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Abstract
When two numbers have to be compared based on their numerical value (i.e.,

participants must respond to the “which one is larger?” question), two phenomena are

observed. The participants  respond faster and with fewer errors when the difference

between the numbers is large which is known as the distance effect. Their performance

is also better when the numbers are smaller which is termed the size effect. Both effects

are considered  to  be a  consequence  of  a  ratio-based representation  of  numbers:  An

innate, continuous, analogue representation of quantities that is shared across species,

termed the Analogue Number System (ANS) which works according to Weber's law.

This  same system is  thought  to  be  the  mechanism behind  both  symbolic  and  non-

symbolic numerical processing. However, there is a plausible alternative account for the

sources of the two effects, and thus for symbolic numerical processing. According to the

Discrete Semantic System (DSS) account the numbers could be represented as discrete

nodes, the distance effect could stem from the strength of the connections between the

nodes, and the size effect  could be rooted in the frequency of the numbers.  In four

studies we systematically investigated the sources of the distance and size effects  in

both new, artificial numbers and Indo-Arabic numbers. In the first and the fourth study

the frequency of the numbers was manipulated to induce changes in the size effect. In

the  second  and  third  study  the  associations  of  the  numbers  with  the  “small-large”

properties were manipulated to see whether the distance effect would be modified. The

results  showed that:  1)  the source of  the  distance  effect  are  the  associations  of  the

numbers with the “small-large” properties, 2) the distance effect is flexible, 3) the size

effect is rooted in the frequency of the numbers and is only partially flexible, 4) the two

effects dissociate. Overall, the results for symbolic numbers were inconsistent the ANS

account, but in line with the DSS account. Thus, the DSS provides a better explanation

for  symbolic  number  comparison.  The  present  results  are  also  in  line  with  recent

findings  in  the  field  that  support  the  existence  of  a  separate  system for  processing

symbolic numbers.
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Absztrakt
Amikor  az  értékük  alapján  kell  összehasonlítani  két  számot  (vagyis  arra  a

kérdésre  választ  adni,  hogy  „melyik  a  nagyobb?”),  két  jelenség  figyelhető  meg.  A

résztvevők gyorsabban adnak választ és kevesebbet hibáznak, amikor a számok közötti

különbség  nagyobb,  amely  jelenség  úgy  ismert,  hogy  távolsághatás.  Emellett,  a

teljesítményük  jobb,  amikor  a  számok  kisebbek,  amit  nagysághatásnak  neveznek.

Mindkét  hatást  a  számok  arány  alapú  reprezentációjának  a  következményének

gondolják:  Egy  veleszületett,  folytonos,  analóg  mennyiség  reprezentáció,  az  úgy

nevezett Analóg Mennyiség Rendszer (AMR), amely állatok esetében is megtalálható,

és  a  Weber-törvény  szerint  működik.  Ezt  a  rendszert  vélik  a  szimbolikus  és  nem

szimbolikus  numerikus  feldolgozás  mögötti  mechanizmusnak.  Azonban  létezik  egy

lehetséges  alternatív  modell  a  két  hatás  forrására,  és  így  a  szimbolikus  numerikus

feldolgozást  illetően.  A  Diszkrét  Szemantikus  Rendszer  (DSZR)  szerint  a  számok

diszkrét  csomópontokként  vannak  reprezentálva,  a  távolsághatás  a  számok  közötti

kapcsolatok erősségéből származhat,  a nagysághatás pedig a számok gyakoriságából.

Négy kutatásban szisztematikusan vizsgáltuk meg a távolsághatás  és a nagysághatás

forrásait  új,  mesterséges  számokkal  és  indo-arab  számokkal.  Az első  és  a  negyedik

kutatásban  a  számok  gyakoriságát  manipuláltuk  ahhoz,  hogy  megváltoztassuk  a

nagysághatást.  A második és a harmadik kutatásban a számok asszociációit a „kicsi-

nagy” tulajdonságokkal manipuláltuk ahhoz, hogy azt vizsgáljuk meg, hogy változik-e a

távolsághatás. Az eredmények azt mutatták, hogy: 1) a távolsághatás forrása a számok

és a „kicsi-nagy” tulajdonságok közötti asszociációk, 2) a távolsághatás rugalmas, 3) a

nagysághatás a számok gyakoriságából származik és csak részben rugalmas, 4) a két

hatás  disszociál.  Összességében,  a  szimbolikus  számok esetében  kapott  eredmények

inkonzisztensek az AMR modellel,  de összhangban vannak a DSZR modellel.  Így a

DSZR jobb magyarázatot  ad a  szimbolikus  numerikus összehasonlításra.  A jelenlegi

eredmények  összhangban  vannak  a  szakirodalom  újabb  eredményeivel,  amelyek

támogatják a külön rendszer létezését a szimbolikus numerikus feldolgozás esetében.
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Introduction

If a human ability, especially one that has been known to be highly dependent on

language and culture,  shows signs of being present early in evolution (other species

show at least a rudimentary form of it) and/or early in development (infants are able to

solve a task that tests this ability), then a major question becomes recognizing what part

of  the ability  is  due to  innate  mechanisms and what  part  depends on other  factors,

including the role of culture in general and language specifically. Further issues that

arise  are  whether  the  more  sophisticated,  language-based  knowledge  builds  on  the

innate  knowledge,  whether  there  is  an interaction  between them,  whether  any other

mechanisms are involved, or whether the mechanisms are mostly independent of each

other.

Handling quantities – estimation, comparison, counting – is one such ability, and

forms a part of the research field of numerical cognition. Furthermore, it is an ability

that is indispensable in the everyday life, and can have a great impact on decisions, on

the  quality  of  life  etc.  A  better  understanding  of  its  mechanisms  could  help  with

teaching  mathematics  more  efficiently  and  intervening  in  related  disorders  such  as

dyscalculia.

Non-symbolic  (e.g.,  handling  sets  of  objects,  sound  sequences  etc.)  and

symbolic (e.g., handling Indo-Arabic digits, number words etc.) numerical processing is

studied via phenomena that can be observed in tasks requiring basic arithmetic skills

such as quantity estimation or comparison, and probably the most widely used paradigm

among those is the number comparison task in which the participants have to choose the

larger  (smaller)  of two numbers.  In  this  task two of the effects  observed with both

nonsymbolic  and symbolic  numbers  are  the distance  effect  and the size  effect.  The

distance  effect  means  that  when  comparing  two  numbers  based  on  their  numerical

value, responses are faster and errors are fewer when the numerical distance between

the numbers is larger. The size effect means that performance is better when comparing

smaller  numbers.  Both  effects  are  interpreted  in  the  currently  prevalent  model  of

numerical  cognition  as  the  indicators  of  an  innate,  continuous,  noisy  representation

system termed the Analogue Number System (also Approximate Number System, ANS)

that works according to Weber's law, i.e., depends on the ratio of the two quantities.

Thus, the conclusion drawn about our numerical abilities is that the source for both

effects is the ratio of the two numbers to be compared.
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This  is  likely  true  for  non-symbolic  comparison.  All  research  up  until  now

shows that animals can compare and estimate quantities in a way predicted by the ANS,

and infants show similar abilities very early in life. However, in the case of symbolic

numbers there is a plausible alternative. In a semantic network the distance effect could

reflect the strength of the connections between the numbers (which are nodes in that

network)  or  between  the  numbers  and  certain  properties  such  as  the  “small-large”

properties. The size effect could simply be a frequency effect as in that smaller numbers

are more frequent and thus easier to process. In other words, we propose that the two

effects have different sources and are independent of each other in symbolic numerical

processing.  The  alternative  model  proposed  as  the  mechanism  behind  symbolic

numerical cognition is the Discrete Semantic System (DSS), which supposes a semantic

network or a mental-lexicon-like representation for symbolic numbers.

In the thesis I first describe the two accounts for symbolic numerical cognition,

the importance of the distance and the size effects, and the aims of the studies. Then, I

briefly describe the studies and the methods that we applied to differentiate between the

two  accounts.  The  four  Thesis  Studies  follow,  in  which  we  first  showed  that  it  is

impossible to differentiate  between ANS and DSS accounts in the case of symbolic

numbers  if  they  are  compared  directly.  Then,  we  systematically  manipulated  the

associations  between  the  numbers  and  the  “small-large”  properties  as  well  as  the

numbers’  frequency  for  both  artificial  numbers  and  Indo-Arabic  numbers,  and  we

showed that this manipulation leads to behavioral changes (i. e., a change in the distance

and size effects) that is inconsistent with the ANS explanation, but very much consistent

with the DSS account. Finally, I shall discuss that we demonstrated that the symbolic

numerical  abilities  are  independent  from,  or  at  the  very  least  have  a  qualitatively

different relationship with, the innate mechanism for handling quantities. This has both

practical  implications  as  well  as  implications  about  the  relationship  between  innate

abilities and language-based abilities.
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Theoretical Background

An innate representation.

In a slight departure from the usual route for introducing numerical cognition in

more  recent  years,  I  would  like  to  start  with  a  rather  fascinating  paper  on  the

representation of numbers by Galton  (1880). He observed that some adults and many

children represent numbers in a visual form, in space and often in the form of a line.

The paper  already describes  some of  the properties  investigated  since then,  e.g.,  an

ordered,  spatially-oriented  from left  to  right  number  line,  the  overrepresentation  of

special numbers such as 10s, 100s etc., a division between smaller and larger numbers,

language-dependent specificity such as the special places of the numbers 12 and 20 in

the English  language,  a  possible  dissimilarity  between the verbal  and the numerical

forms. In Galton’s interpretation this topical representation is a mnemonic technique for

memorizing  numbers.  More  importantly,  he  links  it  to  individual  inclinations  in

childhood  as  if  children  search  for  the  appropriate  way  to  match  an  internal

representation to language.

Galton’s work  could  be  seen  as  a  starting  point  that  could  lead  us  to  the

formulation of the following questions: Is there an innate representation of numbers,

what is its connection to language, and how can both be explored and measured? The

idea of an innate representation introduces the option that numerosity is a property of

real  world  objects  similar  to  luminance,  loudness,  weight,  and  is  perceived  and

represented in a similar manner. If it is, then numbers, which are values of that property,

should cause similar  behavior  in tasks of relative judgment,  and their  representation

should be described by psychophysical laws such as Weber’s law (Fechner, 1860/1912).

Weber’s  law states  that  the  difference  between two values  of  a  property  has  to  be

sufficiently large to be noticed and the larger the values are, the larger the difference

should be. The reason behind it is the overlap between the representations of the values

to compare. A highly individual constant calculated as the ratio of the two values and

called  the  Weber  fraction  defines  how  well  tuned  their  representations  are.  More

specific quantification of innate representations has been attempted for empirical data,

and collections such Crossman  (1955) who treats Weber’s law as a private case of a

more general rule and Welford (1960) provide numerous examples.



14

The distance effect and the size effect.

The  supposition  that  the  representation  of  numbers  could  be  subject  to

psychophysical laws was the starting point of Moyer and Landauer’s  (1967) seminal

paper  in  Nature:  The study investigated  the question of  how people judge numbers

depending on their values. Two possibilities were put forward: (1) comparison is similar

to comparing physical properties and works the same way perception does, or (2) it

happens on a  higher,  “more  cognitive”  level.  The time required  for  comparing  two

numbers (“which one is larger”) was measured. If the former possibility was true, the

closer the numbers were, the more difficult the comparison would be because of the

overlapping  representations.  If  the  latter  possibility  was  true,  the  farther  away  the

numbers were from each other, the more difficult the comparison should be as it would

take time to reach the representation of the next number.  The reaction time and the

distance between the numbers correlated negatively.  Several psychophysics formulas

were  tested  on  the  data  (based  on  Welford,  1960),  and  one  of  them  –

RT=K×log (largenumber /(largenumber−smallnumber))  – was deemed a reasonable fit. In

other  words,  the  reaction  time  data  was  better  explained  by ratio  and  not  absolute

difference.  The  authors  thus  concluded  that  the  representation  of  numbers  has

psychophysical  properties and as such will  behave like any other perceptual system,

e.g., the visual system.

Distance effect Size effect

1 2 3 4 5 6 7 8

Distance

P
er

fo
rm

an
ce

Figure 1. The distance effect (left panel) shows worse performance with smaller

distance between the numbers. The x-axis shows the absolute difference. The size effect

(right panel) is worse performance with larger numbers. The x-axis shows the effect

expressed  as  the  sum  of  the  two  numbers.  Performance,  shown  on  the  y-axis,  is

measured with error rate or reaction time

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Size
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Two essential points from the Moyer and Landauer paper should be emphasized,

especially in relation with the present thesis. First  of all,  it  introduces the two most

important phenomena investigated in numerical cognition that are also the subject here:

The comparison distance effect and the comparison size effect in symbolic numbers1.

The distance effect means that performance in number comparison tasks increases with

the increase in the numerical  distance between the numbers,  whereas the size effect

means that performance is worse for larger numbers (Figure 1). Both effects have been

replicated in children  (e.g.,  Sekuler & Mierkiewicz,  1977), with number words (e.g.,

Dehaene  & Akhavein,  1995),  and  in  other  notations,  e.g.,  Kanji,  artificial  numbers

(Cohen Kadosh, Soskic, Iuculano, Kanai, & Walsh, 2010; Razpurker-Apfeld & Koriat,

2006; Takahashi & Green, 1983). Second, it suggested a frame for interpreting the two

effects and a route for further research by linking the representation of numerosity to

perceptual-like representations.

The Analogue Number System.

Developmental and comparative research provide evidence for the existence of

preverbal, innate mechanisms, and the case is no different for numerical cognition (e.g.,

Beran, 2008; Beran, Johnson-Pynn, & Ready, 2011; Dehaene, Izard, Spelke, & Pica,

2008; Wynn, 1998). Two such core systems seem to emerge  (Feigenson, Dehaene, &

Spelke, 2004): A noisy, approximate representation of large numbers that represents

numbers either in a logarithmic fashion with fixed variability or linearly with scalar

variability, and an exact system for small numerosities (1 to 3 or 4). The latter shows

characteristics that are very different from what was found for symbolic numbers, and

as such is  not subject  to  further  discussion here.  The former,  however,  exhibits  the

properties of a perceptual-like system, and became a plausible candidate for explaining

both  non-symbolic  and  symbolic  numerical  cognition.  This  account  is  termed  the

Analogue Number System (ANS), and it states that both non-symbolic (e.g.,  sets of

dots)  and  symbolic  (e.g.,  Indo-Arabic  numbers)  numbers  rely  on  the  same  innate,

continuous,  noisy mechanism for understanding and handling quantity  that is shared
1 The  distance  and  the  size  effects  are  not  the  only  effects  in  numerical  cognition  that  are

investigated to understand the representation of numerosity. Other phenomena include, for example, the

SNARC effect (Spatial-Numerical Association of Response Codes) which shows that small numbers are

responded faster to with the left hand and large numbers with the right hand (Dehaene, Bossini, & Giraux,

1993), or the numerical size-congruity effect which shows that the value of a number interferes with its

physical size (Henik & Tzelgov, 1982). These effects are not described in detail here, but some will be

given as further evidence for our claim.
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across species  (Cantlon,  Platt,  & Brannon, 2009;  Moyer  & Landauer,  1967;  Walsh,

2003). The ANS works according the Weber's law, and thus performance in comparison

tasks depends on the ratio of the numbers to compare. A brief mention is warranted for

a possible  extension,  the ATOM (A Theory Of Magnitude)  model  (Bueti  & Walsh,

2009; Walsh, 2003), a common magnitude system which represents not only quantity,

but also other concepts such as space and time that share features and thus partially

overlap on neurological level. Certain features are only linked to one of the magnitude

representations,  and  that  is  usually  observable  in  interactions  between  different

representations,  e.g.,  physical  size  and numerosity.  More  recent  developments  even

point in the direction of numerosity based on the processing of visual features such as

total  area, circumference,  convex hull,  frequency differences instead of a specialized

mechanism  devoted  only  to  numerosity  (Dakin,  Tibber,  Greenwood,  Kingdom,  &

Morgan, 2011; Gebuis & Reynvoet, 2012a, 2012b) or to it being an emergent property

of  the  visual  system  (Stoianov  & Zorzi,  2012) (for  a  fascinating  and  rather  heated

debate on the topic as well as for a novel proposition see Leibovich, Katzin, Harel, &

Henik, 2017). Importantly, as all of the above bear the same properties as a perceptual

system, either is a good account for a mechanism in which numerical knowledge is

rooted in Moyer and Landauer’s vein of thought.

Numerous animal studies support the existence of the ANS. Trained rats were

able to press a lever approximately for the required number of times with their error

(standard deviation of the response distribution) being proportional to the value of the

number  (Platt  & Johnson,  1971).  In  another  study rats  transferred  their  training  on

number of noise bursts to sets of noise bursts and cutaneous shocks, i. e., it was not the

modality but the number of events that mattered (Meck & Church, 1983). Beran (2012)

showed that chimpanzees were able to compare food sets based on the noise made by

added items, and also compare a set available visually (they saw the tray with the food

items) to a set presented auditorily. In all cases, performance was subject to the ratio of

the two numerosities.  Even more convincingly,  Nieder  (2005) found neurons in  the

prefrontal cortex and in the intraparietal sulcus of primates that fired selectively to sets

of dots, with the evidence suggesting that numerical information was first processed in

the parietal region. The tuning curves of the neurons had a pattern that mirrored a noisy

representation. (For an extensive review on studies with animal subjects see Dehaene,

2011; Feigenson et al., 2004).
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Developmental studies furthered the case for a preverbal system. Xu and Spelke

(2000) showed that infants can discriminate  between 8 and 16 dots in a habituation

study, and they could do the same for auditory stimuli  (Lipton & Spelke, 2003). The

ratio necessary for successful discrimination of numerosities decreased with age. Infants

are also able to match numbers crossmodally as observed in a study by Izard et  al.

(Izard,  Sann,  Spelke,  &  Streri,  2009) in  which  infants  were  trained  on  auditory

sequences of 4 or 12 sounds and 6 or 18 sounds, and then the sequences and visual

stimuli (sets of objects) were presented simultaneously – the infants looked longer at the

picture that matched the sequence.

A further source of evidence supporting the existence of a preverbal system is

the  numerical  knowledge  of  tribes  isolated  from  Western-type  civilizations.  The

Munduruku tribe (Pica, Lemer, Izard, & Dehaene, 2004) performed similarly to French

controls  in  non-symbolic  numerical  tasks,  including  showing  a  comparable  Weber

fraction: 0.12 for French controls, 0.17 for the Munduruku participants. The Piraha tribe

showed similar performance: Weber fraction of 0.15  (Gordon, 2004). Neither of the

tribes has words for quantities beyond four or five, and even those number words do not

always  represent  exact  quantities;  nevertheless,  there  is  a  system  that  works  for

approximate estimation and comparison.

