6.59 4.05 3.69 3.65 6.59 

QF 4.45 6.17 4.57 7.56 4.45 4.77 7.56 4.15 4.78 7.56 4.15 4.75 4.77 7.56 

Error SD 

NF 2.68 3.50 2.60 3.97 2.68 2.51 3.97 2.80 2.48 3.97 2.80 2.63 2.51 3.97 

TF 2.68 3.29 2.60 3.89 2.68 2.51 3.89 2.80 2.48 3.89 2.80 2.63 2.51 3.89 

QF 3.01 3.73 3.04 4.70 3.01 3.35 4.70 2.94 3.26 4.70 2.94 3.42 3.35 4.70 

Error CV 

NF 67.89 56.91 66.68 56.81 67.89 68.72 56.81 69.05 67.08 56.81 69.05 71.43 68.72 56.81 

TF 67.89 58.71 66.68 58.96 67.89 68.72 58.96 69.05 67.08 58.96 69.05 71.43 68.72 58.96 

QF 67.73 60.49 66.51 62.12 67.73 70.28 62.12 70.76 68.20 62.12 70.76 71.96 70.28 62.12 

RT = reaction times, SD = standard deviation, CV = Coefficient of Variation (SD/mean, %), NF = No Filter, TF = Triplet Filter, QF = Quad Filter
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ST-V/6 Mean individual effect sizes of learning, SD of these effect sizes and the CV of these effect sizes. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

R-P L-H HR-HP LR-HR LR-HP H1-H2 L-H1 L-H2 H1P-H2P H1R-H1P LR-H1R LR-H2P 

d 

mean 

NF .153 .283 -.153 .407 .256 -.174 .385 .217 -.164 -.032 .407 .217 

TF .113 .272 -.153 .396 .244 -.174 .375 .206 -.164 -.032 .396 .206 

QF .172 .340 -.004 .350 .343 .047 .328 .376 .056 -.028 .350 .376 

d  

SD 

NF .106 .136 .093 .156 .137 .100 .150 .141 .112 .089 .156 .141 

TF .082 .115 .093 .147 .114 .100 .138 .117 .112 .089 .147 .117 

QF .100 .171 .104 .192 .170 .121 .180 .182 .134 .116 .192 .182 

d  

CV 

NF 69.36 47.95 60.41 38.41 53.51 57.44 38.95 64.97 68.57 276.19 38.41 64.97 

TF 72.62 42.31 60.41 37.09 46.73 57.44 36.73 56.91 68.57 276.19 37.09 56.91 

QF 57.90 50.15 2543.49 54.87 49.65 265.81 54.86 48.41 241.79 409.74 54.87 48.41 

V 

mean 

NF .050 .068 -.005 .059 .067 -.009 .069 .064 -.008 .000 .059 .064 

TF .039 .058 -.005 .058 .058 -.009 .065 .056 -.008 .000 .058 .056 

QF .037 .058 .006 .057 .063 .012 .057 .069 .012 .001 .057 .069 

V  

SD 

NF .031 .036 .026 .031 .037 .028 .036 .036 .029 .038 .031 .036 

TF .029 .034 .026 .037 .035 .028 .038 .036 .029 .038 .037 .036 

QF .037 .049 .036 .055 .053 .037 .051 .058 .047 .045 .055 .058 

V  

CV 

NF 61.55 52.37 -468.25 53.58 54.69 -306.23 51.74 56.95 -358.67 -30905.4 53.58 56.95 

TF 73.28 58.70 -468.25 62.50 60.94 -306.23 58.36 64.32 -358.67 -30905.4 62.50 64.32 

QF 98.50 84.58 581.77 97.46 83.45 311.89 90.50 83.15 382.23 5738.97 97.46 83.15 

RT = reaction times, SD = standard deviation, CV = Coefficient of Variation (SD/mean, %), NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/7. Mean individual effect sizes (Cohen’s d) computed for each Models’ learning scores broken down by the ASRT sequences being taught (P1-P6), RTs. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