To sum up, there is a preverbal system that can account for the distance and size

effects in both non-symbolic and symbolic numbers (Dehaene, 1992). Furthermore, the

distance and the size effects in comparison tasks are considered indicators of the ANS

as both can be a consequence of Weber's law. In the ANS model the distance effect is

explained as the extent of the overlap between the noisy representations of the numbers

– the  closer  the  numbers  are,  the  larger  the  overlap  is,  making it  more  difficult  to

differentiate the two numbers. The same mechanism also results in the size effect – the

larger the numbers are, the larger the overlap is. This account supposes that both effects

stem from the same source – the ratio of the numbers.

Studies that questioned the ANS for symbolic numbers.

According to the ANS account for symbolic numbers, they activate this noisy

representation automatically. The notations themselves are modality-dependent and can

have properties that are separate from the ANS (e.g., semantic properties such as parity,

see the triple-code model in Dehaene & Akhavein, 1995), but numerosity itself as well

as all related phenomena are grounded in the ANS.
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The ANS seems to be a sensible model to explain numerical cognition when

symbolic tools are not (yet) available and also as a mechanism that guides symbolic

numerical  processing.  Recent  findings,  however,  question  whether  the  ANS  is

necessarily activated in tasks with symbolic numbers, and whether the observed effects

reflect  the  same  effects  found  in  tasks  with  non-symbolic  numbers.  Cohen  (2009)

showed that the distance effect obtained in a same/different task (a number had to be

compared to a standard, e.g., “is 6 the same as 5”) with Indo-Arabic numbers could be

described better by the physical similarities between the digits than by their numerical

value. Studies that explore notations other than the Indo-Arabic have demonstrated that

some effects appear differently, for example, in number words (Dehaene & Akhavein,

1995), or depending on the utilized task  (Ganor-Stern & Tzelgov, 2008; Ito & Hatta,

2003). On a different note, Krajcsi  (2016) showed that whereas the distance and size

effects  correlate  highly in  non-symbolic  numbers,  they do not correlate  in symbolic

numbers which suggests a common source in the former but not in the latter case.

Another popular research area for investigating the relationship between ANS

and symbolic numerical cognition has been correlating performance in non-symbolic

and symbolic numerical tasks with math achievement in children as well as the study of

developmental dyscalculia. For example, Halberda et al. (2008) showed that ANS acuity

(i.e., the value of the individual Weber fraction) and math achievement correlate in 14-

year-old children. Other studies, however, have shown that non-symbolic performance

and  math  achievement  do  not  correlate,  whereas  symbolic  performance  and  math

achievement do (Holloway & Ansari, 2009; Sasanguie, Defever, Maertens, & Reynvoet,

2014), or that early symbolic performance predicts later non-symbolic performance, but

early  non-symbolic  performance  does  not  predict  later  symbolic  performance

(Mussolin, Nys, Content,  & Leybaert,  2014). Similarly,  children with developmental

dyscalculia started performing worse in non-symbolic tasks later in life, at 9-10 years of

age, whereas for younger children performance was worse only in symbolic tasks (Noël

& Rousselle,  2011). An extensive meta-analysis by Schneider and colleagues  (2017)

suggests that non-symbolic comparison correlates much less with math achievement,

but a correlation with the number comparison task was found repeatedly.

The neurological evidence also seems problematic. Piazza and colleagues (2007)

found  distance-dependent  activation  (fMRI  study,  BOLD  signal)  in  the  horizontal

intraparietal sulcus for both non-symbolic and symbolic numerosities, but later studies

(Bulthé, De Smedt, & Op de Beeck, 2014; Bulthé, De Smedt, & Op de Beeck, 2015;
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Damarla  &  Just,  2013) that  applied  more  sensitive  methods  found  only  notation-

dependent activation. For example, in Bulthé et al.’s (2015) study the activation for one

Indo-Arabic  digit  was  more  similar  to  that  of  one  dot  (one  visual  object)  than  the

activation to multiple dots.

Regarding the specificity of the effect, a distance effect similar the one in the

number comparison task has been found in ordered non-numerical sequences such as

letters  (e.g.,  Jou,  2003;  Razpurker-Apfeld  & Koriat,  2006;  Van Opstal,  Gevers,  De

Moor, & Verguts, 2008), months (Seymour, 1980), artificial symbols (Tzelgov, Yehene,

Kotler, & Alon, 2000). Moreover, a distance effect has been found for categorical non-

ordered stimuli:  In a picture-naming task participants were slower when they had to

name  an  object  that  followed  another  object  from a  close  category  than  when  the

preceding object was from a far category (Vigliocco, Vinson, Damian, & Levelt, 2002).

Alternative models.

One  model  that  has  been  proposed  as  an  alternative  is  the  delta-rule

connectionist model of Verguts and colleagues (Verguts & Fias, 2004; Verguts, Fias, &

Stevens, 2005; Verguts & Van Opstal, 2014). In this model the values of the numbers

are represented as nodes in a hidden layer between the input (the number in a specified

notation) and the output (a response as required by the task). The activation of a node

also produces noise with fixed width which can be interpreted as activation spreading to

the neighboring nodes. The distance effect obtained in a comparison task in this model

is explained by the connection weights between the value nodes and the response nodes

of “smaller” and “larger”. The size effect in this model can be achieved by introducing

biased frequency such as the numbers’ everyday frequency (Dehaene & Mehler, 1992).

The delta-rule connectionist model presents a good account not only for the distance

and  size  effects,  but  can  also  explain  the  same  effects  in  non-numerical  ordered

sequences and can account  for other  numerical  effects  such as the priming distance

effect.

In a  similar  vein,  albeit  via  a  different  approach,  Henik and Tzelgov  (1982)

suggested that some basic elements (primitives) are stored in the long term memory,

e.g., integers from 1 to 9 and the number 0 (Pinhas & Tzelgov, 2012), while others are

not. The basic elements or primitives can be imagined as the nodes in a semantic system

that  represent the values  of the numbers and which can be combined to form other

numbers.
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The Discrete Semantic System.

Our alternative proposal is the Discrete Semantic System (DSS) which was first

proposed in  Krajcsi  (2016) and Krajcsi,  Lengyel,  and Kojouharova (2016),  the first

study of  this  thesis.  The  DSS works  similarly  to  the  mental  lexicon  or  a  semantic

network and is  capable  of  processing symbols  and abstract  concepts.  In  this  model

numbers are stored as nodes in a network, and the effects observable in different tasks

depend on the strength of their semantic relations to other nodes, i.e., on the connection

weights. The DSS can produce the comparison distance effect, and there are at least two

possible sources. Close meaning, i.e., close values, may also mean stronger connections

between the nodes, and spreading activation from one of the nodes (numbers) activates

the rest to some extent depending on the strength of the connection. The distance effect

could also be rooted in the numbers’ associations with the “small” or “large” properties

where, in a comparison task, the number 1 is always small, the number 2 is small most

of the time and so on (Verguts & Fias, 2004; Verguts et al., 2005). The DSS can also

handle the size effect: Its source is the everyday frequency of the numbers according to

which more frequent numbers like 1 or 2 will be easier to process than rarer numbers

such as 8 or 9  (Dehaene & Mehler, 1992). Without further elaboration, the DSS can

accommodate a wide range of other numerical and non-numerical effects such as the

distance  effect  in  Vigliocco et  al.’s  (2002) study,  the  distance  effect  for  letters  and

artificial  symbols  (or,  in  fact,  any  distance  effect)  (Jou,  2003;  Razpurker-Apfeld  &

Koriat,  2006;  Tzelgov  et  al.,  2000;  Van  Opstal  et  al.,  2008) the  SNARC  effect

(Dehaene, Bossini, & Giraux, 1993; Krajcsi, Lengyel, & Laczkó, 2018; Leth-Steensen,

Lucas, & Petrusic, 2011; Patro, Nuerk, Cress, & Haman, 2014; Proctor & Cho, 2006),

the  size-congruity  effect  (Henik  &  Tzelgov,  1982),  the  priming  distance  effect

(Koechlin,  Naccache,  Block,  & Dehaene,  1999;  Reynvoet  & Brysbaert,  1999),  thus

making it a comprehensive model of numerical cognition.  The delta-rule connectionist

model and the primitives account are both feasible implementations of the DSS.

Differentiating between the ANS and the DSS.

At this  point,  we  have  two possible  accounts  about  what  the  mechanism is

behind symbolic numerical cognition that can explain the comparison distance and size

effects  generated  by  symbolic  numbers.  This  poses  the  question:  How  do  we

differentiate between them? The first step was choosing the appropriate paradigm. The

two effects are traditionally obtained in the number comparison task, so it made sense to
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investigate the putative sources of the two effects and thus draw conclusions about the

underlying mechanism through that task. The number comparison task is probably the

most widely used experimental paradigm in numerical cognition. In its most common

version two numbers are compared by choosing the numerically larger of the two.

Quantifying  the  two models  and comparing  them directly  to  test  which  one

better describes the performance in a number comparison task was the next step. In the

case of the ANS, the literature offers several options for the quantitative description of

performance  (Dehaene,  2007;  Kingdom & Prins,  2010) that  are  elaborated  upon in

Thesis  Study 1.  The DSS is,  at  present,  underspecified,  and as  such cannot  offer a

specific proposition as to what exact mathematical formula could describe the distance

and the size effects and their relationship – even if we know their possible sources, there

is no precedent in the literature that can present a quantitative description. Thus, our

quantitative proposal is unavoidably speculative. Nevertheless, the DSS account does

impose  a  few constraints.  First  of  all,  independent  of  what  its  source  might  be,  a

distance  effect  is  expected  to  appear,  and can  be  simply  quantified  as  the  absolute

distance  between  the  two  numbers  to  be  compared.  Second,  the  frequency  of  the

numbers have been empirically  measured in  different  language corpora  (Dehaene &

Mehler, 1992), and the frequency term for each number can be approximately quantified

as the number on the power of -1. Thus, the size effect can be quantified as the sum of

the frequencies of the two numbers.  Then the two can be added up as the simplest

mathematical solution. This allowed for constructing testable predictions for both the

ANS and the DSS, even though the patterns predicted by the two models were very

similar. The fit to the data in the study did not offer an unequivocal resolution, but was a

good starting point to find other ways to differentiate between the two models.

As  the  two  effects  themselves  are  what  leads  to  conclusions  about  the

representation of numerosity, this means that they are feasible tools for differentiating

between  the  ANS and the  DSS.  The  best  way to  do  that  was  that  since  there  are

predictions about their sources, we could design experimental manipulations based on

those predictions, and see whether the results support either model. In the case of the

size  effect,  we  manipulated  the  frequency  with  which  the  numbers  were  presented

(Thesis  Studies  1  and  4).  In  the  case  of  the  distance  effect,  we  manipulated  the

associations between the numbers and the “small-large” properties by presenting only a

partial number set (numbers 1, 2, 3, 7, 8, and 9) in the comparison task (Thesis Studies 2

and 3). According to the ANS the two effects  stem from the same source, the ratio
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between the numbers, and should not be affected by these manipulations. Furthermore,

our designs manipulated the possible sources independently, thus allowing us to explore

whether the effects change independently of each other, which would strengthen the

claim that there is no common source.

Indo-Arabic digits supposedly have established everyday frequency and values

or stable connections with the “small-large” properties because of their everyday use.

For that reason, our experiments at first investigated the changes in the distance and size

effects in new, artificial numbers (Thesis Study 1 for the size effect and Thesis Study 2

for the distance effect). The new numbers do not have previously established frequency

or associations, although they could take on those of the Indo-Arabic notation in which

case the results should be very similar to those for Indo-Arabic numbers. One crucial

point here was to determine whether the new symbols bear the same meaning as the

Indo-Arabic numbers. An additional priming task in Thesis Study 1 was introduced to

ensure that the new digits  are not a series of symbols independent  of their  intended

values, but they can be considered as a notation for the respective numbers. The priming

distance effect (PDE) is observed when the closer in value the prime is to the target, the

faster the response to the target is, e.g., the response to the target 6 is faster when the

prime is  7 than when the prime is  9.  It  is  considered  to  be a  sign of the semantic

relationship between the symbols or the overlap of their representations (Van Opstal et

al.,  2008), i.e.,  the symbols with the same value attached to them activate  the same

representation. The results from the two studies showed that the manipulations had the

expected effect on artificial numbers, and that prompted the question whether what is

considered  as  stable  in  the  Indo-Arabic  numbers  really  is  that.  The  exact  same

manipulations were conducted with Indo-Arabic numbers, first for the distance effect

(Thesis Study 3), then for the size effect (Thesis Study 4). Table 1 summarizes which

effect was investigated in each study. The aims of the studies are summarized in the

following chapter.

Table 1. Summary of which effect was studied in each study and which notation

was used.

Distance effect Size effect

New symbols Thesis Study 2 Thesis Study 1

Indo-Arabic digits Thesis Study 3 Thesis Study 4
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Aims

The overall aim of the studies was to investigate the source or sources of the

distance effect and the size effect in symbolic numerical cognition.  In the presented

Thesis Studies the aims were as follows:

1. examine whether a different model (DSS) is a better description for the

data obtained in the symbolic number comparison task than the ANS (Thesis

Study 1, Experiment 1);

2. examine  frequency  as  a  possible  source  of  the  size  effect  by  testing

whether it can be induced by manipulating the frequency of presentation of the

numbers when recently learned artificial numbers are used for which there is no

prior experience (Thesis Study 1, Experiment 2 and 3);

3. examine  the  associations  between  the  numbers  and  the  “small-large”

properties  as  a  possible  source  of  the  distance  effect  by  manipulating  those

associations in a new, artificial number sequence (Thesis Study 2);

4. examine  whether  the  associations  between  numbers  and  the  “small-

large” properties can be modified in Indo-Arabic numbers within a session of

the comparison task, i.e., seek further confirmation for the distance effect being

association-based (Thesis Study 3);

5. examine whether the size effect shows similar flexibility in Indo-Arabic

numbers by manipulating the frequency of presentation of the numbers within a

session, i.e. further confirmation for frequency being the source of the size effect

(Thesis Study 3 and Thesis Study 4);

6. examine whether the distance and the size effects change independently

of each other (all Thesis Studies);

7. more generally, an aim present in all reported studies, contrast the two

proposed models  of  numerical  cognition,  the ANS and the  DSS,  in  symbolic

numbers.  Here,  the  sources  of  the  numerical  distance  and  size  effects  are

examined for being consistent with either account, and conclusions about the two

accounts will be drawn based on that, but any further investigation of the two

models is beyond the scope of the thesis.
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Brief Summary of the Studies2

In Thesis Study 1 we started with a direct comparison of two possible models of

symbolic numerical cognition – the ANS and the DSS – on behavioral data from the

number comparison task.  Each of the two models suggests different  sources for the

distance and the size effects, thus if any of the two gave a better explanation of the data,

then  it  can  be  claimed  that  that  explanation  is  the  mechanism  behind  symbolic

numerical  cognition.  Several  possible  descriptions  of  the  ANS  model  found  in  the

literature  and  possible  descriptions  of  the  DSS model  are  tested.  The  two  models,

however, proved to be very similar. A possible method to investigate the two models

was  to  introduce  new,  artificial  symbols  instead  of  the  overlearned  Indo-Arabic

numbers. One property that can be manipulated in new symbols is the frequency with

which they are presented to the participants.  New symbols do not have a previously

established  frequency,  whereas  the  frequency  of  Indo-Arabic  numbers  has  been

investigated in language corpora (Dehaene & Mehler, 1992) and has been shown to be

similar in several languages. Participants compared numbers (new symbols) presented

with either uniform or Indo-Arabic-like (everyday) frequency. The results showed that it

was the frequency that induced a size effect.

We then turned to the distance effect in Thesis Study 2. Using new symbols,

only the numbers 1, 2, 3, 7, 8, and 9 were taught to the participants and then presented

in the comparison task. Thus, 3 and 7 were neighbors in the sequence, but not neighbors

by value.  In the number comparison task this  manipulation changes the associations

between the numbers  and the “small-large”  properties.  If  the source of  the distance

effect  is  the  value,  i.e.,  the  meaning  of  the  number  as  the  ANS  predicts,  then

performance for number pairs from the opposite sides of the gap should not change with

the removal of the numbers in the middle. The DSS account allows for two predictions:

1) the new numbers acquire the meaning and/or the associations  of the Indo-Arabic

numbers, and there will be no change in performance, or 2) the new numbers form their

2 The text of the first two Thesis Studies is the final, published version (both are in an Open Access

journal). The text of the last two Thesis Studies is the accepted version of the manuscript, but not the

published version as their copyright has been transferred to the publisher.  The figures and tables are

embedded in the text, and have been renumbered (as compared to the published papers), so that they are

consequently numbered within the thesis. All figures have been recreated to avoid copyright issues. The

only changes made to the text, figures, and tables are formatting changes. All references have been moved

to a separate section at the end. All references have been updated to their latest status.
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own associations with the “small-large” properties, and, for example, performance for

the 3-7 number pair would be the same as if the numerical distance between them was 1

instead  of  4.  The  results  of  Thesis  Study  2  supported  the  second  possibility,  thus

establishing associations as the source of the distance effect, and supporting the DSS

model. A further observation in line with Thesis Study 1 was that with new symbols and

a uniform frequency of the numbers the size effect did not appear.

The result of Thesis Study 2 raised the following question – are the associations

between numbers and the “small-large” properties stable or can they be modified within

one session of the comparison task? We formerly supposed that in Indo-Arabic numbers

the associations are stable and correlate highly with the value of the numbers, but this

has not been previously investigated. In Thesis Study 3 we used the same methods as in

Thesis Study 2, but with Indo-Arabic numbers as stimuli. The change in associations

was observable already in the beginning of the session, and remained stable over the

course of the experiment. The distance effect was again shown to be association-based

and in addition to that, flexible.

An observation in Thesis Study 3 was that the size effect appeared and remained

stable despite the uniform frequency of the numbers. However, the distance effect was

shown to be flexible in Indo-Arabic numbers, and the presence of the size effect could

be manipulated in new symbols. Thesis Study 4 examined whether this effect can be

altered in Indo-Arabic numbers whose frequency in everyday language is established.

Participants compared numbers in three conditions: in the first the numbers had uniform

frequency,  in  the  second  everyday  frequency,  and  in  the  third  reversed  everyday

frequency. According to the results the size effect decreases, but does not disappear.

This suggests two components for the size effect: a flexible one which can be explained

by the DSS, and a stable source which can be in line with both the ANS and the DSS

models.
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General Methods

This section describes the methodology of the Thesis Studies in general.

Participants.

Participants were students participating for partial credit. The aim was to have

15-20 participants per group in an experiment as preliminary research in the laboratory

had established that this number is sufficient for obtaining reliable distance and size

effects.

Stimuli.

The stimuli were either Indo-Arabic numbers or artificial numbers (Շ, Ջ, Թ, Ծ,

Ճ, Ł, Ө, Đ, И, Я, Ҹ, Ħ, Œ, Ƌ, ƛ, ʕ, Ʊ, Ʋ) that the participants learned. The symbols were

chosen from non-Latin alphabets as it has been demonstrated that letters from alphabets

already in use resemble configurations from our natural environment, and are thus more

appropriate  to  use  as  substitutes  of  already  familiar  symbols  (Changizi  & Shimojo,

2005). The symbols had similar width and height. The aim of each study determined

whether the whole set of digits from 1 to 9 or only a partial set (1 to 3 and 7 to 9) was

used. The artificial symbols were chosen randomly from the list of twenty symbols seen

here, and then randomized for each participant. This way no participant was given the

same list of symbols for the same numbers.

The initial choice of new symbols was made to avoid the inevitable interference

of the already established frequency and associations of Indo-Arabic numbers from a

lifetime  of  everyday  practice.  New  symbols  learned  as  numbers  have  been  shown

behaviorally to exhibit the same effects as Indo-Arabic numbers, such as the distance

effect, the number congruence effect, the priming distance effect in preliminary studies

conducted in our laboratory. After the results in Thesis Studies 1 and 2 pointed to the

frequency and the associations with the “small-large” properties being the sources of the

size effect and the distance effect respectively, we questioned our presumption. In other

words,  it  is  possible  that  the  associations  are  flexible,  depending  on the  situational

context, i.e., they can be changed within the comparison task, and thus alter the distance

effect.  The same could  be said  about  the  frequency – biasing  the  frequency of  the

presented numbers in the opposite direction of their everyday frequency may cause the

size effect to disappear. Thus, we continued our explorations with Indo-Arabic numbers

as well.
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Tasks.

Three  types  of  tasks  were  employed  in  the  Thesis  Studies.  In  the  case  of

experiments with artificial symbols, the participants were presented with a list of paired

Indo-Arabic numbers and new symbols to learn. They could look at the list for as long

as necessary, and then start the learning task during which an Indo-Arabic number and a

new symbol were displayed on the screen. The participants had to decide whether the

pair denoted the same number by pressing a key for “same” or “different”. In half of the

trials (5 trials for each number per block) the correct response was “same”. The learning

task  had five  blocks,  and continued  until  the  participant  reached  a  lower-than-five-

percent error rate in a block or did not reach the threshold until the end of the last block.

The second task was the number comparison task in which the participant saw

two numbers (both either Indo-Arabic digits or new symbols) and had to decide which

one  is  the  larger  numerically  by  pressing  a  key.  All  pairs  excluding  ties  from the

relevant set of stimuli were presented (but see the Methods section of each experiment

for  details).  This  was  the  main  task  for  all  presented  studies.  Here  is  where  the

experimental manipulation occurred – the presentation frequency of the numbers, the

associations  of  the  numbers,  the  length  of  the  experiment  (number  of  trials)  were

manipulated.  The  latter  manipulation  was  important  –  for  Indo-Arabic  numbers  we

wanted  to  explore  whether  a  change in  the  distance  and size  effects  would  happen

gradually or immediately, if at all.

The third task, a priming task, was used only in Thesis Study 1 to determine

whether  the  new  symbols  were  linked  semantically  to  the  Indo-Arabic  numbers

(Koechlin et al., 1999; Reynvoet & Brysbaert, 1999). A prime (new symbol) was shown

to the participants, and was then followed by a target Indo-Arabic number. For both

prime and target the participants decided whether the number was smaller or larger than

5 with a key press. The prime and the target remained visible until response with a 200

ms interval between the response for the prime and the target and a 2000 ms interval

between the response for the target and the next prime. The appearance of the priming

distance effect (i.e., the error rate and rthe eaction time for the target depended on the

numerical distance between the prime and the target with smaller numerical distance

resulting  in  faster  responses  and  fewer  errors)  shows  that  the  meaning  of  the  new

symbol primed the meaning of the Indo-Arabic number.

In  the  case  of  new  symbols,  auditory  feedback  was  given  for  correct  and

incorrect responses in all tasks.
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Presentation of the stimuli and measurement of the responses were managed by

the PsychoPy software  (Peirce,  2007).  Data processing and statistical  analyses  were

performed  in  LibreOffice  (LibreOffice,  2018),  CogStat  (Krajcsi,  2018),  G*Power  3

(Faul, Erdfelder, Lang, & Buchner, 2007), and SPSS  (IBM Corp., 2012, only for the

repeated measures analysis of variance calculations).

Procedure.

The  participants  were  recruited  via  a  freely  elective  course  in  which

participating  in  experiments  was  worth  partial  credit  towards  the  final  grade.  The

experiment was announced on the course’s forum which automatically sent an e-mail to

the students taking the course. The participants signed for the experiment by e-mail for

the given dates. Before the experiment they were given a brief description and signed an

informed  consent.  The  experiment  commenced  and  depending  on  the  study,  lasted

between 30 and 90 minutes. The participants could ask questions at any time before,

during, and after the experiment. In Thesis Study 1 and the first experiment in Thesis

Study 2 the collection of data happened individually, and in Thesis Studies 3 and 4 and

in the replication experiment in Thesis Study 2 the data collection happened in groups

due to a change in the laboratory’s data collecting procedure.

Once the participants signed the informed consent, the experimenter recorded

their demographic data – gender, age, handedness, vision status, university program,

any additional notes. A code was assigned to each participant so that the data could not

be traced back to the participant. Then the experimenter started the experiment. If the

study contained only the comparison task, then the participant just completed the task.

In  case  there  was  a  learning  task  at  the  beginning,  with  the  end  of  that  task  the

experimenter started the comparison task. The priming task was also started separately,

always as the last one.

Measurement.

Error rates and reaction times.

For all tasks errors and reaction times were recorded for each trial. Error rates

were calculated for each participant, and then used in the analysis. In Thesis Study 1

median reaction times for the correct responses were computed for each participant,

whereas  in  the  other  three  studies  all  trials  with  reaction  time  over  2000 ms  were

removed, and then mean reaction times for the correct responses were calculated for

each participant. The switch was mostly due to one additional measurement, the drift
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rate (see the next section), that we included in the analysis. Drift rate is derived from the

proportion of correct responses, reaction time variance,  and number of correct trials,

thus using mean reaction time seemed the more sensible choice.

Drift rate (Diffusion model analysis).

Drift rate is a part of the increasingly popular diffusion model analysis, and is

assumed to provide  a  more  sensitive  measure of  performance  (Ratcliff  & McKoon,

2008; Smith & Ratcliff, 2004). In that model evidence is accumulated gradually from

perceptual and other systems until a sufficient amount of evidence becomes available

for a decision to be made. Drift rate represents the quality of information upon which

the  evidence  is  built,  and  while  error  rates  and  reaction  times  adequately  capture

performance on a task, drift rate is more directly related to the background mechanisms

of performance. Furthermore, drift rates can be recovered based on observed error rate

and reaction time parameters  (Ratcliff  & Tuerlinckx,  2002; Wagenmakers,  Van Der

Maas,  &  Grasman,  2007).  In  the  presented  studies,  the  EZ-diffusion  model

(Wagenmakers  et  al.,  2007) is  applied,  a  simplified  version  of  the  diffusion  model

which  still  allows  for  the  recovery  of  drift  rates  in  the  case  of  sparse  data  from a

relatively  small  number  of  parameters.  For  edge  correction  we  used  the  half-trial

solution (see the exact details about edge correction in Wagenmakers et al., 2007). The

scaling within-trials variability of drift rate was set to 0.1 in line with the tradition of the

diffusion analysis literature.

General methods for analysis.

Analysis of the number comparison task.

Traditional methods for analyzing the distance and the size effects and the full 

stimulus space.

Traditionally, when analyzing the data from the comparison task, the results are

collapsed across distances and sizes (e.g., performance for the 7-8 and the 4-5 pairs is

combined  under  numerical  distance  1,  but  is  added  to  numerical  size  15  and  9

respectively).  This leads to loss of information,  possible artifacts,  cells with unequal

weights. In our experiments the full stimulus space was used instead, and the classical

analysis was added only as illustration.  The full stimulus space is a grid (matrix) in

which the rows denote one of the members of the number pair, the columns denote the

other, and the cells denote performance (Figure  2). The full stimulus space is a data-

driven approach to analysis, which helps ensure that the effects are not due to artifacts
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and important information is not omitted. It allows for more precise regression – any

predictor can be used, predictors can be combined, and the cells have equal weights. It

displays  systematic  patterns  which  may  otherwise  remain  unobserved,  and  helps  to

communicate  the  results  in  a  more  visually  accessible  manner  Most  importantly,

evidence from the full stimulus space is more reliable and convincing as it is possible to

observe  all  systematic  patterns,  which  is  extremely  useful  when  we  have  to  be

especially careful that the effects are not due to artifacts. This method is applied in all

experiments.

The full stimulus space

Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 

2

1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1

2 0.3 0.5 0.3 0.2 0.2 0.1 0.1 0.1

3 0.2 0.5 0.6 0.4 0.3 0.2 0.2 0.2

4 0.1 0.3 0.6 0.7 0.5 0.4 0.3 0.3

5 0.1 0.2 0.4 0.7 0.8 0.5 0.4 0.4

6 0.1 0.2 0.3 0.5 0.8 0.8 0.6 0.5

7 0.1 0.1 0.2 0.4 0.5 0.8 0.9 0.7

8 0.1 0.1 0.2 0.3 0.4 0.6 0.9 1.0

9 0.1 0.1 0.2 0.3 0.4 0.5 0.7 1.0

Figure  2.  An  illustration  of  the  full  stimulus  space.  Columns  indicate  one

number of the pair to be compared, rows indicate the other number, and cells show

expected performance. Darker shade indicates worse performance. The distance effect

can be observed as better performance from the main diagonal towards the top-right

and bottom-left corners. The size effect is worse performance along the main diagonal

from the top-left toward the bottom-right corner. This figure is a copy of the left panel

of  Figure  4B  (Thesis  Study  1),  and  the  values  were  calculated  as  a  ×

log(large/distance) + b, where a is set to 1 and is b is set to 0.

Model comparison.

Linear regression model fitting was used in the studies to decide which of the

predictions in the respective Thesis Study is a better fit for the data. Regressors were

defined for  the full  stimulus  space  and fitted  to  the data.  Goodness  of  fit  (R2)  was

computed  for  each model  for  the  averaged  results  (group level),  and then  for  each

participant  (individual  level).  The  latter  allowed  for  a  statistical  comparison  of  the

models with a non-parametric statistical test in which the  R2s were considered ordinal

variables. In all cases the linear fit was conducted with the least square method.
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Presence of the effects.

When investigating the presence of the effects, the slopes of the distance, size,

and priming distance effects were calculated by fitting a linear regression model to the

data, and then the deviation of the slopes (the beta weights) from 0 was tested for each

effect  (i.e.,  whether  the  regressor  significantly  contributed  to  the  explanation  of  the

variance which meant that the effect was present).

One point of consideration is how the regressors are expressed. The distance in

symbolic  numbers  is  traditionally  computed  as  the  absolute  difference  between  the

numbers to be compared. However, it is likely that a logarithm of that difference is a

more  appropriate  expression  as  reaction  time  cannot  decrease  indefinitely.  In  the

reported  studies  either  both  linear  distance  and its  logarithm or  only  the  logarithm

version are used as regressors. The size effect is usually expressed as the sum of the

numbers  to  be  compared  and  is  used  as  such  in  the  studies.  Presently,  a  more

appropriate calculation method is not available.

An additional effect which has to be taken into consideration is the end effect

(Pinhas & Tzelgov, 2012). For the instruction “choose the larger” participants tend to be

much faster for the cells containing the largest number of the set. This is a non-linear

distortion of the full stimulus space. Each of the studies checks the influence of the end

effect, and if necessary, solves for its presence by either removing the concerned cells or

by including the effect as a regressor in a multiple linear regression3.

Meta-analysis.

In some of our studies replication was requested by the reviewers as there were

no earlier studies that conducted experiments and analysis similar to ours. This allowed

for  running  a  mini  meta-analysis  on  the  data  (e.g.,  Goh,  Hall,  & Rosenthal,  2016;

Maner, 2014).

Calculation of the average values.

For  the  comparison  task,  average  error  rates  were  calculated  first,  and

participants with higher than mean+2 standard deviations error rate were excluded from

further analysis. Average error rates, reaction times, and drift rates were calculated for

each participant for the full stimulus space overall and, for blocked sessions, separately

for each block. In the case of model comparison the goodness of fit (R2), and for the

3 The changes in the utilized methods between the studies also reflect to an extent the evolution of

the methods used in the laboratory.
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presence  of  the  effects  the  deviation  of  their  slopes  from  0  were  investigated  as

described above.

Analysis of the learning and the priming tasks.

Learning task.

The analysis of the learning task consisted only of calculating average error rate

and examining which of the participants did not meet the minimum requirement of error

rate below 5% in their last block. Participants who did not fulfill the requirement were

excluded from further analysis.

Priming task.

Average error rates and reaction times were calculated for each participant and

for  each distance  between a  prime and a  target  (the absolute  difference  of  the  two

stimuli). Only trials requiring the same response (smaller or larger than 5) for prime and

target were included in the analysis to avoid the effect of congruence. Zero distance

pairs  (same prime and target)  were removed as for these pairs  there was additional

training in the learning task, and the slope of the change along the distance was tested

for being significantly different from 0. For the priming distance effect the experimental

data was collapsed according to distance. As the effects size of the priming distance

effect  proved  to  be  rather  small,  a  meta-analysis  was  used  on  the  data  from  the

experiment and data from earlier studies to investigate whether it was present as well as

the necessary size of the sample for sufficient statistical power.

To sum up, the data were analyzed with both traditional and novel (to the field)

methods. Thus, the results have consequences not only for the comparison of the ANS

and the DSS account, but also for the methods used in numerical cognition.
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Summary

The source of the numerical distance and size effects in a number comparison

task is examined in four studies. There are two possible accounts. The ANS suggests

that both effects are a consequence of the representation of numerosity being an innate,

analogue, noisy representation that works according to Weber’s law, and their source is

the ratio  of the numbers.  According to the DSS the representation  of numerosity  is

similar to the mental lexicon or a semantic network. The distance effect is rooted either

in  the  connections  between  the  nodes  or  their  associations  to  the  “small-large”

properties, and the size effect is a result of the everyday frequency of the numbers. To

differentiate between the two accounts, we manipulated the associations of the numbers

and their frequency in the number comparison task in new, artificial symbols and in the

Indo-Arabic notation, and then tested the prediction of which of the two accounts is a

better  of  fit  for  the  experimental  data  and  how  the  effects  are  affected  by  the

manipulation.
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Human number understanding is thought to rely on the analog number system (ANS),

working according to Weber’s law. We propose an alternative account, suggesting that

symbolic  mathematical  knowledge  is  based on a  discrete  semantic  system (DSS),  a

representation that stores values in a semantic network, similar to the mental lexicon or

to a conceptual network. Here, focusing on the phenomena of numerical distance and

size effects in comparison tasks, first we discuss how a DSS model could explain these

numerical effects. Second, we demonstrate that the DSS model can give quantitatively

as appropriate a description of the effects as the ANS model. Finally,  we show that

symbolic numerical size effect is mainly influenced by the frequency of the symbols, and

not by the ratios of their values. This last result suggests that numerical distance and

size effects cannot be caused by the ANS, while the DSS model might be the alternative

approach that can explain the frequency-based size effect.
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An Alternative to the Analog Number System

According  to  the  current  models  understanding  numbers  is  supported  by  an

evolutionary  ancient  representation  shared  by  many  species  (Dehaene,  Dehaene-

Lambertz,  & Cohen, 1998; Gallistel  & Gelman,  2000; Hauser & Spelke,  2004),  the

analog  number  system  (ANS).  One  defining  feature  of  the  ANS  is  that  it  works

similarly to some perceptual representations in which the ratio of the stimuli’s intensity

determines the performance (Weber’s law)  (Cantlon et al., 2009; Moyer & Landauer,

1967; Walsh, 2003). Two critical phenomena supporting the ratio based performance

are the distance and the size effects: when two numbers are compared, the comparison

is slower and more error prone when the distance between the two values is smaller

(distance effect) or when the two numbers are larger (size effect), (Moyer & Landauer,

1967) (Figures 3 and 4). Thus, in the literature, the numerical distance and size effects

are considered to be the sign of an analog noisy numerical processing system working

according to Weber’s law. The distance and the size effects are observable both in non-

symbolic  and symbolic  number  processing,  reflecting  that  the  same type  of  system

processes numerical information, independent of the number notations (Dehaene, 1992;

Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003).

However,  the  distance  and  size  effects  in  symbolic  comparison  can  also  be

explained by a different representation. Quite intuitively, one might think that symbolic

and  abstract  mathematical  concepts,  like  numbers  could  be  handled  by  a  discrete

semantic system (DSS), similar to conceptual networks or to the mental lexicon, i.e.,

representations  that  process  symbolic  and  abstract  concepts.  In  this  DSS  model,

numbers  are  stored in  a  network  of  nodes,  and the  strength  of  their  connections  is

proportional  to  the  strength  of  their  semantic  relations.  We  propose  that  this  DSS

account could be responsible for symbolic number processing; whereas non-symbolic

number processing is still supported by the ANS (see some additional details about the

relation of the two models below). The main aim of the present study is to investigate

the  feasibility  of  the  DSS  model  as  a  comprehensive  explanation  of  the  symbolic

numerical effects, and to contrast it with the ANS model.

DSS explanation for the distance and size effects.