R-P L-H HR-HP LR-HR LR-HP H1-H2 L-H1 L-H2 H1P-H2P H1R-H1P LR-H1R LR-H2P 

P1 

NF .153 .297 -.178 .438 .265 -.190 .407 .226 -.168 -.055 .438 .226 

TF .110 .285 -.178 .427 .253 -.190 .396 .213 -.168 -.055 .427 .213 

QF .133 .320 -.049 .357 .309 -.110 .326 .316 .013 -.055 .357 .316 

P2 

NF .223 .375 -.146 .493 .348 -.159 .466 .315 -.143 -.037 .493 .315 

TF .164 .346 -.146 .465 .319 -.159 .438 .286 -.143 -.037 .465 .286 

QF .234 .467 .006 .473 .468 .106 .434 .538 .130 -.057 .473 .538 

P3 

NF .123 .243 -.152 .362 .216 -.212 .366 .163 -.226 .011 .362 .163 

TF .093 .242 -.152 .362 .215 -.212 .365 .161 -.226 .011 .362 .161 

QF .189 .318 .038 .294 .337 .018 .313 .342 -.011 .048 .294 .342 

P4 

NF .141 .257 -.139 .372 .233 -.136 .339 .206 -.114 -.053 .372 .206 

TF .108 .251 -.139 .365 .227 -.136 .333 .200 -.114 -.053 .365 .200 

QF .173 .330 .002 .340 .333 .102 .302 .396 .124 -.058 .340 .396 

P5 

NF .124 .238 -.144 .354 .212 -.186 .348 .166 -.189 -.006 .354 .166 

TF .079 .214 -.144 .330 .188 -.186 .324 .142 -.189 -.006 .330 .142 

QF .156 .277 .015 .271 .287 .040 .267 .311 .034 .004 .271 .311 

P6 

NF .158 .294 -.162 .428 .266 -.164 .393 .234 -.144 –.052 .428 .234 

TF .128 .300 -.162 .435 .271 -.164 .399 .240 -.144 -.052 .435 .240 

QF .150 .334 -.039 .371 .326 .024 .333 .355 .041 -.055 .371 .355 

P1-P6 = Pattern1-Pattern6, NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/8. Individual effect size (Cohen’s d) SDs computed for each Models’ learning scores broken down by the ASRT sequences being taught (P1-P6), RTs. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

R-P L-H HR-HP LR-HR LR-HP H1-H2 L-H1 L-H2 H1P-H2P H1R-H1P LR-H1R LR-H2P 

P1 

NF .109 .134 .092 .138 .138 .104 .137 .145 .111 .074 .138 .145 

TF .082 .107 .092 .132 .108 .104 .131 .111 .111 .074 .132 .111 

QF .105 .173 .099 .180 .180 .136 .174 .211 .144 .091 .180 .211 

P2 

NF .093 .128 .064 .145 .126 .077 .150 .120 .094 .071 .145 .120 

TF .069 .111 .064 .138 .108 .077 .134 .106 .094 .071 .138 .106 

QF .092 .151 .099 .173 .152 .113 .169 .143 .129 .118 .173 .143 

P3 

NF .090 .134 .103 .186 .128 .107 .174 .124 .115 .099 .186 .124 

TF .066 .110 .103 .167 .103 .107 .153 .097 .115 .099 .167 .097 

QF .090 .160 .116 .201 .150 .116 .183 .145 .127 .132 .201 .145 

P4 

NF .104 .121 .084 .132 .126 .084 .123 .133 .099 .093 .132 .133 

TF .082 .103 .084 .126 .105 .084 .120 .107 .099 .093 .126 .107 

QF .100 .152 .089 .161 .158 .094 .156 .161 .115 .115 .161 .161 

P5 

NF .099 .107 .115 .128 .114 .121 .119 .128 .122 .084 .128 .128 

TF .081 .087 .115 .126 .092 .121 .114 .102 .122 .084 .126 .102 

QF .070 .144 .101 .185 .130 .118 .166 .129 .112 .094 .185 .129 

P6 

NF .116 .151 .091 .165 .153 .090 .167 .151 .102 .091 .165 .151 

TF .090 .130 .091 .155 .130 .090 .149 .131 .102 .091 .155 .131 

QF .112 .194 .098 .201 .199 .105 .205 .199 .116 .107 .201 .199 

P1-P6 = Pattern1-Pattern6, NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/9. Individual effect size (Cohen’s d) CVs computed for each Models’ learning scores broken down by the ASRT sequences being taught (P1-P6), RTs. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