How can a DSS explain the symbolic numerical distance and size effects? (1)

Regarding the distance effect, the strength of the connections between the nodes can

produce an effect which is proportional to their strength, and since in a network storing
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numbers the strength of the connections is proportional  to the numerical  values and

numerical distance,  this system could produce a numerical distance effect. In fact, a

similar semantic distance effect was shown in a picture naming task (Vigliocco et al.,

2002):  Naming  time  slowed  down  when  the  picture  of  the  previous  trial  was

semantically related to the present picture, and a small semantic distance between the

previous  and the actual  word caused stronger  effect  than a  large semantic  distance,

similar to the numerical distance effect4. This semantic distance effect cannot be the

result  of  a  continuous  representation  similar  to  the  ANS,  because  the  stimuli  were

categorical (e.g., finger, car, smile, etc.)5. Thus, a discrete representation potentially can

produce  a  numerical  distance  effect.  Several  mechanisms  can  be  imagined  how  a

numerical  distance  effect  is  generated.  One  can  imagine  that  the  semantic  distance

information,  that  can  be  revealed  in  a  semantic  priming,  could  generate  a  distance

effect.  Alternatively,  it  is  possible  that  the  strength  of  the  association  between  the

numbers and the large–small categories create the numerical distance effect (Verguts &

Fias, 2004; Verguts et al., 2005). Here, we do not want to specify the exact mechanism

behind the numerical distance effect, but only propose that several possible mechanisms

are already available in the literature. (2) Turning to the size effect, this effect also could

be generated by a DSS. It is known that smaller numbers are more frequent than larger

numbers,  and the  frequency  of  a  number  is  proportional  to  the  power  of  its  value

(Dehaene  & Mehler,  1992).  Since  the  numbers  observed  more  frequently  could  be

processed faster, the size effect could result from this frequency pattern6. Thus, the DSS
4 Comparison distance effect (e.g., which of two numbers is larger) and priming distance effect

(whether previous stimulus influences the actual stimulus processing based on the distance of the two

stimuli) are known to be two different mechanisms  (Reynvoet, De Smedt, & Van den Bussche, 2009;

Verguts  et al., 2005). While we want to find a DSS explanation for the comparison distance effect, the

cited semantic distance effect is more similar to a priming distance effect. Importantly, we are not stating

that these two effects are the same, but we suggest that a distance-based effect is possible in a DSS,

independent of the exact mechanism behind that effect.

5 A similar proposal is that the numerical distance effect might emerge from the order property of

numbers, and a distance effect can be observed not only in numbers, but also in non-numerical orders,

e.g., days or letters (Potts, 1972; Verguts & Van Opstal, 2014). However, (a) it might be possible that in

those examples the non-numerical orders are transformed to the numerical representation, which is not

possible for the categorical words in the cited picture naming task  (Vigliocco  et al., 2002), and (b) the

DSS model has less strict constrains, i.e., no order structure is presupposed, but a more general series of

associations is sufficient to explain the distance effect.

6 Frequency is essential in other numerical tasks to produce size effect (Zbrodoff & Logan, 2005),

and  the  role  of  frequency  in  size  effect  was  also  proposed  in  other  alternative  models  of  number
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model can also explain the appearance of distance and the size effects (Figure 3).

1 2

3

Figure  3.  The sources  of  the distance  and size  effects  according to  the two

models.

DSS explanation for other numerical effects.

Whereas in the present work we focus on the DSS explanation of the distance

and size effects, the DSS explanation can be readily extended to other effects, too, and it

can be a comprehensive model of symbolic number processing. The following details

can demonstrate that despite its radical difference from the ANS model, DSS might be a

viable option to explain symbolic numerical phenomena. Many of these explanations

have  already  been  proposed  in  the  literature,  although  these  explanations  usually

focused on single specific phenomena, and they did not offer a comprehensive model.

Several  interference  effects  can  be  explained  in  the  DSS  framework.  For

example,  the  SNARC  effect  (interference  between  numerical  value  and  response

location in a task) was originally interpreted as the interference of the ANS’s spatial

property and the response locations (Dehaene et al., 1993), however, it is also possible

that the effect is the result of the interference of the left-right and large-small nodes in a

semantic network similar to the DSS (Krajcsi, Lengyel, & Laczkó, 2018; Leth-Steensen

et  al.,  2011;  Patro  et  al.,  2014;  Proctor  &  Cho,  2006).  Similarly,  while  the  size

comparison (Verguts & Van Opstal, 2014).
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congruency  effect  (Stroop-like  interference  between  the  numerical  value  and  the

physical size of symbols; Henik & Tzelgov, 1982) can be thought of as an interference

between the ANS and a representationally similar analog size representation, it can also

be  thought  of  as  an  interference  between  the  many-few  and  the  physically  large-

physically small nodes.

While  there  are  many  empirical  and  theoretical  works  in  the  literature  that

support the ANS model, in fact there are only a handful effects that are cited to support

the ANS model, and we propose that most of these effects (in fact to our knowledge all

of them at the moment) can also be explained by the DSS. While mostly it would not be

too difficult to find DSS explanations for different phenomena, in the present work we

only focus on the numerical distance and size effects in comparison tasks.

Different representations for symbolic and non-symbolic numbers.

As it  was  mentioned  above,  the  DSS model  can  only  account  for  symbolic

number processing.  Clearly,  there are cases when the DSS cannot  handle numerical

information, for example, when the symbolic mental tools are not available, like in the

case of infants  (Feigenson et al.,  2004), animals  (Hauser & Spelke,  2004), or adults

living in a culture without number words  (Gordon, 2004; Pica et al., 2004), therefore,

the ANS seems to be a sensible model to explain these non-symbolic phenomena. It also

seems reasonable that because of their representational structure, the two systems could

be specialized for different forms of numbers: The DSS could be responsible for the

precise  and symbolic  numbers,  while  the  ANS could  process  the  approximate  non-

symbolic stimuli.

This idea of different representations for symbolic and non-symbolic numbers is

supported  by  the  increasing  number  of  findings  in  the  literature,  suggesting  that

symbolic  and  non-symbolic  number  processing  is  supported  by  different

representations. For example, it has been shown that performance of the symbolic and

non-symbolic  number  comparison  tasks  do  not  correlate  in  children  (Holloway  &

Ansari, 2009; Sasanguie et al., 2014), and in an fMRI study the size of the symbolic and

non-symbolic number activations did not correlate  (Lyons, Ansari, & Beilock, 2015).

As another example, whereas former studies found common brain areas activated by

both symbolic  and non-symbolic  stimuli  (Eger  et  al.,  2003; Piazza,  Izard,  Pinel,  Le

Bihan, & Dehaene, 2004), later works with more sensitive methods found only notation-

dependent activations (Bulthé et al., 2014; Bulthé et al., 2015; Damarla & Just, 2013).
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According to an extensive meta-analysis, although it was repeatedly found that simple

number  comparison  task  (the  supposed  sensitivity  of  the  ANS)  correlates  with

mathematical achievement, it seems that non-symbolic comparison correlates much less

with math achievement, than symbolic comparison (Schneider et al., 2017). In another

example, Noël and Rousselle  (2011) found that whereas older than 9- or 10-year-old

children with developmental dyscalculia (DD) perform worse in both symbolic and non-

symbolic  tasks  than  the  typically  developing  children;  younger  children  with  DD

perform worse than control children only in the symbolic tasks, but not in the non-

symbolic tasks. The authors concluded that the deficit in DD can be explained in the

terms  of  two  different  representations:  The  deficit  is  more  strongly  related  to  the

symbolic number processing, and the impaired non-symbolic performance is only the

consequence  of  the  symbolic  processing  problems.  See  a  more  extensive  review of

similar findings in Leibovich and Ansari  (2016). All of these findings are in line with

the present proposal, suggesting that symbolic and non-symbolic numbers are processed

by different systems.

Related models for symbolic number processing.

There are former models in the literature that are potential alternatives to the

ANS model, and some of those models can be fitted into a DSS framework, or they

could be considered as implementations of more specific aspects of the DSS account.

Verguts  et  al.  (2005) and  Verguts  and  Van  Opstal  (2014) proposed  a

connectionist  model  describing  several  phenomena  of  number  processing  and  more

generally  several  phenomena  of  ordinal  information  processing.  According  to  their

simulations  and  experiments,  this  model  offers  a  superior  description  of  number

naming, parity judgment and number comparison than the ANS model, and their model

can also explain non-numerical order processing phenomena. Their model includes a

hidden layer representing the values of the numbers in a place-code with a fixed width

of noise. This means that the nodes of the hidden layer represent numbers on a linear

scale, and a number most strongly activates the node mainly representing that number,

but additional activation also can be found in the neighboring nodes. The distance these

additional activations can reach to do not depend on the source number, i.e., the noise

has a fixed width. Although the authors suggest that this model implements an analog

representation, it contradicts the ANS model, because on a linear inner scale the size of

the  noise  is  not  proportional  to  the  size  of  the  number,  and  relatedly  it  could  not
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generate ratio-based performance. In line with this representational issue, the model in

itself  cannot  produce a  size  effect,  and an uneven frequency of  numbers  should be

introduced to generate the numerical size effect  (Verguts & Fias, 2004; Verguts et al.,

2005), questioning whether this model can be seen as an ANS-like model. However, we

propose here that the model can be interpreted as a discrete symbolic representation:

Activation in the neighboring nodes is not the noise of that representation but it is a

spreading activation in the hidden layer. With this alternative interpretation the model

can be seen as a specific implementation of the discrete symbolic system when stimuli

are arranged as an ordered list. Note that in their model the comparison distance effect is

not explained by the spreading activation, but by the connection weights between the

value nodes and the response nodes (Verguts et al., 2005; Verguts & Van Opstal, 2014).

This model as a potential DSS implementation can give a more precise description for a

whole range of phenomena, the ANS model could not account for, thus, strengthening

the DSS explanation of symbolic number processing.

Tracking  a  different  line,  Henik  and  Tzelgov  (1982) investigated  automatic

processing  of  numbers  with  the  size  congruency  effect  (interference  between  the

physical size and numerical value properties of the stimuli). Based on their results they

suggested that some basic elements (primitives) are stored in the long term memory,

e.g.,  integers from 1 to 9 and the number 0  (Pinhas & Tzelgov,  2012), while other

numbers are not stored as basic elements, e.g., negative numbers and ratios  (Kallai &

Tzelgov, 2009; Tzelgov, Ganor-Stern, & Maymon-Schreiber, 2009). The basic elements

or primitives can be considered as the nodes of the DSS: These basic elements could be

the values that are stored in the nodes of the network,  while  other numbers are the

combination of the primitives, somewhat similar to the relation of words and sentences.

Also, the size congruency effect can be used as a method to find whether a number is

stored as a unit in the DSS.

Possible quantitative descriptions of symbolic comparison performance in the 

DSS model.

While the DSS model can explain why the numerical distance and size effects

appear in a comparison task, the ANS model not only suggests that there should be

numerical  distance  and  size  effects,  but  it  offers  a  quantitative  description  for  the

performance. For example, Moyer and Landauer (1967) proposed that the reaction time

of  a  comparison  task  is  proportional  to  the  following  function:



42

K× log (largenumber / (largenumber−smallnumber))  (See Dehaene, 2007 for a more detailed

description of the ANS predictions for behavioral numerical decisions.)

One  of  the  next  challenges  for  the  DSS  model  is  to  find  a  quantitative

description similar to the ANS model. As in the ANS model where the details of the

model were borrowed from psychophysics models, we borrow the details of the DSS

model from psycholinguistics and semantic network models. Unfortunately, whereas in

many cases the psychophysics models offer quantitative descriptions of the performance

(Dehaene, 2007; Kingdom & Prins, 2010), the bases of the DSS model do not have

consensual quantitative descriptions. Additionally, our description does not build upon a

detailed  working model  with  specific  mechanisms  (e.g.,  as  it  was  mentioned,  there

could be different candidates that could generate the distance effect), but a functional

description of these potential effects are given here. Thus, our quantitative proposal is

unavoidably speculative, although there are some constrains we can build upon. First,

one term of this quantitative description should depend on the distance between the two

values. Second, another term should depend on the frequencies of the values, where the

frequency  of  the  number  is  the  power  of  that  number  (Dehaene  & Mehler,  1992).

Current  theoretical  considerations  do  not  specify  what  distance  and  size  functions

should be used, how the frequency of the two numbers should be combined, and how

exactly the two terms create performance, thus these details are unavoidably speculative

at the moment, and future work can refine the versions offered here. However, based on

these few starting points, a number of alternative versions of the DSS model can be

created, and many of them display a qualitatively similar pattern of number comparison

performance.  One  simple  example  is  displayed  on  Figure  4,  where,  as  the

mathematically simplest version, the distance effect is a linear function, the frequencies

of the numbers are summed up, and the distance and size components are added up.

This DSS-motivated function creates a qualitatively very similar pattern to the function

of the ANS model:  Looking at  the patterns,  the two models  are rather  similar,  also

reflected in the high correlation between the two models (r = -0.89). Thus, one can

create a hypothetical quantitative description based on the DSS account that seemingly

can explain the comparison performance in a similar way as the ANS model7.

7 After  creating  additional  versions  of  the  DSS  quantitative  prediction  with  considering  the

constrains described here, we found qualitatively similar patterns. See another example in the Methods

section of Experiment 1.
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A

Analogue Number System (ANS) model Discrete Semantic System (DSS) model

RT = a × log(large/distance) + b RT = a1×distance + a2×(x1
-1+x2

-1) + b

B

Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 

2

1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1

2 0.3 0.5 0.3 0.2 0.2 0.1 0.1 0.1

3 0.2 0.5 0.6 0.4 0.3 0.2 0.2 0.2

4 0.1 0.3 0.6 0.7 0.5 0.4 0.3 0.3

5 0.1 0.2 0.4 0.7 0.8 0.5 0.4 0.4

6 0.1 0.2 0.3 0.5 0.8 0.8 0.6 0.5

7 0.1 0.1 0.2 0.4 0.5 0.8 0.9 0.7

8 0.1 0.1 0.2 0.3 0.4 0.6 0.9 1.0

9 0.1 0.1 0.2 0.3 0.4 0.5 0.7 1.0

Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 

2

1 1.9 2.1 2.5 2.8 3.2 3.5 3.9 4.3

2 1.9 1.2 1.6 1.9 2.3 2.6 3.0 3.4

3 2.1 1.2 1.0 1.3 1.7 2.1 2.5 2.8

4 2.5 1.6 1.0 0.9 1.2 1.6 2.0 2.4

5 2.8 1.9 1.3 0.9 0.8 1.1 1.5 1.9

6 3.2 2.3 1.7 1.2 0.8 0.7 1.1 1.5

7 3.5 2.6 2.1 1.6 1.1 0.7 0.7 1.1

8 3.9 3.0 2.5 2.0 1.5 1.1 0.7 0.6

9 4.3 3.4 2.8 2.4 1.9 1.5 1.1 0.6

Figure  4.  (A)  Reaction  time  (RT)  function  for  the  ANS  model  (based  on

(Crossman, 1955; Moyer & Landauer, 1967) (left) and a hypothetical RT function for

the DSS model where the reaction time is proportional to a combination of the specific

forms of  the  distance and the  frequencies  of  the numbers  (right).  Notations:  large:

larger  number;  distance:  distance  between  the  two  numbers;  x1 and  x2:  the  two

numbers; a, a1, a2 and b are free parameters. (B) The prediction of the models on a full

stimulus space in a number comparison task of numbers between 1 and 9. Numbers 1

and 2 are the two values to be compared. Lighter shade denotes fast responses, darker

shade denotes slow responses (note that numerically the ANS function increases, and

the DSS function decreases toward the high ratio, but the direction is irrelevant in the

linear fit below). The distance effect can be seen as the gradual change when getting

farther  from  the  top–left  bottom–right  diagonal,  and  the  size  effect  is  seen  as  the

gradual change from top–left to bottom–right. In the figures the parameters  a and  a2

are set to 1, a1 is 0.4, and parameter b is set to 0.

In the first section, so far we have introduced the DSS model, an alternative to

the ANS explanation  of  number  processing,  where the  basic  building  blocks  of  the

representation are nodes with appropriate connections. We have reasoned that the DSS

framework can be a comprehensive explanation of symbolic number processing. While

focusing on the comparison distance and size effects, we have demonstrated that the

DSS  model  is  capable  of  giving  as  appropriate  a  description  of  the  comparison

performance as the ANS model. In the following parts we turn to empirical tests. First,
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we investigate which model describes better an Indo-Arabic comparison task. Then, we

investigate a very specific aspect of number comparison where the two models have

clearly different predictions: Whether the size effect depends on the frequency of the

numbers (predicted by the DSS model) or on the ratio of the numbers (predicted by the

ANS model).

Experiment 1 – Goodness of the Two Quantitative Description of the 

Models in Indo-Arabic Comparison

After creating a quantitative description for the DSS model, we can contrast the

two models, testing which model (Figure  4) fits better the empirical data in an Indo-

Arabic number comparison task. Although the two models strongly correlate, and the

differences between them are subtle, still, there are differences between them, and it is

possible that those differences are detectable in a simple comparison task, supposing

that the noise is relatively low.

Methods.

Participants.

Twenty university  students  participated in the study. Pilot  studies with Indo-

Arabic and new symbols (see also the second experiment) aiming to refine the applied

paradigms revealed that the main effects to be observed can be detected reliably with a

sample size of around 20. After excluding two participants because of a higher than 5%

error  rate,  the  sample  included  18  participants  (15  females,  mean  age  21.5  years,

standard deviation 2.8 years). All studies reported here were carried out in accordance

with the recommendations of the Department of Cognitive Psychology ethics committee

with written  informed consent  from all  subjects.  All  subjects  gave written informed

consent in accordance with the Declaration of Helsinki

Stimuli and procedure.

The participants  compared Indo-Arabic number pairs.  In a trial  two numbers

between 1 and 9 were shown until response and the participants chose the larger one.

All possible number pairs including numbers between 1 and 9 were shown 10 times,

excluding ties, resulting in 720 trials. Presentation of the stimuli and measurement of

the responses were managed by the PsychoPy software (Peirce, 2007).
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Analysis methods.

In the analysis, we contrasted the two models with analyzing the reaction times,

the error rates, and the diffusion analysis  drift  rates.  (1) Reaction time analysis was

used, because response latency may be a more sensitive measurement than the error

rate, and the results are comparable with many former results, including the seminal

Moyer  and  Landauer  (1967) paper.  However,  there  is  no  strong  consensus  which

function could describe the ANS model (see the applied version below). (2) Error rate

analysis  was chosen,  because the function  describing  error  rate  performance is  well

established (Dehaene, 2007; Kingdom & Prins, 2010), even if the measurement is not as

sensitive as the reaction time data. (3) Finally, drift rate was applied, because diffusion

analysis is thought to be more sensitive than the error rate or the reaction time, although

its parameter recover methods could be debated. In the recent decades, the diffusion

model  and  related  models  became  increasingly  popular  to  describe  simple  decision

processes (Ratcliff & McKoon, 2008; Smith & Ratcliff, 2004). In the diffusion model,

decision is based on a gradual accumulation of evidence offered by perceptual and other

systems. Decision is made when an appropriate  amount of evidence is accumulated.

Reaction time and error rates partly depend on the quality of the information (termed the

drift  rate)  upon which  the  evidence  is  built.  Importantly  for  our  analysis,  observed

reaction time and error rate parameters can be used to recover the drift rates (Ratcliff &

Tuerlinckx, 2002; Wagenmakers et al., 2007). Drift rates can be more informative than

the error rate or reaction time in them, because drift rates reveal the sensitivity of the

background mechanisms more directly (Wagenmakers et al., 2007).

Because  different  versions  of  the  ANS models  and  the  DSS models  can  be

proposed, multiple versions of the models were tested, when it was necessary. For the

ANS  model  the  following  functions  were  used  in  the  analysis.  (1)  Regarding  the

reaction time analysis,  although there are several considerations how to describe the

reaction  time  function  of  continuous  perceptual  comparisons  (Crossman,  1955;

Dehaene,  2007;  Welford,  1960),  it  is  not  straightforward  which  version  should  be

applied to describe the ANS model (Kingdom & Prins, 2010). First, we used the version

used by Moyer and Landauer  (1967), displayed in Figure  4. Second, we applied the

RT∝1/(log( large/ small)) function suggested by Crossman  (1955), which function

he finds to be more superior compared to the previous function. (2) For the error rate

analysis  we used the ANS model  described in  Dehaene  (2007, equation  10),  which

supposes a linear scaling in the ANS,
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pcorrect (n1 ,n2)=∫
0

+∞ e
−1

2[ x−( r−1)

w √1+r2 ]
2

√−2π w √1+r2
dx

where n1 and n2 are the two numbers to be compared, r is the ratio of the larger and the

smaller number, and  w is the Weber ratio. (3) Regarding the drift rates, in the ANS

model  the stored values to be compared can be conceived as two random Gaussian

variables, and the difficulty of the comparison might depend on the overlap of the two

random  variables:  Larger  overlap  leads  to  worse  performance  (see  the  detailed

mathematical description in Dehaene, 2007). It is supposed that in a comparison task the

drift rate depends purely on the overlap of the two random variables  (Dehaene, 2007;

Palmer, Huk, & Shadlen, 2005). According to the current theories,  drift_rate = k ×

task_difficulty,  (Dehaene, 2007; Palmer et al., 2005), or it could also include a power

term as a generalization, drift_rate = k × task_difficultyβ, although the exponent is often

close to 1, thus the first, proportional model approximates the second, power model.

Task  difficulty  is  measured  as  stimulus  strength,  which  is  calculated  with  the

distance/large_number function as suggested by Palmer et al. (2005) for psychophysics

comparison. Because in an analog representation as the task becomes more difficult

(i.e., the two stimuli become indistinguishable) the drift rate tends to zero, in the linear

fit this means that the intercept is forced to be zero. To summarize, the drift_rate = k ×

distance/large_number function  was  used  in  the  drift  rate  analysis  fit  for  the  ANS

model.

For the DSS model, two versions were used in the analysis. First,  the simple

linear version was applied, as described in Figure 4. Additionally, a logarithmic version

of the DSS model was also used, in which the logarithm of the two terms are used, i.e.,

RT∝ log(distance )+ log(x1
−1×x2

−1)  This  logarithmic  version  seems  reasonable,

because strictly speaking the distance effect cannot be linear, since that would result in

negative reaction time or error performance for sufficiently large distances (even if the

linear  version could be an appropriate  approximation).  Additionally,  the logarithmic

distance effect is partly confirmed by the second experiment and by the inspection of

the residuals (results not presented here).

Detecting the distance and size effects.

The present analysis is not relevant in contrasting the ANS and DSS models, but

in the second and third experiments the existence of the numerical distance and size
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effects was tested, and the same analysis was run in the present experiment, to be able to

use these results as a point of reference. The slopes of the specific effects were tested

(1) with multiple linear regressions, and (2) with simple linear regressions.

Methods for multiple linear regression.

Average error rates  and median reaction  times of the correct  responses were

calculated for each number pair for each participant. Error rates and reaction times were

fitted with two regressors for all participants: (a) distance effect (the absolute difference

of the two values), (b) size effect (the sum of the two values). See the values of the

regressors for the whole stimulus space on Figure 5. (The end effect regressor is used

only in  the  second and third  experiments.)  This  analysis  gives  a  more  stable  result

compared to the more commonly applied simple linear regression analysis (see below).

The weights of the regressors were calculated for each participant in both error rates and

reaction times, and all regressors’ values were tested against zero.

Distance effect

1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8

2 1 0 1 2 3 4 5 6 7

3 2 1 0 1 2 3 4 5 6

4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4

6 5 4 3 2 1 0 1 2 3

7 6 5 4 3 2 1 0 1 2

8 7 6 5 4 3 2 1 0 1

9 8 7 6 5 4 3 2 1 0

Size effect

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10 11 12

4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 13 14

6 7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 13 14 15 16

8 9 10 11 12 13 14 15 16 17

9 10 11 12 13 14 15 16 17 18

End effect

1 2 3 4 5 6 7 8 9

1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

2 0.5 0 0 0 0 0 0 0.5 1

3 0.5 0 0 0 0 0 0 0.5 1

4 0.5 0 0 0 0 0 0 0.5 1

5 0.5 0 0 0 0 0 0 0.5 1

6 0.5 0 0 0 0 0 0 0.5 1

7 0.5 0 0 0 0 0 0 0.5 1

8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

9 1 1 1 1 1 1 1 1 1

Figure 5. Values of the three regressors applied in the multiple linear regression

in the whole stimulus space.

Methods for simple linear regression.

To test  our data  with a more commonly applied simple linear  regression, all

multiple linear regression analyses were retested. For the distance effect the trials were

grouped according to distance (absolute difference between the two numbers) for all

participants. For the size effect the trials were grouped according to the sum of the two

numbers, excluding trials with distance larger than 3. The latter was necessary, because

otherwise the specific shape of the stimulus space and the distance effect might cause an

artifact size effect:  Cells from the middle part of the size range include more large-

distance cells than cells from the end part of the size range do. Linear slope was fitted

both on the error rates and on the reaction times for both the distance and size effects for

all  participants,  then  the  slopes  were  tested  against  zero.  Because  the  simple  linear

regression analysis gave the very same pattern as the multiple linear regression for all
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experiments of the present work, the results of this analysis are not presented here.

Results and discussion.

Fitting the functions of the ANS and the DSS models to the reaction times.

For the reaction time analysis median reaction time of the correct responses for

each number pair and for each participant was calculated. The mean of the participants

data for all number pairs (Figure 6) were fit linearly with the least square method. Four

models  were  fit  to  the  group mean:  The Moyer  and Landauer  version of  the  ANS

function, the Crossman version of the ANS function, the linear DSS function, and the

logarithm DSS function (see Methods for their descriptions).

For the Moyer and Landauer version the data showed a quite appropriate fit,

with R2 = 0.884, AIC = 613.8, while the Crossman version of the ANS function fit was

somewhat worse, although similar, with  R2 = 0.769 and  AIC = 663.5. Regarding the

DSS models, the fit for the linear version was R2 = 0.808, AIC = 652.4, and the fit for

the logarithm version was R2 = 0.893, and AIC = 610.3.

Overall, fitting the functions of the four versions of the two models resulted in

similar AICs within the same range, therefore no clear preference for any model can be

pronounced. It seems that either the appropriate function is not precise enough to have a

higher fit (which could be true for either the ANS or the DSS model), and/or with the

current  noise  of  the  data  the  subtle  differences  between  the  models  cannot  be

investigated. Thus, reaction time analysis with the current functions and the available

signal-to-noise ratio could not be decisive in contrasting the ANS and DSS model.

Error rate Reaction time Drift rate
Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 1% 0% 0% 1% 1% 0% 0% 0%

2 2% 2% 3% 0% 1% 3% 0% 1%

3 2% 1% 4% 2% 1% 0% 0% 1%

4 1% 1% 5% 7% 1% 4% 2% 1%

5 1% 1% 1% 4% 7% 7% 2% 2%

6 1% 1% 0% 3% 2% 9% 6% 2%

7 0% 2% 2% 4% 7% 12% 11% 6%

8 1% 0% 0% 0% 2% 6% 7% 6%

9 0% 0% 1% 0% 4% 3% 6% 11%

Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 494 487 481 462 449 462 444 448

2 502 556 538 503 489 491 474 469

3 480 513 591 537 517 527 487 483

4 474 523 560 576 515 555 498 505

5 459 487 528 560 577 589 524 521

6 457 467 497 513 588 633 560 554

7 457 493 509 530 576 624 605 559

8 447 473 472 488 518 600 580 622

9 457 456 483 482 514 561 541 604

Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.33 0.29 0.34 0.35 0.38 0.37 0.40 0.41

2 0.32 0.27 0.29 0.34 0.34 0.36 0.37 0.37

3 0.29 0.32 0.27 0.29 0.30 0.34 0.34 0.36

4 0.32 0.30 0.27 0.22 0.30 0.31 0.29 0.31

5 0.36 0.32 0.31 0.28 0.24 0.26 0.31 0.32

6 0.36 0.36 0.32 0.25 0.24 0.21 0.24 0.27

7 0.32 0.31 0.31 0.27 0.23 0.20 0.21 0.26

8 0.39 0.34 0.36 0.34 0.29 0.23 0.23 0.24

9 0-36 0.37 0.35 0.31 0.29 0.25 0.25 0.22

Figure 6. Error rates (left), response times in ms (middle) and drift rates (right)

in  the Indo-Arabic digits  number comparison for  the whole stimulus  space.  Lighter

shade denotes fast and error-free responses, darker shade denotes slow and erroneous

responses. Results show distance and size effects.
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Fitting the functions of the models to the error rates.

For the error rate analysis, the mean error rate for each number pair and for each

participant was calculated, then the average of the participants was computed (Figure 6).

To test the ANS model, first, we looked for the Weber ratio that gives the same mean

error  rate  for  the  stimulus  space  used  here  (all  possible  number  pairs  for  numbers

between 1 and 9, ties excluded) as it was measured in our data (2.5%). The found 0.11

Weber ratio was used to generate the predictions of the ANS model for all cells of the

stimulus space (see Methods for the function), and the model was linearly fit to the error

rate data with the least square method. The goodness of fit was R2 = 0.625, AIC = -371.

In testing the DSS model, the goodness of fit for the linear version was R2 = 0.505, AIC

= -341, and the logarithmic DSS model gave a goodness of fit of R2 = 0.667, AIC = -

377.

Like in the case of the reaction time, the goodness of fit of the ANS and the DSS

models  are  indistinguishable  in  the error  rates  data.  This  again shows that  with the

signal-to-noise ratio of the present data, the two models are indistinguishable, or the

DSS model is not precise enough to show a higher fit.

Fitting the functions of the models to the drift rates.

To recover  the  drift  rates  for  all  number  pairs  in  the  two notations,  the  EZ

diffusion model was applied, which can be used when the number of trials per cells is

relatively small (Wagenmakers et al., 2007). For edge correction we used the half trial

solution (see the exact details about edge correction in Wagenmakers et al., 2007). The

scaling within-trials variability of drift rate was set to 0.1 in line with the tradition of the

diffusion  analysis  literature.  Drift  rates  for  each  number  pair  and  participant  were

calculated in both notations. The mean drift rates of the participants for the full stimulus

space are displayed in Figure 6.

According to the goodness of fit of the models, the ANS model is worse (AIC =

-140.1)  than  the  DSS  model  (AIC =  -332.4  and  AIC =  -348.1  for  the  linear  and

logarithmic  DSS  model  versions,  respectively).  (Because  in  a  linear  fit  with  zero

intercept,  the  R2 is  much  higher  than  in  a  linear  fit  with  non-zero  intercept  (as  a

consequence of some of the mathematical properties of R2), and because the ANS model

uses 0 intercept, but the DSS model does not, the R2 values are not reported here.)

Looking at the drift rates of the comparison task (Figure 6) might reveal why the

ANS model is worse than the DSS model: While the ANS model predicts that the drift
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rate tends to zero as the stimuli become indistinguishable (e.g., 8 vs. 9), the recovered

drift rates are in fact much larger, tending to the 0.2 values. This problem is analogous

to a conceptual problem: How is it possible that an imprecise representation solves a

precise comparison task? In other words, if the Weber fraction of the ANS is around

0.11,  how  is  it  possible  that  small  ratio  number  pairs,  e.g.,  8  vs.  9,  can  still  be

differentiated with relatively high precision.

Thus, in the diffusion model analysis the DSS model seems to offer a better

prediction  than  the  ANS  model,  however,  it  is  important  to  note  that  (a)  the  EZ

diffusion model analysis and more generally any diffusion models have some constrains

(Wagenmakers  et  al.,  2007),  and  consequently,  it  is  possible  that  in  this  case  the

recovered parameters are not entirely reliable, and (b) task difficulty can be defined in

different ways  (Dehaene, 2007; Palmer et al.,  2005), and it might be debated which

definition is appropriate. Thus, while the present diffusion model analysis reveals the

advantage of the DSS model over the ANS model,  the uncertainties of the methods

might  question  how  reliable  these  results  are.  (The  methods  and  the  models  are

investigated in more details in Krajcsi et al., 2018).

Presence of the distance and the size effects.

According to the multiple linear regression analysis, both the distance and the

size effects were present both in the error rates and in the reaction times, 95% CI for the

slope was [-1.16%, -0.65%],  t(17) = -7.42,  p < 0.001 for the distance effect in error

rates, and CI of [-23.6 ms, -15.5 ms], t(17) = -10.1, p < 0.001 in reaction times, CI with

[0.3%, 0.59%], t(17) = 6.57, p < 0.001 for the size effect in error rates, and CI with [4.8

ms, 9.1 ms], t(17) = 6.78, p < 0.001 in reaction times.

Summary.

First, we found that reaction time and error rate patterns in Indo-Arabic number

comparison  (Figure  6)  could  not  be  decisive  in  contrasting  the  ANS and  the  DSS

models. Even if the two models correlate, the correlation is not perfect, and there was a

chance that the present test could have decided. Still, with the present models and/or

signal-to-noise ratio, the test was not decisive. On the positive side, this means that the

DSS model is a viable alternative to the ANS model, because the goodness of fit of the

DSS model is in the same range as the goodness of fit of the ANS model. Second, we

found that in a diffusion model analysis the drift rate pattern is more in line with the

DSS model than with the ANS model, although the uncertainties about the method may
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question the reliability  of  these results.  Overall,  while  the performance in the Indo-

Arabic comparison task suggests that the DSS model is a viable model, this paradigm

could not decide firmly which model is preferred. Thus, in the next experiment a new

approach is utilized in which we investigate the role of the frequency in the size effect.

Experiment 2 – Role of the Frequency in the Size Effect

In a different approach, we tested whether the distance and the size effects are

strongly related as suggested by the ratio-based ANS model, or whether the two effects

can  dissociate.  In  the  present  experiment  we  investigated  whether  size  effects  can

dissociate  from distance effect if  the frequency of the symbols is manipulated.  (See

another  type  of  test  for  the  dissociation  of  the  two  effects  in  Krajcsi,  2016)  To

manipulate  the  frequency of  the  symbols,  it  might  be  more  appropriate  to  use new

symbols, instead of the well-known Indo-Arabic symbols, because the frequency of the

already known symbols might be well established and learned.

Thus,  to  investigate  the  role  of  the  frequency in  the  size  effect,  participants

learned new number symbols in a simple number comparison task, and the frequency of

the symbols was manipulated in the experiment. According to the DSS model, the size

effect  could  be  changed  as  a  function  of  the  symbol  frequencies  (Figure  3),  if  the

reaction time depends on the frequency of the symbol, and not the frequency of the

concept. For example, if the distribution of the frequencies is uniform, then according to

the DSS model, the size effect should vanish. In contrast, according to the ANS model,

even with uniform frequency distribution the size effect should be visible, because the

size effect is rooted in the ratio of the two values, independent of the frequency (Figure

7).  It  is  important  to  stress  that  although according  to  the  ANS model  it  might  be

possible that the frequency of the symbols have an effect on the performance, the effect

should be relatively weak: Although in the ANS model the role of the frequency is not

discussed, it states that the largest part of the performance variance should be explained

by the ratio  (Dehaene, 2007; Moyer & Landauer, 1967), which means that any other

factors could have only a minor effect on the performance.

Methods.

Participants learned new symbols (Figure 8) for the numbers between 1 and 9 to

compare, while the frequency of all symbols was manipulated in two conditions.
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Analogue

Number

System

(ANS)

Independent of the frequency:            

Ratio
Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 

2

1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1

2 0.3 0.5 0.3 0.2 0.2 0.1 0.1 0.1

3 0.2 0.5 0.6 0.4 0.3 0.2 0.2 0.2

4 0.1 0.3 0.6 0.7 0.5 0.4 0.3 0.3

5 0.1 0.2 0.4 0.7 0.8 0.5 0.4 0.4

6 0.1 0.2 0.3 0.5 0.8 0.8 0.6 0.5

7 0.1 0.1 0.2 0.4 0.5 0.8 0.9 0.7

8 0.1 0.1 0.2 0.3 0.4 0.6 0.9 1.0

9 0.1 0.1 0.2 0.3 0.4 0.5 0.7 1.0

Discrete 
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1 1 2 3 4 5 6 7 8

2 1 1 2 3 4 5 6 7

3 2 1 1 2 3 4 5 6

4 3 2 1 1 2 3 4 5

5 4 3 2 1 1 2 3 4

6 5 4 3 2 1 1 2 3

7 6 5 4 3 2 1 1 2

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

+

Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 

2

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

 =

Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 

2

1 1 2 3 4 5 6 7 8

2 1 1 2 3 4 5 6 7

3 2 1 1 2 3 4 5 6

4 3 2 1 1 2 3 4 5

5 4 3 2 1 1 2 3 4

6 5 4 3 2 1 1 2 3

7 6 5 4 3 2 1 1 2

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1
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1 1 2 3 4 5 6 7 8

2 1 1 2 3 4 5 6 7

3 2 1 1 2 3 4 5 6

4 3 2 1 1 2 3 4 5

5 4 3 2 1 1 2 3 4

6 5 4 3 2 1 1 2 3

7 6 5 4 3 2 1 1 2

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

+

Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 

2

1 1.5 1.3 1.3 1.2 1.2 1.1 1.1 1.1

2 1.5 0.8 0.8 0.7 0.7 0.6 0.6 0.6

3 1.3 0.8 0.6 0.5 0.5 0.5 0.5 0.4

4 1.3 0.8 0.6 0.5 0.4 0.4 0.4 0.4

5 1.2 0.7 0.5 0.5 0.4 0.3 0.3 0.3

6 1.2 0.7 0.5 0.4 0.4 0.3 0.3 0.3

7 1.1 0.6 0.5 0.4 0.3 0.3 0.3 0.3

8 1.1 0.6 0.5 0.4 0.3 0.3 0.3 0.2

9 1.1 0.6 0.4 0.4 0.3 0.3 0.3 0.2

 =

Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 

2

1 1.9 2.1 2.5 2.8 3.2 3.5 3.9 4.3

2 1.9 1.2 1.6 1.9 2.3 2.6 3.0 3.4

3 2.1 1.2 1.0 1.3 1.7 2.1 2.5 2.8

4 2.5 1.6 1.0 0.9 1.2 1.6 2.0 2.4

5 2.8 1.9 1.3 0.9 0.8 1.1 1.5 1.9

6 3.2 2.3 1.7 1.2 0.8 0.7 1.1 1.5

7 3.5 2.6 2.1 1.6 1.1 0.7 0.7 1.1

8 3.9 3.0 2.5 2.0 1.5 1.1 0.7 0.6

9 4.3 3.4 2.8 2.4 1.9 1.5 1.1 0.6

Figure 7. Prediction of the two models for the symbol frequency manipulation in

Experiment  2.  Bar  charts  show  the  frequency  of  the  stimuli  used  in  the  uniform

distribution condition and in the Indo-Arabic-like distribution condition. (In the Indo-

Arabic-like distribution the resulting performance is computed as 0.4 × Distance +

Frequency.)