R-P L-H HR-HP LR-HR LR-HP H1-H2 L-H1 L-H2 H1P-H2P H1R-H1P LR-H1R LR-H2P 

P1 

NF 71.07 45.00 51.65 31.59 51.89 55.05 33.77 63.97 66.53 134.01 31.59 63.97 

TF 74.12 37.65 51.65 30.88 42.83 55.05 32.98 51.92 66.53 134.01 30.88 51.92 

QF 78.93 54.17 201.13 50.46 58.21 1370.95 53.25 66.65 1106.34 166.04 50.46 66.65 

P2 

NF 41.87 34.07 44.25 29.05 36.21 48.09 32.22 38.22 65.38 193.63 29.50 38.22 

TF 41.79 32.19 44.25 29.61 33.78 48.09 30.52 36.90 65.38 193.63 29.61 36.90 

QF 39.25 32.39 1532.23 36.58 32.55 106.32 38.92 26.53 98.98 206.21 36.58 26.53 

P3 

NF 73.29 55.24 67.94 51.37 59.18 50.36 47.54 76.00 51.03 895.22 51.37 76.00 

TF 71.05 45.55 67.94 46.15 47.88 50.36 42.07 59.99 51.03 895.22 46.15 59.99 

QF 47.36 50.49 307.93 68.34 44.53 684.08 58.46 42.24 1163.74 273.37 68.34 42.24 

P4 

NF 74.18 47.15 60.57 35.66 54.12 62.01 36.28 64.61 86.36 173.94 35.66 64.61 

TF 76.66 41.14 60.57 34.59 46.52 62.01 36.03 53.25 86.36 173.94 34.59 53.25 

QF 57.92 45.94 4440.50 47.40 47.49 91.45 51.65 40.74 92.82 198.34 47.40 40.74 

P5 

NF 80-39 45.17 80.20 36.26 53.86 65.05 34.17 77.18 64.87 1413.96 36.26 77.18 

TF 102.48 40.80 80.20 38.07 48.82 65.05 35.03 72.30 64.87 1413.96 38.07 72.30 

QF 45.19 51.89 655.02 68.29 45.29 293.38 62.21 41.63 328.69 2205.81 68.29 41.63 

P6 

NF 72.93 51.27 55.98 38.51 57.40 54.91 42.62 64.51 70.84 174.94 38.51 64.51 

TF 70.70 43.23 55.98 35.58 48.00 54.91 37.31 54.51 70.84 174.94 35.58 54.51 

QF 74.74 57.98 248.52 54.35 60.95 429.84 61.61 56.11 282.94 196.45 54.35 56.11 

P1-P6 = Pattern1-Pattern6, NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/10. Mean individual effect sizes (Cramer’s V) computed for each Models’ learning scores broken down by the ASRT sequences being taught (P1-P6), errors. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