It is possible that the new symbols are not connected to the numerical values

they represent, and they may be processed only as a non-numerical ordered series. This

could cause a problem, because the ANS could not process this non-numerical order8.
8 Note, however, that several works suggest that order processing and quantity processing rely on

the same mechanisms  (Leth-Steensen & Marley,  2000;  Marshuetz,  Reuter-Lorenz,  Smith,  Jonides,  &

Noll, 2006; Verguts & Van Opstal, 2014), thus, ANS should be activated even when the new symbols are

non-numerical orders.
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To ensure that the new symbols were connected to the numerical values they represent,

at the end of the experiment we used a priming task to measure the priming distance

effect  (PDE)  between  the  newly  learned  symbols  and  familiar  Indo-Arabic  digits

(Figure 8). In a PDE the reaction time to the target is faster when the numerical distance

between the prime and the target is smaller, reflecting a semantic relation between the

prime and the target (Koechlin et al., 1999; Reynvoet & Brysbaert, 1999; Reynvoet et

al., 2009).

Participants.

Eighteen university students participated in the uniform frequency distribution

condition. After excluding 2 of them because the error rate did not fall below 5% even

after the 5th block, and excluding 2 further participants showing higher than 5% error

rates in the main comparison task, the data of 14 participants was included (11 females,

mean  age  20.6  years,  standard  deviation  2.1  years).  Fifteen  university  students

participated in the Indo-Arabic-like frequency distribution condition. After excluding

two  participants  because  their  error  rates  were  higher  than  5%  either  in  the  main

comparison or in the priming comparison task, the data of 13 participants was analyzed

(13 females, mean age 24.3 years, standard deviation 6.9 years).

Stimuli and procedure.

The participants first learned new symbols for the numbers between 1 and 9.

Then, in a comparison task they decided which number is larger in a simultaneously

presented symbol pair. Finally, in a priming comparison task the participants decided

whether one-digit numbers are smaller or larger than 5 (Figure 8).

New symbols were introduced to represent values between 1 and 9. The new

symbols  were  chosen  from  writing  systems  that  were  mostly  unknown  to  the

participants,  and the characters had similar vertical  and horizontal  size. The symbols

were randomly assigned to values for all participants, i.e., the same symbol could mean

a different value for different participants, from the following characters: Շ, Ջ, Թ, Ծ,

Ճ, Ł, Ө, Đ, И, Я, Ҹ, Ħ, Œ, Ƌ, ƛ, ʕ, Ʊ, Ʋ.

To ensure that the participants have learned the symbols, in the symbol learning

phase, the symbols were practiced until a threshold hit rate was reached. In a trial of the

new  symbol  learning  phase  a  new  symbol  and  an  Indo-Arabic  digit  were  shown

simultaneously,  and the participant decided whether the two symbols denote the same
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Symbol learning

different same

Comparison

left larger right larger

Priming 

comparison

Prime trial

smaller than Թ (5) larger than Թ (5)

Target trial

smaller than 5 larger than 5

Figure 8. Tasks in the new symbol experiments.

value. The stimuli  were visible until response. After the response, auditory feedback

was given. In a block all symbols were presented 10 times (90 trials in a block) in a

randomized order. In half of the trials the symbols denoted the same values. The symbol

learning phase ended if the error rate in a finished block was smaller than 5%, or the

participant could not reach that level in five blocks.

In  the  main  comparison  task,  the  same  procedure  was  used  as  in  the  first

experiment, but here the numbers were denoted with the new symbols. In the uniform

frequency distribution condition the number of the presentation of a digit were the same

as in the first experiment (all possible number pairs were shown 10 times). In the Indo-

Arabic-like  frequency  distribution  condition  the  frequencies  of  the  specific  values

2       Ƌ

ƛ       Ʋ

Ջ

3
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followed the frequencies of the numbers in everyday life  (Dehaene & Mehler, 1992),

specified  with  the  following  formula:  frequencyvalue =  value-1 ×  10.  This  formula

generated the following frequencies (value:frequency): 1:10, 2:5, 3:4, 4:3, 5:2, 6:2, 7:2,

8:2, 9:1 (Figure 7). The 2-permutations of these numbers excluding ties were presented,

resulting in 794 trials.

In the priming comparison task in odd (prime) trials a new symbol was visible,

and the participant decided whether it was smaller or larger than 5. Two hundred ms

after the response in an even (target)  trial  an Indo-Arabic digit  was shown, and the

participant decided whether it was smaller or larger than 5. Two thousand ms after the

response a new odd (prime) trial was shown. The stimuli were visible until response.

The instruction included the value of 5 in both notations: For even trials Indo-Arabic

notation (“5”), for odd trials the new notation (e.g., “Թ”) was used. All possible new

symbols were presented with all possible Indo-Arabic digits three times,  resulting in

192 trials.

Results and discussion.

To summarize the main results, in the uniform distribution comparison task the

distance effect was present, but the size effect was not (Figure 9A). This result is in line

with the DSS model,  but not with the ANS model.  On the other hand, in the Indo-

Arabic-like,  biased frequency comparison task both the distance and the size effects

were  visible  (Figure  9B)  in  a  similar  pattern  as  observable  in  Indo-Arabic  number

comparison  (Figure  6),  suggesting  that  it  is  the  frequency  manipulation  that  is

responsible for the size effect.

Distance and size effects in the uniform frequency distribution.

The same analysis  methods were applied as in the first  experiment  with two

exceptions.  Descriptive  data  clearly  shows  an  end  effect  (Leth-Steensen  & Marley,

2000). Thus, an end effect regressor was also included in the multiple linear regressions

(Figure 5) with a value of 1 if any of the presented numbers were 9, 0.5 if any of the

numbers were 8 or 1, and 0 otherwise. These values were specified with first calculating

the average reaction time for all presented numbers, then the distance effect (distance

from 5) of the middle number range (i.e.,  without end effect)  was extrapolated,  and

finally,  the  deviation  from this  extrapolation  at  the  end  of  the  number  range  was

estimated.
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A Equal frequencies condition

Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 4% 4% 2% 0% 0% 0% 0% 0%

2 6% 5% 1% 0% 0% 0% 0% 0%

3 1% 4% 2% 0% 1% 1% 0% 0%

4 2% 1% 1% 5% 2% 2% 0% 1%

5 1% 0% 2% 4% 2% 1% 0% 0%

6 0% 0% 1% 2% 4% 7% 1% 3%

7 0% 0% 0% 2% 2% 6% 7% 2%

8 0% 0% 0% 1% 0% 1% 2% 4%

9 0% 0% 0% 0% 0% 0% 1% 4%

Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 1274 1196 1026 989 926 1088 844 810

2 1283 1309 1275 1163 1153 1085 1000 885

3 1270 1432 1591 1292 1261 1141 1022 888

4 1176 1354 1556 1381 1328 1202 1024 887

5 1066 1225 1326 1502 1387 1211 1124 908

6 998 1134 1278 1343 1358 1435 1240 956

7 1075 1153 1230 1237 1247 1463 1229 960

8 945 1003 1009 1147 1040 1288 1179 1008

9 782 825 821 823 780 885 846 911

B Biased frequencies condition

Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 2% 1% 1% 0% 0% 0% 0% 0%

2 4% 5% 1% 1% 0% 2% 2% 0%

3 0% 5% 5% 2% 2% 0% 1% 2%

4 0% 2% 2% 1% 1% 3% 0% 0%

5 0% 2% 4% 4% 13% 8% 4% 0%

6 0% 0% 0% 8% 19% 8% 0% 0%

7 0% 1% 0% 1% 4% 6% 13% 0%

8 0% 0% 1% 0% 4% 10% 13% 19%

9 0% 0% 2% 0% 8% 0% 4% 0%

Number on the right

1 2 3 4 5 6 7 8 9
N

um
be

r 
on

 t
he

 le
ft

1 856 815 822 811 817 800 784 737

2 926 1206 1127 1168 1174 1117 937 885

3 880 1234 1451 1287 1322 1190 1094 924

4 923 1191 1411 1508 1461 1270 1222 896

5 882 1171 1359 1484 1756 1362 1113 994

6 871 1241 1299 1202 1845 1569 1184 1037

7 818 1054 1237 1362 1370 1554 1342 1037

8 843 937 989 1257 1169 1131 1272 1002

9 770 819 860 847 935 1274 1150 1098

Figure 9. Error rates (left) and response times in ms (right) in the new symbol

number comparison for the whole stimulus space. Lighter shade denotes fast and error-

free  responses,  darker  shade  denotes  slow  and  erroneous  responses.  (A) Equal

frequencies  condition,  showing  distance  and  end  effects.  (B) Biased  frequencies

condition, showing distance, size and end effects.

In the multiple linear regression the slope of the distance effect deviated from

zero, 95% CI was [-1.04%, -0.48%], t(13) = -5.84, p < 0.001 for error rates, and CI was

[-73.6 ms, -26.1 ms], t(13) = -4.53, p = 0.001 for reaction time. On the other hand, the

slope of the size effect did not differ from zero, CI with [-0.15%, 0.06%],  t(13) = -

0.933,  p = 0.368 for error rates, and CI with [-26.6 ms, 13.9 ms],  t(13) = -0.679,  p =

0.509 for reaction time. The end effect was present for the reaction time, CI of [-430.6

ms, -147.6 ms], t(13) = -4.41, p = 0.001, and more unstably for the error rates, CI with

[-0.23%, 2%], t(13) = 1.71, p = 0.111.

These results also demonstrated an end effect (the most extreme values in the set

are  easier  to  respond than other  values)  (Leth-Steensen & Marley,  2000),  however,
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while the end effect can be in line with the DSS model (Leth-Steensen & Marley, 2000),

it is also possible that the effect is irrelevant in the description of the representation

processing the numerical values  (Balakrishnan & Ashby, 1991; Piazza, Giacomini, Le

Bihan, & Dehaene, 2003), consequently, the presence of this effect is not decisive in the

present question.

Distance and size effects in the Indo-Arabic-like frequency distribution.

The slope of the distance effect differed from zero in both the error rates, CI

with [-1.56%, -0.5%], t(12) = -4.25, p = 0.001, and in reaction times, [-55.7 ms, -28.9

ms], t(12) = -6.87, p < 0.001. The non-zero slope of the size effect was also observable,

[0.20%, 0.68%], t(12) = 3.99, p = 0.002 for the error rate, and CI with [28.4 ms, 50.2

ms],  t(12) = 7.85,  p < 0.001 for the reaction time.  Additionally,  the end effect  was

observable in the reaction times, CI with [-622.5 ms, -294.9 ms], t(12) = -6.1, p < 0.001,

but not in the error rates, CI with [-2.76%, 0.7%], t(12) = -1.3, p = 0.217.

We tested  directly  whether  the  size  effects  of  the  two  frequency  conditions

differed.  The size  effect  slopes  between the  uniform frequency distribution  and the

Indo-Arabic-like  frequency  distribution  conditions  differed  significantly  in  both  the

error rates, U = 13, p < 0.001, and in the reaction times, U = 15, p < 0.001.

Priming distance effect.

In this analysis the error rates and median reaction times of the correct responses

of  the  target  Indo-Arabic  numbers  were  analyzed  as  a  function  of  the  prime  (new

symbols) – target (Indo-Arabic digit) distance (Figure 10). Only the trials in which the

response was the same for the prime and distance (i.e., both numbers were smaller than

5, or both numbers were larger than 5) were analyzed (Koechlin et al., 1999; Reynvoet

& Brysbaert, 1999; Reynvoet et al., 2009). Linear slope was calculated for the PDE.

In  the  uniform  frequency  distribution  the  data  of  one  participant  was  not

recorded due to technical problems. Because in the symbol learning task participants

practiced the new symbol – Indo-Arabic pairs, the zero distance pairs could have this

extra practice gain, and not depend purely on the semantic priming effect. Thus, the 0

distance pairs  were not  included in the analysis.  While  the descriptive  data  showed

increasing  priming  effect  with  smaller  distance  (Figure  10),  the  effect  was  not

significant: In the uniform frequency condition CI is [-1.62%, 2.69%], t(12) = 0.54, p =

0.599 for the error rate, and CI is [-1.4 ms, 39.7 ms],  t(12) = 2.03,  p = 0.065 for the

reaction time, and in the Indo-Arabic frequency condition CI is [-0.13%, 1.63%], t(12) =
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1.85, p = 0.089 for the error rates, and CI is [-8.9 ms, 27.2 ms], t(12) = 1.11, p = 0.290

for the reaction time. The lack of significance could mean the lack of PDE, or it could

reflect the lack of statistical power, or both. Looking at the gradual increase of error rate

and reaction time as the function of priming distance (Figure 10) and the biased CIs, it

seems more probable that the PDE could be statistically significant with larger statistical

power. To extend the reasoning that the lack of the significance might be the result of

insufficient statistical power, we also analyzed three unpublished similar experiments

conducted in our laboratory, where in the same design new symbols were learned with

the  same  stimuli  and  procedure  as  in  the  present  works  (in  the  third  unpublished

experiment  the  learning  and  the  comparison  were  repeated  for  5  days).  In  those

experiments the PDE was measured with similar sample sizes as in the experiments

presented here. We found that in all cases the confidence interval was biased to the

direction the PDE predicts, although mostly it was only close to be significant. In the

first two unpublished experiments 95% CI is [-6.2 ms, 17.7 ms], N = 12, p = 0.312, and

[29.1 ms, 75.1 ms], N = 10, p < 0.001. In the third unpublished experiment the PDE was

measured for 5 consecutive days which is especially informative about the consistency

and fluctuation of the PDE in a relatively small sample: 95% CI [10.25 ms, 34.54 ms],

N = 13, p = 0.002, [-2.09 ms, 28.21 ms], p = 0.085, [-1.05 ms, 14.39 ms], p = 0.084, [-

9.34 ms,  8.13 ms],  p =  0.882,  [-0.49  ms,  13.24  ms],  p =  0.066,  for  the  five  days,

respectively.  A  meta-analysis  on  the  five  available  experiments  (second  and  third

experiments of the present paper and three unpublished experiments; only day 1 was

used from the last  unpublished experiment;  meta-analysis  of means in original  units

with random effect) revealed 95% CI [6.7 ms, 34.3 ms],  p = 0.004 (Cumming, 2012).

The analysis also confirms that the effect size would require much larger sample to have

a significant result reliably in a single experiment: The estimated effect size could be as

small  as  d =  0.3  (with  around  25  ms  standard  deviation),  which  would  require  a

magnitude of 100 participants to reach 95% statistical power (Faul et al., 2007). Taken

together, based on (a) the expected gradual pattern of the PDE (Figure 8), and (b) the

consistently biased CIs across experiments, (c) confirmed with the meta-analysis, it is

most reasonable to conclude  that the PDE is  present,  even if  our usual sample size

around  15  does  not  guarantee  the  preferred  95%  statistical  power  for  a  single

experiment.
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Figure  10.  Prime distance  effect  (PDE) measured in  error  rates  (bars)  and

reaction  time  (lines),  in  equal  frequency  condition  (left)  and  in  biased  frequency

condition (right) in Experiment 2. Error bars represent 95% confidence interval.

Effect of the frequency.

To  further  demonstrate  the  effect  of  the  frequency  (because  it  cannot  be

observed readily on Figure 9), the mean reaction time was calculated for all cells that

include  a  specific  value  in  both  conditions  (right  of  Figure  11).  The  reaction  time

changes in line with the frequencies of the values: The more frequent a number is in one

condition compared to the other condition (left of Figure 11), the faster it is to process

(right of Figure 11). In other words, the differences of the two conditions for the values

in  the  reaction  time  data  are  inversely  proportional  to  the  differences  of  the  two

conditions  for  the  values  in  the  frequency.  Note  that  the  reaction  time  data  do  not

include purely the frequency effect, because (a) middle values are gradually slower to

process because of the interaction of the distance effect and the shape of the stimulus

space, and (b) end values are faster to process because of the end effect.
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Figure  11. Frequencies of the specific values (left) and response latencies for

those values (right) in Experiment 2.
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Summary.

In the second experiment  the numerical  distance and size effects  dissociated.

More  specifically,  the  numerical  size  effect  was  missing  when  the  frequency

distribution was uniform, and the size effect was present with the biased frequencies of

symbols,  suggesting  that  size  effect  was  guided by the  frequencies  of  the  symbols.

These results cannot be explained by the ANS model, whereas they can be in line with

the DSS model.  We highlight  again that  according to  the ANS model  although the

frequency might slightly modulate the performance, it cannot change a large proportion

of the variance in the performance. However, the present result reveal that largest part

of the variance of the size effect is directed by the frequency, while the ratio has no

observable effect (as revealed by the statistical lack of the size effect), contradicting the

ANS model prediction.

Results also show that the new numbers semantically primed the Indo-Arabic

digits as revealed by the PDE, demonstrating that the new symbols were connected to

the values they represent.  Thus, the lack of the size effect in the second experiment

cannot  be  the  result  of  potentially  non-numeric  new  symbols  which  could  not  be

processed by the ANS.

Experiment 3 – Role of the Semantic Congruency Effect in the Size 

Effect

As another potential confound, it is possible that in the second experiment there

was a size effect in the uniform distribution condition, however, a semantic congruency

effect (SCE) extinguished it.  According to the SCE, large numbers are responded to

faster than small numbers when the task is to choose the larger number, resulting in a

reversed size-like effect, and small numbers are faster to decide on when the smaller

number  should  be  chosen,  resulting  in  a  regular  size-like  effect  (Leth-Steensen  &

Marley, 2000). If the SCE was present in the second experiment, this anti-size effect

could have extinguished a potentially existing size effect. To test this possibility, the

uniform frequency condition  of  the  second experiment  was rerun,  but  this  time the

participants had to choose the smaller number. If the SCE was present in the second

experiment  as  a  reversed  size-like  effect,  then  it  should be  observed in  the  present

experiment as a regular size-like effect, increasing the size effect. However, the size

effect was not present in this control experiment, demonstrating that the SCE did not

mask a potentially existing size effect.
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Methods.

The methods of the second experiment was applied, however, participants had to

choose  the  smaller  number,  not  the  larger,  in  the  comparison  task.  The  priming

comparison task was not run.

Eighteen  university  students  participated  in  the study. Two participants  were

excluded, because their error rates were higher than 5% after the 5th learning block, and

two participants  were  excluded  because  they  had  higher  than  5% error  rate  in  the

comparison task. The data of 14 participants were analyzed, 10 females, with mean age

of 25.4 years, and standard deviation of 6.9.

Results.

Distance and size effects.

In the multiple linear regression analysis the distance effect was present in both

the error rate and the reaction time, CI [-1.54%, -0.48%], t(13) = -4.13, p = 0.001, and

CI [-77.0 ms, -39.6 ms], t(13) = -6.73, p < 0.001, respectively. More critically, the size

effect was not observable neither in the error rate nor in the reaction time, CI [-0.18%,

0.15%], t(13) = -0.184, p = 0.857, and CI [-25.0 ms, 26.2 ms], t(13) = 0.0482, p = 0.962,

respectively. Comparing the slopes of the uniform frequency condition of the second

and the present experiments, the slopes of the size effects did not differ significantly,

neither in error rate nor in reaction time,  t(26) = 0.33,  p = 0.744, and  U = 91.5,  p =

0.783, respectively. Thus, choosing the smaller number did not change the size effect,

consequently,  the  SCE  did  not  influence  essentially  the  size  effect  in  the  second

experiment.

General Discussion

We introduced the DSS model as a comprehensive alternative account to the

ANS model to explain symbolic number processing. First, we have shown that the DSS

model can explain many symbolic numerical effects, and we demonstrated that the DSS

model  could give a  similar  quantitative  prediction  for symbolic  number comparison

performance as the ANS model. Second, we tried to contrast the two models in Indo-

Arabic  comparison  task.  However,  because  of  the  relatively  high  noise  and  the

uncertainties  of  the  diffusion  analysis  method,  it  was  not  possible  to  find  a

straightforward preference for any models. On the other hand this result could show that

the DSS model prediction empirically fits the Indo-Arabic number comparison as good
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as the ANS model prediction. Finally, the second and third experiments revealed that in

new  symbol  comparison  tasks  the  numerical  size  effect  is  the  consequence  of  the

frequency manipulations of the symbols, as proposed by the DSS model, and not the

consequence of the ratios of the values, as predicted by the ANS model. These data also

show that the numerical distance and size effects are not straightforward signs of the

ANS, because an alternative mechanism could produce them as well.

While the second and the third experiments utilized new symbols, it is possible

to extend our conclusion about other symbolic number comparisons, for example, the

Indo-Arabic  number  comparison.  Because  all  known  numerical  effects  that  were

observable in the new symbol comparison show the very same pattern as in Indo-Arabic

comparison (i.e., distance effect, size effect and PDE), it is parsimonious to suppose that

the  same  mechanisms  work  behind  new  symbol  comparison  and  Indo-Arabic

comparison,  and our  findings  can  also  be  generalized  to  the  Indo-Arabic  and other

symbolic number processing, unless additional data show the opposite.

We argue that the ANS model is not in line with our results. While one can try to

modify the ANS model to align with the present result, ratio-based performance is a

defining feature of the ANS, and changing that feature leads not only to a modified

ANS model, but to a completely new model. Additionally, adding frequency effect to

the ANS model cannot modify it to explain the frequency-based size effect, because the

ANS critically  suggests  that  the performance should  mainly  be driven by the  ratio,

which ratio effect in fact was statistically invisible in the second and third experiments.

We argue that the ANS model is not in line with the present results, and the DSS

can be an appropriate alternative. However, one might question how strongly our results

support  a  DSS model.  Obviously,  one  can  only  tell  if  a  model  is  in  line  with  the

empirical results, and whether the model is coherent. We argue that the DSS is in line

with the present and previous results (e.g., it can explain the independent distance and

size effects, why symbolic and non-symbolic comparisons are relatively independent, or

how  arbitrarily  precise  comparison  can  be  made),  and  it  is  a  coherent  model.

Additionally, based on current cognitive models, it is reasonable to suppose that abstract

symbolic operations are processed by a system that is otherwise known to be used for

other symbolic operations, such as the mental lexicon or a conceptual network. On the

other hand, no one can exclude that an alternative, third model could account for these

results, and not the ANS or the DSS models. Further research can tell whether the DSS

framework is an appropriate explanation for the symbolic number processing or another
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alternative  should  be  found.  Furthermore,  it  is  possible  that  it  is  not  a  single

representation that is responsible for the discussed effects, but cooperation of several

representations is required, and although the ANS cannot explain the distance effect in

comparison task, still there could be other symbolic numerical phenomena that could be

rooted in the ANS. Additional works can find out whether such a partial role can be

attributed to the ANS in symbolic number processing.

The DSS model in its current form relies on models about mental lexicon or

conceptual networks. These starting points could offer many properties of the models,

while  at  the  same  time,  many  other  details  are  seemingly  missing,  e.g.,  the  exact

quantitative  description  of  the  comparison  performance.  While  these  shortcomings

might make the impression that the DSS model is less detailed than the ANS model,

these differences are the consequence of changing the base of the explanations. While

the ANS model is a low-level perceptual model in its nature, the DSS model is more

like a linguistic or conceptual network model. Models describing higher level functions

are  usually  less  quantitative  than  models  describing  lower  level  functions,  partly

because of methodological reasons, and from this viewpoint it seems reasonable that a

DSS model is less quantitative than an ANS model. However, from a different—and

more relevant—viewpoint, the DSS model is as efficient as the ANS model, because

seemingly all relevant symbolic numerical effects and phenomena can also be explained

in the DSS model, and a few examples can already be found where the DSS model can

give a better explanation than the ANS model.

The  ANS model  is  a  widely  accepted  and  deeply  grounded  explanation  for

number  processing.  However,  despite  the  huge  amount  of  papers  discussing  and

supporting the ANS view, they are relying on surprisingly few effects and findings that

demonstrate an ANS activation. In fact, the few phenomena can also be explained in the

alternative  DSS  model  as  well.  Additionally  and  more  importantly,  an  increasing

number of findings are not in line with the ANS model. For example, symbolic and non-

symbolic  performance  seems  to  be  independent  on  many  behavioral  (Holloway  &

Ansari, 2009; Sasanguie et al., 2014; Schneider et al., 2017) and neural level (Bulthé et

al.,  2014;  Bulthé  et  al.,  2015;  Damarla  &  Just,  2013;  Lyons  et  al.,  2015).  In  a

correlational study it has been shown that distance and size effects dissociate in Indo-

Arabic  comparison  task  (Krajcsi,  2016).  Some  results  show  that  the  numerical

representation  is  not  analog:  Functional  activation  in  the  brain  while  processing

symbolic numbers seems to be discrete (Lyons et al., 2015), and symbolic numbers can
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also interfere with the discrete yes-no responses (Landy, Jones, & Hummel, 2008). The

present finding showing the frequency dependence of the size effect also extends the list

of results contradicting the ANS model. Future research can tell whether the ANS can

be reformulated to account for these findings, or an alternative model, such as the DSS,

can characterize symbolic number processing better.
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In a comparison task, the larger the distance between the two numbers to be compared,

the better  the performance—a phenomenon termed as the numerical distance effect.

According  to  the  dominant  explanation,  the  distance  effect  is  rooted  in  a  noisy

representation, and performance is proportional to the size of the overlap between the

noisy  representations  of  the  two  values.  According  to  alternative  explanations,  the

distance effect may be rooted in the association between the numbers and the small-

large categories,  and performance is  better  when the numbers show relatively  high

differences in their strength of association with the small-large properties. In everyday

number use, the value of the numbers and the association between the numbers and the

small-large categories  strongly  correlate;  thus,  the two explanations  have the same

predictions  for  the  distance  effect.  To  dissociate  the  two  potential  sources  of  the

distance effect, in the present study, participants learned new artificial number digits

only for the values between 1 and 3, and between 7 and 9, thus, leaving out the numbers

between 4 and 6. It was found that the omitted number range (the distance between 3

and 7) was considered in the distance effect  as 1, and not as 4, suggesting that the

distance effect  does not follow the values of the numbers predicted by the dominant

explanation,  but  it  follows  the  small-large  property  association  predicted  by  the

alternative explanations.
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The Numerical Distance Effect and Its Explanations

In a symbolic number comparison task, performance is better (i.e., error rates are

lower and reaction times are shorter) when the numerical distance is relatively large,

e.g., comparing 1 vs. 9 is easier than comparing 5 vs. 6  (Moyer & Landauer, 1967).

There  are  several  explanations  for  this  phenomenon  termed  the  numerical  distance

effect.

According to the dominant model, numbers are stored on a continuous (analog)

and noisy representation called the Analog Number System (ANS). The numbers are

stored as noisy signals,  and the closer  the two numbers on the ANS, the larger the

overlap  of  the  two respective  signal  distributions  is.  As comparison  performance  is

better when the overlap is relatively small, the large distance number pairs are easier to

process  because  of  the  smaller  overlap  between  the  signals  (Dehaene,  2007).  More

specifically,  the  ANS  works  according  to  Weber's  law;  therefore,  the  comparison

performance  depends  on  the  ratio  of  the  two  numbers  to  be  compared  (Moyer  &

Landauer,  1967).  In  fact,  the  distance  effect  is  the  consequence  of  this  ratio  effect

because larger distance also means higher ratio. The ratio effect is also thought to be the

cause  of  the  numerical  size  effect:  Comparison  performance  is  better  for  smaller

numbers than for larger numbers because smaller number pairs have larger ratio than

larger number pairs with the same distance  (Moyer & Landauer, 1967). The ANS is

thought  to  be  the  essential  base  of  numerical  understanding  (Dehaene,  1992),  and

numerical distance effect is believed to be a diagnostic signal of the ANS activation

while solving a numerical task.

However, there could be another explanation for the cause of the distance effect.

Recently, it has been proposed that symbolic numerical effects, such as the distance and

size  effects,  can  be  explained  by  a  representation  similar  to  the  mental  lexicon  or

conceptual networks, where nodes of the network represent the digits, and connections

between them are formed according to their semantic and statistical relations (Krajcsi et

al.,  2016).  In  this  model,  termed  the  Discrete  Semantic  System  (DSS)  model,  the

numerical distance and size effects are rooted in two different mechanisms, even if the

combination  of  these  effects  looks  similar  to  the  formerly  supposed  ratio  effect.

According to the model, the size effect might depend on the frequencies of the numbers:

Smaller numbers are more frequent than larger numbers  (Dehaene & Mehler, 1992);

therefore, smaller numbers are easier to process, producing the numerical size effect. A
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similar frequency-based explanation of the size effect could be found in the model of

Verguts et al. (2005). At the same time, numerical distance effect could be based on the

relations of the numbers, for example, similar to the phenomenon in a picture naming

task, where priming effect size depended on the semantic distance between the prime

and target pictures  (Vigliocco et al., 2002). There are several other alternative number

processing models  with partly  overlapping suppositions  and predictions  as  the  DSS

model (Leth-Steensen et al., 2011; Nuerk, Iversen, & Willmes, 2004; Pinhas & Tzelgov,

2012; Proctor & Cho, 2006; Verguts & Fias, 2004; Verguts et al., 2005; Verguts & Van

Opstal,  2014).  See  the  comparison  of  those  models  in  Krajcsi  et  al.  (2016) and in

Krajcsi et al.  (2018). Supporting the alternative DSS model, it has been found that the

size  effect  followed  the  frequency  of  the  digits  in  an  artificial  number  notation

comparison task (Krajcsi et al., 2016). In addition, it has been shown in a correlational

study that in symbolic number comparison task, the distance and the size effects were

independent (Krajcsi, 2016), reflecting two independent mechanisms generating the two

effects. (See a similar prediction for independent distance and size effects in Verguts et

al., 2005; Verguts & Van Opstal, 2014).

Because of the DSS model and the empirical findings demonstrating that the size

effect is a frequency effect and that the distance and size effects are independent, it is

essential  to  reconsider  how the  distance  effect  is  generated.  According  to  the  DSS

model,  different  explanations  consistent  with  the  supposed  network  architecture  are

feasible. First, it is possible that based on the values of the numbers, connections with

different strengths between the numbers are formed—numbers with closer values have

stronger  connections—and  stronger  connections  create  interference  in  a  comparison

task, thereby resulting in a distance effect. This explanation is similar to the ANS model

in a sense that value-based semantic relations are responsible for the distance effect. As

an  alternative  explanation,  it  is  also  possible  that  based  on  previous  experiences,

numbers are associated with the “small” and the “large” properties, e.g., large digits,

such as 8 or 9, are more strongly associated with “large,” and small digits, such as 1 or

2, are more strongly associated with “small.” These associations could influence the

comparison  decision,  and  the  number  pairs  with  larger  distance  might  be  easier  to

process because the associations  of the two numbers with the small-large properties

differ  to  a  larger  extent.  A  similar  explanation  has  been  proposed  earlier  in  a

connectionist model, which model predicted several numerical effects successfully, and

one key component of this model was that the distance effect relies on the connection



68

between the number layer and the “larger” nodes, where relatively large numbers are

associated with the “larger” node more strongly than relatively small numbers (Verguts

et al., 2005).

Therefore,  the  explanations  of  the  numerical  distance  effect  suppose  two

different sources for the effect: According to the ANS model and to the value-based

DSS explanation,  the effect  is  rooted in  the  values  or the  distance of  the numbers,

whereas in the association-based DSS explanation and in the connectionist model, the

effect is rooted in the strength of the associations between the number and the small-

large  properties.  The  two  explanations  are  not  exclusive;  it  is  possible  that  both

information sources contribute to the distance effect.

The two critical properties of the two explanations, i.e., the values or distance of

the numbers and the association between the numbers and the small-large properties,

strongly correlate in the number symbols used in everyday numerical tasks. Therefore,

in those cases, one cannot specify their role in the distance effect. However, in a new

artificial  number  notation,  the  two  factors  (the  distance  of  the  values  and  the

association) could be manipulated independently. This is only possible if the distance

effect  is  notation  specific.  Otherwise,  the  new  symbols  would  get  the  association

strengths of the already known numbers, instead of forming new association strengths

between  the  new  symbols  and  the  small-large  properties.  It  is  possible  that  the

numerical effects are notation specific, as has been already demonstrated in the case of

the numerical  size effect:  In  an artificial  number notation  comparison task,  the size

effect followed the frequency of the digits,  which also means that the size effect is

notation specific (Krajcsi et al., 2016).

The Aim of the Study

The  present  study  investigates  whether  in  a  new  artificial  number  notation,

where  the  values  of  the  digits  and  the  small-large  associations  do  not  necessarily

correlate, the distance effect is influenced by the distance of the values or by the small-

large associations, or both. One way to dissociate the two properties is to use a number

sequence in which some of the values are omitted (Figure 12). If the distance effect is

directed by the distance of the values, then the measured distance effect should be large

around  the  gap  (in  this  example,  the  effect  should  be  measured  as  4  units  large),

whereas  if  the  distance  effect  is  directed  by  the  small-large  associations,  then  the

measured distance effect  should be small  around this  gap,  which is  measured as an
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effect with a single unit distance, thereby supposing that the new digits were used in a

comparison task with equal probability. If both mechanisms contribute to the distance

effect, then the distance effect should be measured somewhere between the single unit

and the many units (in this example 4 units) distance.

Distance is 4

1 2 3 4 5 6 7 8 9

Ջ ƛ Շ Թ Ծ Ճ

Distance is either 4 (value explanation) or 1 (association explanation)

Figure 12. An example of the symbols and their meanings in the present study.

Arrows show the predicted  distance  effect  size  based on the predictions  of  the two

explanations.

Why does  the  association  explanation  predict  a  distance  effect  of  1  distance

around the gap? In a comparison task, the association between a digit and the small-

large properties may depend on how many times the digit were judged as smaller or

larger. If the new digits are used with equal probability in the comparisons (and if the

distance effect is notation specific), then the probability of being smaller or larger than

the other number can be specified easily (see Table 2). In our example (Figure 12), the

number 1 is always smaller. Hence, the association frequency is 100% with the small

property and 0% with the large property. The number 2 is smaller when compared with

3, 7, 8, and 9, and larger when compared with 1. Therefore, the association frequency is

80% small and 20% large. Continuing the example, the association frequency is directly

proportional to the order of the symbols and not to their value. If the distance effect

depends on the order, then the distance between 3 and 7 (i.e., the two digits around the

gap) is the same as any other neighboring digits (see the specific values in Table 2).

The two explanations predict  different  effect  sizes for the distance effect  not

only for the two numbers next to the gap (e.g., for 3 vs. 7 on Figure 12 and Table 2) but

also for any number pairs in which the two numbers are on the opposing side of the gap.

The possible number pairs of the new symbols seen on Figure 12 and their hypothetical

distance  effect  sizes  according  to  the  two  explanations  can  be  seen  on  Figure  13.

Columns and rows denote the two numbers to be compared, and the cells show the 
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Table 2. The chance of being smaller or larger in a comparison task when the

symbols are presented with equal probability.