R-P L-H HR-HP LR-HR LR-HP H1-H2 L-H1 L-H2 H1P-H2P H1R-H1P LR-H1R LR-H2P 

P1 

NF .047 .066 -.009 .060 .064 -.020 .074 .057 -.020 .006 .060 .057 

TF .035 .054 -.009 .059 .054 -.020 .069 .049 -.020 .006 .059 .049 

QF .038 .058 .007 .057 .064 .002 .061 .063 -.002 .009 .057 .063 

P2 

NF .054 .073 -.006 .062 .072 -.008 .073 .069 -.006 -.004 .062 .069 

TF .043 .063 -.006 .063 .063 -.008 .070 .062 -.006 -.004 .063 .062 

QF .045 .073 .003 .075 .078 .014 .072 .087 .017 -.005 .075 .087 

P3 

NF .048 .063 -.002 .052 .063 -.004 .062 .061 -.005 .003 .052 .061 

TF .040 .056 -.002 .053 .057 -.004 .060 .057 -.005 .003 .053 .057 

QF .029 .039 .010 .034 .044 .017 .036 .054 .017 .004 .034 .054 

P4 

NF .058 .078 -.005 .065 .077 .000 .073 .076 .004 -.011 .065 .076 

TF .047 .068 -.005 .066 .069 .000 .069 .071 .004 -.011 .066 .071 

QF .043 .072 .001 .074 .076 .018 .069 .087 .025 -.011 .074 .087 

P5 

NF .048 .065 -.004 .056 .064 -.010 .067 .060 -.011 .004 .056 .060 

TF .039 .057 -.004 .058 .057 -.010 .065 .055 -.011 .004 .058 .055 

QF .041 .058 .013 .054 .066 .018 .055 .075 .016 .006 .054 .075 

P6 

NF .044 .062 -.007 .055 .060 -.013 .066 .056 -.012 .002 .055 .056 

TF .029 .045 -.007 .049 .048 -.013 .055 -.043 -.012 .002 .049 .043 

QF .026 .043 .003 .045 .047 .001 .045 .047 -.001 .003 .045 .047 

P1-P6 = Pattern1-Pattern6, NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/11. Individual effect size (Cramer’s V) SDs computed for each Models’ learning scores broken down by the ASRT sequences being taught (P1-P6), errors. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

R-P L-H HR-HP LR-HR LR-HP H1-H2 L-H1 L-H2 H1P-H2P H1R-H1P LR-H1R LR-H2P 

P1 

NF .034 .036 .026 .028 .039 .029 .033 .039 .027 .035 .028 .039 

TF .030 .030 .026 .029 .033 .029 .032 .034 .027 .035 .029 .034 

QF .043 .055 .038 .059 .061 .038 .057 .065 .045 .044 .059 .065 

P2 

NF .025 .033 .027 .035 .031 .027 .037 .029 .028 .041 .035 .029 

TF .023 .034 .027 .044 .033 .027 .042 .032 .028 .041 .044 .032 

QF .033 .050 .038 .060 .051 .035 .054 .053 .043 .044 .060 .053 

P3 

NF .036 .044 .025 .037 .045 .031 .043 .045 .033 .037 .037 .045 

TF .032 .040 .025 .042 .042 .031 .045 .044 .033 .037 .042 .044 

QF .026 .039 .030 .050 .040 .044 .045 .049 .058 .042 .050 .049 

P4 

NF .026 .030 .025 .028 .030 .021 .027 .030 .021 .036 .028 .030 

TF .026 .032 .025 .035 .032 .021 .033 .034 .021 .036 .035 .034 

QF .039 .052 .037 .058 .056 .031 .052 .062 .037 .044 .058 .062 

P5 

NF .029 .033 .029 .033 .034 .031 .038 .032 .030 .038 .033 .032 

TF .028 .030 .029 .037 .032 .031 .039 .032 .030 .038 .037 .032 

QF .032 .041 .032 .047 .044 .036 .046 .046 .051 .044 .047 .046 

P6 

NF .033 .037 .023 .028 .039 .025 .036 .038 .031 .044 .028 .038 

TF .031 .034 .023 .031 .037 .025 .037 .037 .031 .044 .031 .037 

QF .044 .045 .041 .046 .055 .032 .046 .058 .041 .051 .046 .058 

SD = Standard Deviation, P1-P6 = Pattern1-Pattern6, NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/12. Individual effect size (Cramer’s V) CVs computed for each Models’ learning scores broken down by the ASRT sequences being taught (P1-P6), errors. 

 
Model 1 Model 2 Model 3 Model 4 Model 5 

R-P L-H HR-HP LR-HR LR-HP H1-H2 L-H1 L-H2 H1P-H2P H1R-H1P LR-H1R LR-H2P 

P1 

NF 72.80 55.00 -291.30 45.84 60.81 -142.75 44.91 68.33 -130.71 621.41 45.84 68.33 

TF 85.58 55.59 -291.30 48.85 62.06 -142.75 46.51 70.75 -130.71 621.41 58.85 70.75 

QF 112.75 94.26 540.84 103.45 95.07 2349.56 93.89 103.91 -2026.90 507.06 103.45 103.91 

P2 

NF 46.27 44.85 -411.41 55.70 43.57 -325.35 51.15 41.96 -462.69 -1117.24 55.70 41.96 

TF 53.95 54.31 -411.41 69.01 51.67 -325.35 60.96 51.10 -462.96 -1117.24 69.01 51.10 

QF 73.17 68.05 1169.08 80.61 64.52 259.27 75.02 61.24 249.07 -851.74 80.61 61.24 

P3 

NF 75.92 69.30 -1592.84 70.86 71.10 -702.42 69.71 73.75 -714.74 1213.91 70.86 73.75 

TF 81.10 71.74 -1592.84 78.60 73.44 -702.42 73.85 77.24 -714.74 1213.91 70.86 77.24 

QF 90.11 101.76 300.39 146.74 90.96 262.01 125.25 91.46 347.87 1149.73 146.74 91.46 

P4 

NF 44.24 38.11 -518.79 42.78 39.23 14006.08 37.42 39.81 487.49 -343.98 42.78 39.81 

TF 55.09 46.98 -518.79 53.01 47.43 14006.08 46.91 48.17 487.49 -343.98 53.01 48.17 

QF 90.13 72.17 2799.04 78.49 72.96 168.33 74.73 71.12 148.94 -411.30 78.49 71.12 

P5 

NF 60.97 51.03 -691.72 59.53 53.12 -306.07 56.33 53.55 -280.88 1035.03 59.53 53.55 

TF 71.44 53.52 -691.72 63.42 56.06 -306.07 59.40 57.32 -280.88 1035.03 63.42 57.32 

QF 77.89 71.17 255.72 88.57 67.39 198.97 83.27 60.80 313.34 738.28 88.57 60.80 

P6 

NF 74.96 59.57 -338.12 50.03 64.37 -195.99 55.23 66.92 -256.93 2125.72 50.03 66.92 

TF 106.58 73.85 -338.12 63.48 81.32 -195.99 68.05 86.32 -256.93 2125.72 63.48 86.32 

QF 167.83 103.88 1429.56 102.13 116.29 3529.74 102.11 125.08 -3486.94 1699.65 102.13 125.08 

CV = coefficient of variation (SD/mean, %), P1-P6 = Pattern1-Pattern6, NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/13. Mean within-subject variability of reaction times computed for each Models` each subcategory 

 Model 1 Model 2 Model 3 Model 4 Model 5 

P R H L HP HR LR H2 H1 L H2P H1P H1R LR 

SD 

mean 

(ms) 

NF 51.38 54.72 51.64 54.34 51.38 51.09 54.34 50.77 51.76 54.34 50.77 51.39 51.09 54.34 

TF 51.38 54.40 51.64 54.03 51.38 51.09 54.03 50.77 51.76 54.03 50.77 51.39 51.09 54.03 

QF 49.59 52.14 49.61 52.73 49.59 48.53 52.73 48.98 49.40 52.73 48.98 49.06 48.53 52.73 

CV 

mean 

(%) 

NF 13.67 14.28 13.80 13.97 13.67 13.88 13.97 13.42 14.03 13.97 13.42 13.89 13.88 13.97 

TF 13.67 14.28 13.80 13.91 13.67 13.88 13.91 13.42 14.03 13.91 13.42 13.89 13.88 13.91 

QF 13.04 13.42 13.05 13.28 13.04 12.74 13.28 12.95 12.95 13.28 12.95 12.82 12.74 13.28 

SD = Standard Deviaton, CV = Coefficient of Variation (SD/mean, %) 
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ST-V/14. Mean within-subject variability (SD) of reaction times computed for each Models’ each subcategory broken down by the ASRT sequences (P1-P6). 

 
Model 1 Model 2 Model 3 Model 4 Model5 

P R H L HP HR LR H2 H1 L H2P H1P H1R LR 

P1 

NF 50.01 53.48 50.23 53.03 50.01 49.59 53.03 49.43 50.17 53.03 49.43 49.87 49.59 53.03 

TF 50.01 53.00 50.23 52.54 50.01 49.59 52.54 49.43 50.17 52.54 49.43 49.87 49.59 52.54 

QF 48.18 50.65 48.19 51.08 48.18 47.11 51.08 48.03 47.87 51.08 48.03 47.56 47.11 51.08 

P2 

NF 51.13 55.59 51.14 55.41 51.13 50.00 55.41 50.46 51.19 55.41 50.46 51.62 50.00 55.41 

TF 51.13 54.82 51.14 54.76 51.13 50.00 54.76 50.46 51.19 54.76 50.46 51.62 50.00 54.76 

QF 50.11 52.89 49.64 53.65 50.11 48.04 53.65 48.72 49.51 53.65 48.72 50.12 48.04 53.65 

P3 

NF 54.12 57.33 54.90 56.18 54.12 56.34 56.18 53.44 55.64 56.18 53.44 53.89 56.34 56.18 

TF 54.12 57.26 54.90 55.80 54.12 56.34 55.80 53.44 55.64 55.80 53.44 53.89 56.34 55.80 

QF 51.68 55.20 54.72 54.11 51.68 53.48 54.11 50.58 53.19 54.11 50.58 51.60 53.48 54.11 

P4 

NF 50.56 53.78 50.61 53.95 50.56 49.13 53.95 50.13 50.44 53.95 50.13 50.64 49.13 53.95 

TF 50.56 53.98 50.61 54.59 50.56 49.13 54.59 50.13 50.44 54.59 50.13 50.64 49.13 54.49 

QF 48.35 50.85 47.98 53.03 48.35 45.97 23.03 47.93 47.54 53.03 47.93 47.83 45.97 53.03 

P5 

NF 51.05 53.52 51.41 53.08 51.05 51.16 53.08 50.49 51.41 53.08 50.49 50.61 51.16 53.08 

TF 51.05 53.13 51.41 52.60 51.05 51.16 52.60 50.49 51.41 52.60 50.49 50.61 51.16 52.60 

QF 49.17 51.30 49.39 51.65 49.17 48.90 51.65 48.65 49.23 51.65 48.65 48.40 48.90 51.65 

P6 

NF 51.49 54.71 51.62 54.45 51.49 50.29 54.45 50.72 51.77 54.45 50.72 51.83 50.29 54.45 

TF 51.49 54.22 51.62 53.86 51.49 50.29 53.86 50.72 51.77 53.86 50.72 51.83 50.29 53.86 

QF 50.28 52.05 49.94 52.93 50.28 47.74 52.93 50.24 49.18 52.93 50.24 48.97 47.74 52.93 

P1-P6 = Pattern1-Pattern6, NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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ST-V/15. Mean within-subject variability (CV) of reaction times computed for each Models’ each subcategory broken down by the ASRT sequences (P1-P6). 

 Model 1 Model 2 Model 3 Model 4 Model5 

P R H L HP HR LR H2 H1 L H2P H1P H1R LR 

P1 

NF 13.75 14.43 13.88 14.08 13.75 13.96 14.08 13.51 14.07 14.08 13.51 13.94 13.96 14.08 

TF 13.75 14.40 13.88 14.00 13.75 13.96 14.00 13.51 14.07 14.00 13.51 13.94 13.96 14.00 

QF 13.06 13.52 13.08 13.33 13.06 12.81 13.33 13.04 12.98 13.33 13.04 12.85 12.81 13.33 

P2 

NF 13.63 14.38 13.69 14.07 13.63 13.60 14.07 13.38 13.88 14.07 13.38 13.93 13.60 14.07 

TF 13.63 14.31 13.69 13.97 13.63 13.60 13.97 13.38 13.88 13.97 13.38 13.93 13.60 13.97 

QF 13.29 13.61 13.17 13.34 13.29 12.73 13.34 13.04 13.06 13.34 13.04 13.15 12.73 13.34 

P3 

NF 14.06 14.67 14.32 14.20 14.06 14.92 14.20 13.76 14.77 14.20 13.76 14.33 14.92 14.20 

TF 14.06 14.71 14.32 14.09 14.06 14.92 14.09 13.76 14.77 14.09 13.76 14.33 14.92 14.09 

QF 13.32 13.87 13.55 13.37 13.32 13.63 13.37 13.03 13.63 13.37 13.03 13.28 13.63 13.37 

P4 

NF 13.17 13.73 13.24 13.58 13.17 13.06 13.58 13.01 13.33 13.58 13.01 13.30 13.06 13.58 

TF 13.17 13.85 13.24 13.75 13.17 13.06 13.75 13.01 13.33 13.75 13.01 13.30 13.06 13.75 

QF 12.40 12.79 12.32 13.05 12.40 11.80 13.05 12.42 12.14 13.05 12.42 12.13 11.80 13.05 

P5 

NF 13.54 14.01 13.70 13.71 13.54 13.89 13.71 13.28 13.95 13.71 13.28 13.71 13.89 13.71 

TF 13.54 13.99 13.70 13.62 13.54 13.89 13.62 13.28 13.95 13.62 13.28 13.71 13.89 13.62 

QF 12.93 13.24 12.97 13.13 12.93 12.78 13.13 12.85 12.89 13.13 12.85 12.67 12.78 13.13 

P6 

NF 13.92 14.50 14.02 14.22 13.92 13.89 14.22 13.64 14.25 14.22 13.64 14.19 13.89 14.22 

TF 13.92 14.43 14.02 14.05 13.92 13.89 14.05 13.64 14.25 14.05 13.64 14.19 13.89 14.05 

QF 13.36 13.57 13.29 13.51 13.36 12.72 13.51 13.39 13.06 13.51 13.39 12.94 12.72 13.51 

P1-P6 = Pattern1-Pattern6, NF = No Filter, TF = Triplet Filter, QF = Quad Filter 
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SF-V/1. Goodness of fit indicators (Adjusted R
2
s) of each Model (Model 1-5) and each filtering method (No Filter, Triplet Filter and Quad Filter) as a function of 

epochs (1-9). Discontinuities of the lines indicate pauses between the three Sessions (Epochs 1-3, Epochs 4-6 and Epochs 7-9). Error bars represent the 95% CI.  
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SF-V/2. Reaction time based learning scores calculated the typical way (M1 nofilter, M2 triplet filter and M3 triplet filter) and the proposed way (M5 quadfilter) in 

each of the nine epochs. There was a longer pause between epochs 3 and 4, and between epochs 6 and 7 (creating three sessions, indicated by different colors). Bars represent 

the mean of the individual learning scores.  Error bars represent 95% CI. 
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SF-V/3. The percentage of participants showing learning based on reaction times with an effect size of Cohen’s d > 0.2, separately in each of the nine epochs. Green 

lines represent participants whose learning scores were positive (i.e. the observed difference was in the expected direction). Black lines represent participants whose learning 

scores were negative (i.e. in the unexpected direction). The discontinuity of the lines indicate pauses during data collection (i.e. there were three sessions). 
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SF-V/4. The percentage of participants showing learning based on error rates with an effect size of Cramer’s V > 0.05 (data of the nine epochs were collapsed into a 

single category due to low overall error rates).Green bars represent participants whose learning scores were positive (i.e. the observed difference was in the expected 

direction). Black bars represent participants whose learning scores were negative (i.e. in the unexpected direction). 
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ST-V/16. Correspondance between the „reliably positive learner” status of participants with the currently 

proposed method vs. the usual analysis methods. Phi coefficients were calculated and are shown in the table. 

The scores are based on reaction times. 

 M1  

No Filter 

M2  

Triplet Filter 

M3  

Triplet Filter 

R-P 

TrialType 

effect 

L-H 

Seq. Spec. L. 

LR-HR 

Pure Stat. L. 

HR-HP 

Higher Ord. 

L. 

LR-HP 

Max. 

Learning 

M5 

Quad  

Filter 

LR-H1R 

Triplet Learning 
.301** .389** .442** N/A .442** 

H1R-H1P Pattern 

Learning 
.141 -.092 -.243** N/A -.031 

H1P-H2P 

Quad Learning 
-.100 -.010 -.087 N/A -.064 

LR-H2P 

Max. Learning 
.242** .392** .257** N/A .293** 

M1-M5: Model1 – Model 5 

N/A – statistics not available due to the lack of reliable M3 Higher Order Learning learners 

** significant, p < .005 
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