Example symbols Ջ ƛ Շ Թ Ծ Ճ

Meaning of the symbols 1 2 3 7 8 9

Chance of being smaller in a 

comparison
100% 80% 60% 40% 20% 0%

Chance of being larger in a 

comparison
0% 20% 40% 60% 80% 100%

distances  of  the  value  pairs  (darker  cells  mean  smaller  distance).  In  the  value

explanation  (left  side),  the  predicted  distance  is  the  difference  of  the  two numbers,

whereas in the association explanation (right side), the predicted distance is computed

based  on  the  strength  of  the  association  with  the  small-large  properties  when  the

numbers  are  presented  with  equal  probability,  which  is  simply  the  order  of  those

symbols  in  that  series.  The  comparison  performance  should  be  proportional  to  the

distance. Therefore, these figures show the performance pattern predictions according to

the two explanations. The results will be displayed in a similar way as seen here because

(a) displaying the full stimulus space is more informative than other indexes of distance

effects, as any systematic deviation from the expected patterns could be observed, and

(b)  with  the  relatively  large  number  of  cells,  any  systematic  pattern  could  be  a

convincing and critical information independent of the statistical hypotheses tests.

In  the  present  test,  it  is  critical  that  the  new symbols  should  represent  their

intended  values  and  not  as  a  series  that  is  independent  of  the  intended  number

meanings; otherwise, the participants could consider the new symbols as numbers, e.g.,

from 1  to  6  because  of  their  order  in  the  new symbol  series,  which  in  turn  could

generate the performance predicted by the association explanation,  even if the effect

would be based on their values. One way to ensure that the new symbols are sufficiently

associated to their intended values is to ensure that the priming distance effect works

between the new and a well-known (for example, Indo-Arabic) notation. In numerical

comparison tasks, the decision about the actual trial might be influenced by the stimulus

of  the  previous  trial,  and the  size  of  the  influence  is  proportional  to  the  numerical

distance of the previous and actual stimuli,  which is termed as the priming distance

effect  (PDE;  Koechlin  et  al.,  1999;  Reynvoet  &  Brysbaert,  1999).  The  PDE  is

considered to be a sign of the relation between the symbols or the overlap of their
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Value explanation Association explanation

Number 2

1 2 3 7 8 9
N

um
be

r 
1

1 1 2 6 7 8

2 1 1 5 6 7

3 2 1 4 5 6

7 6 5 4 1 2

8 7 6 5 1 1

9 8 7 6 2 1

Number 2

1 2 3 4 5 6

N
um

be
r 

1

1 1 2 3 4 5

2 1 1 2 3 4

3 2 1 1 2 3

4 3 2 1 1 2

5 4 3 2 1 1

6 5 4 3 2 1

Figure  13. The expected distance effect pattern for the stimulus space used in

the  present  study  based  on  the  value  explanation  (left  side)  and  based  on  the

association explanation (right side). Specific values in the cells are the difference of the

values (value model) or the difference of the order (association model) of the numbers

to be compared on an arbitrary scale. Darker color indicates worse performance.

representations  (Van Opstal  et  al.,  2008).  Earlier  experiments  have  shown that  new

artificial  symbols  can  cause  PDE  in  Indo-Arabic  numbers  (Krajcsi  et  al.,  2016),

suggesting that the new digits are not a series of symbols independent of their intended

values, but they can be considered as a notation for the respective numbers. In the ANS

framework, the PDE reflects the representational overlap between the numbers; thus,

the PDE demonstrates that both notations appropriately activate the same representation

– the ANS.

To summarize, the present study investigates whether the distance effect follows

the distance of the values of the numbers (left of Figure  13) or the association of the

small-large  properties  (right  of  Figure  13)  or  both,  in  the  case  of  a  newly  learned

notation (Figure 12), where some of the symbols are omitted. If both explanations are

true, then we expect a pattern in-between the two figures, i.e.,  we should observe a

break  between  3  and  7  similar  to  the  value  explanation.  However,  the  difference

between the two sides of the gap should not be as large as in that explanation. All of

these predictions  only hold if  the  distance  effect  is  notation  specific;  otherwise,  the

distance  effect  reflects  the  already  well-known  numbers,  where  the  value  and  the

association strongly correlates, and the pattern seen on the value model prediction can

be expected. Consequently, only a pattern seen on the right in Figure  13 can decide

about the models,  because a pattern  seen on the left  can either  mean a value-based



72

distance effect or it can mean that the distance effect is notation independent.

Methods

In the present experiment, participants learned new symbols (Figure  14), with

the meaning of the numbers between 1 and 3, and between 7 and 9 (Figure 12). Then a

number comparison task was performed with the new symbols (Figure 14).

Stimuli and procedure.

The new symbols were chosen from writing systems that were mostly unknown

to the participants (e.g., Ƌ, ƛ, Ʋ, Ջ). The characters had similar vertical and horizontal

size, and similar visual complexity,  and the height of the symbols were ~2 cm. (As

mostly the apparent size does not influence the effects we investigate here, the visual

angle  was  not  controlled  strictly.)  Numbers  were  displayed  in  white  on  gray

background. The symbols were randomly assigned to values for all participants, i.e., the

same symbol could mean a different value for different participants.

Symbol learning

different same

Comparison

left larger right larger

Figure 14. Tasks in the new symbol experiment.

The participants first learned new symbols for the numbers between 1 and 3, and

between 7 and 9 (Figure 14). To ensure that the participants have learned them in the

learning phase, symbols were practiced until a threshold hit rate was reached. In a trial,

a new symbol and an Indo-Arabic digit were shown simultaneously, and the participant

decided whether the two symbols denoted the same value by pressing the R or I key.

2       Ƌ

ƛ       Ʋ



73

The  stimuli  were  visible  until  response.  After  the  response,  auditory  feedback  was

given.  In  a  block,  all  symbols  were  presented  10  times  (60  trials  in  a  block)  in  a

randomized  order.  In  half  of  the  trials,  the  symbols  denoted  the  same  values.  The

symbol learning phase ended if the error rate in a completed block was smaller than 5%

or the participant could not reach that level in five blocks.

In  the  following  comparison  task,  the  participants  decided  which  number  is

larger in a simultaneously presented new symbol pair by pressing the R or I key (Figure

14). In a trial, two numbers were shown until response, and the participants chose the

larger one. Numbers to be compared could be between 1 and 3, and between 7 and 9.

After the response, auditory feedback was given. All possible number pairs including

the applied numbers,  excluding ties,  were shown 15 times,  thereby resulting in  450

trials.

Presentation of the stimuli and measurement of the responses were managed by

the PsychoPy software (Peirce, 2007).

Participants.

Twenty-three  university  students  participated  in  the  experiment  for  partial

course credit. After excluding 4 participants showing higher than 5% error rates (higher

than the mean + the standard deviation of the error rates in the original sample) in the

comparison task, the data of 19 participants was analyzed (16 females, mean age 22.2

years, standard deviation 4.6 years).

Results

All participants successfully reached a lower than 5% error rate within 3 blocks

in the symbol learning task. Therefore, no participants were excluded for not learning

the symbols within 5 blocks.

For all participants, the mean error rates and the mean reaction times for correct

responses were calculated for all number pairs. Data of participants with higher than 5%

mean error rate were excluded (higher than the mean + the standard deviation of the

error rates in the original sample). The mean error rates and reaction times of the group

are displayed in Figure 15 for the whole stimulus space. Visual inspection of the error

rate pattern suggests that partly the value model can be observed, although the data are

rather noisy, as reflected in some outlier cells. In the case of reaction time, it is more

straightforward that the pattern is more in line with the association model (see the two
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expected pure patterns in Figure 13). In the reaction time data, one can also observe the

end effect: number pairs including the largest number in the range (i.e., 9) are faster to

process  (Leth-Steensen & Marley, 2000; Scholz & Potts, 1974). (There are different

possibilities concerning what causes the end effect. It is possible that participants learn

that 9 is the largest number in the actual session; therefore, when 9 is displayed, no

further consideration is required in a comparison task. Alternatively, according to the

ANS model, it is possible that in the session, number 9 has neighboring number only on

one side,  and the  overlap  between  the  noisy signal  distributions  should be  smaller,

thereby leading to a faster response; Balakrishnan & Ashby, 1991).

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 4.2% 2.5% 0.0% 0.4% 0.7%

2 3.2% 3.2% 1.4% 0.0% 1.1%

3 0.7% 4.6% 3.5% 1.4% 1.8%

7 0.0% 0.7% 3.2% 5.3% 0.7%

8 0.7% 0.0% 0.7% 4.6% 2.8%

9 0.4% 1.1% 1.1% 0.4% 2.1%

Number on the right

1 2 3 7 8 9
N

um
be

r 
on

 t
he

 le
ft

1 1416 1319 1216 1142 860

2 1445 1566 1350 1252 897

3 1387 1698 1532 1227 945

7 1239 1403 1692 1503 957

8 1081 1158 1303 1484 993

9 885 901 889 959 963

Figure  15.  Error  rates  (left)  and reaction  times  (in  ms,  right)  in  the  whole

stimulus space.

To test  the results  statistically,  we first  fit  the two predictions  of the models

(Figure 13) to the group average of the error rate and the reaction time data (Figure 15)

with a simple linear regression, where one of the model predictions was the explanatory

variable  and  one  of  the  behavioral  performance  measurements  was  the  dependent

variable. Then the goodness of the fit measured as R2 was calculated (R2 columns given

in  Table  3),  and  the  correlations  of  two  models  were  compared  with  the  method

described  by  Steiger  (1980)  for  every  performance  measurement  (difference  of  the

group fits column is given in Table 3). As an alternative method, we calculated the R2

values for every single participant for both the value and association models, and the R2

of these model fits, as ordinal variables, were compared pairwise with Wilcoxon signed-

rank test (Better model for the participants column is given in Table 3).

To fit the distance effect appropriately, the end effect should also be considered,

and its variance should be removed from the data. Inspection of the descriptive data on

Figure 15 suggests that number pairs including the number 9 were involved in the end
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effect in the present study. One possibility to remove the end effect is to apply multiple

linear regression, and beyond the distance effect regressor, an end effect regressor (e.g.,

1 if the number pair includes 9, otherwise 0) also should be utilized. The problem with

this solution is that the end effect not only shortened the response latency for number

pairs including 9 but it also decreased the slope of the distance effect in those cells (see

the less steep distance effect in the row and column with 9 than in other rows and

columns). As the end effect is not added linearly to the distance effect, a multiple linear

regression could  not  describe  this  nonlinear  aspect  of  the end effect,  which  in  turn

would distort the distance effect results. As an alternative method, to remove the end

effect, all cells with number pairs including 9 were removed from the analysis (i.e., the

bottom row and the right column on Figure 15) and only the distance effect regressors

were used. Therefore, for all linear fits (Table  3) in both the group average and the

participants level, the number pairs including 9 were removed.

Regarding the possible difference between the goodness of fit of the two models,

we note that the difference is limited by the fact that the two models correlate, e.g., the

value  model  can  be considered  as  a  modified  association  model  with  an  additional

increase of the values in the top-right and bottom-left part of the stimulus space seen in

Figure  13. Therefore, if one model is appropriate, then the other inappropriate model

should show some non-zero R2 value too, although the R2 should be smaller than the R2

of the appropriate model.

Results for the goodness of fits (Table 3, linear model columns on the left) show

that in the error rates, the two models are indistinguishable, and in the reaction time

patterns, the association model seems to describe the data better in line with the visual

inspection of the data.

Although error rate and reaction time data are highly informative, the recently

becoming more popular diffusion model analysis could draw a more sensitive picture

(Ratcliff & McKoon, 2008; Smith & Ratcliff, 2004). In the diffusion model, decision is

based on a gradual accumulation of evidence offered by perceptual and other systems,

and decision is made when appropriate amount of evidence is accumulated. Reaction

time and error rates partly depend on the quality of the information (termed the drift

rate) upon which the evidence is built. Drift rate is considered to be the most important

parameter that influences the number comparison performance and the task difficulty

(Dehaene, 2007). Importantly, observed reaction time and error rate parameters can be

used to recover the drift rates (Ratcliff & Tuerlinckx, 2002; Wagenmakers et al., 2007).
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Drift rates can be more informative than the error rate or the reaction time because drift

rates reveal the sensitivity of the background mechanisms more directly (Wagenmakers

et al., 2007). To recover the drift rates for all number pairs, the EZ diffusion model was

applied  (Wagenmakers  et  al.,  2007).  The  EZ  model  supposes  that  some  of  the

parameters do not play a role in the response generation, and the model investigates and

recovers  only  the  drift  rate,  the  decision  threshold,  and  the  non-decision  time

parameters.  If  one  can  suppose  that  only  these  three  parameters  play  a  role  in  the

responses, then the EZ model can be utilized. Importantly, one essential advantage of

this method is that unlike most other diffusion parameter recovery methods, EZ can be

used when the number of trials per cells is relatively small. For edge correction, we used

the half trial solution, i.e., for error rates of 0, 50, or 100%, the actual error rate was

modified with the percent value of 0.5 trial, e.g., in a cell with 15 trials and 0% error

rate, the corrected error rate was 0.5/15, which is 3.33% (see the exact details about

edge correction in  Wagenmakers et al., 2007). The scaling within-trials variability of

drift rate was set to 0.1 in line with the tradition of the diffusion analysis literature. Drift

rates for all number pairs and participants were calculated. The mean drift rates of the

participants  (Figure  16)  show  a  similar  pattern  observed  above  for  the  former

descriptive data. Fitting the two predictions of the models, the association model shows

again a better fit (Table 3). In addition, (a) the largest difference between the goodness

of fit of the two models can be observed for the drift rates (compared to the error rate

and the reaction time data) and (b) the highest  R2 value is found for the drift  rates,

thereby suggesting that the drift rate indeed captures the difficulty of the comparison

tasks more sensitively than the error rates or the reaction times do.

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.141 0.156 0.168 0.171 0.208

2 0.144 0.147 0.155 0.171 0.188

3 0.160 0.135 0.134 0.151 0.185

7 0.169 0.155 0.127 0.143 0.183

8 0.189 0.173 0.165 0.140 0.181

9 0.200 0.188 0.197 0.187 0.188

Figure 16. Drift rate values in the whole stimulus space.
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The analysis above supposed that the distance effect (either coming from the

value  model  or  from the  association  model)  is  linear.  However,  a  logarithmic  or  a

similar  function with decreasing  change as  the  distance  increases  might  be  a  better

option to describe the data. First, one cannot suppose a linear distance effect, because

after a sufficiently  large distance,  the reaction time should be unreasonably short  or

even negative,  which  would  not  make  sense.  Second,  in  a  former  artificial  symbol

comparison task, where the missing size effect did not influence the distance effect, the

distance  effect  was  better  described  with  the  logarithm  function  than  with  a  linear

function (unpublished results in (Krajcsi et al., 2016)). For these reasons, the analysis of

goodness  of  fit  was  repeated  with  logarithmic  distance  effect  models,  in  which  the

regressors were the natural logarithm of the values of the previously used linear models

seen in Figure  13. The results (Table  3, logarithm model columns on the right) show

that (a) for all three data types (error rate, reaction time, and drift rate), the association

model fits better than it did with the linear regressor models and (b) the differences of

the two models are larger than they were for the linear regressor models. Overall, the

largest  difference  between the  value  and the  association  models  can  be seen in  the

logarithm model versions for the drift rates.

Table 3. Goodness of fit of the models (measured as R2) and comparison of the

correlations  (Difference  column) for  the error  rates,  reaction times,  and drift  rates

patterns based on the group average data, and hypothesis tests for choosing the better

model based on the participants’ data.

Linear model (Figure 2) Logarithm model

Value

model

R2

Association

model R2

Difference

of the

group fits

Better

model for

the

participants

Value

model

R2

Association

model R2

Difference

of the

group fits

Better

model for

the

participants

Error rate 0.709 0.708 Z = 0.008,

p = 0.993

T = 73,

p = 0.376

0.714 0.821 Z = -1.091,

p = 0.275 

T = 92,

p = 0.904

Reaction 

time

0.543 0.790 Z = -2.294,

p = 0.022

T = 44,

p = 0.040

0.457 0.817 Z = -3.646,

p < 0.001

T = 34,

p = 0.014

Drift rate 0.526 0.861 Z = -3.647,

p < 0.001

T = 39,

p = 0.024

0.425 0.874 Z = -5.748,

p < 0.001

T = 18,

p = 0.002

While our present main interest is the nature of the distance effect, it is worth to

note that no size effect can be found in the data: The regressor formed as the sum of the

two numbers to be compared (e.g., the regressor value for the 3 vs. 4 number pairs is 7)
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does not fit either the error rates (R2 = 0.001), or the reaction time (R2 = 0.01), or the

drift rate (see below) data (R2 = 0.001). These data replicate the results of Krajcsi et al.

(2016), thereby confirming that in new symbols with equal frequency of numbers in a

comparison task, the size effect does not emerge and also confirm that the distance and

size effects may dissociate. Relatedly, we note that the size effect could not influence

the fit of the distance effect not only because the size effect could not be demonstrated

in the present data but also because the size effect regressor (sum of the numbers to be

compared) does not correlate with distance effect regressor (difference of the numbers

to be compared) at all.

Reliability of the results.

To investigate the reliability of the present results, two additional experiments

are summarized here: (a) the whole experiment was repeated with another sample and

(b) the data of a follow-up study was analyzed where the same paradigm was used with

Indo-Arabic numbers instead of new symbols to see if the distance effect can follow the

associations of the numbers and small-large responses in an already well-established

notation  (Kojouharova  & Krajcsi,  2018).  (a)  In  the  replication  study,  41  university

students participated. Four of them were excluded, either because they did not reach the

required maximum 5% error rate after 5 blocks of symbol learning or because they used

wrong response  keys.  Five  additional  participants  were  excluded,  because  they  had

higher than 6.5% error rate (which was the mean + standard deviation error rate in that

sample) in the comparison task. As a result, the data of 32 participants were analyzed

(mean age was 21.0 years, 3 males). The error rate, reaction time, and drift rate means

for the whole stimulus space can be seen in Figure 17, and the R2s of the models with

the appropriate hypothesis tests are displayed in Table  4. While the reaction time and

drift rate means replicate the results of the main study (although the difference was

significant only with the comparison of the group fits, but not with the hypothesis test

choosing the better fit for the participants), the error rates show the superiority of the

value  model.  (b)  In  the  Indo-Arabic  comparison  task,  23  university  students

participated. One participant was dyscalculic whose data were excluded from further

analysis, and 2 further participants were excluded for having an error rate higher than

5%. Therefore, the data of 20 participants were analyzed (mean age was 20.15 years, 4

males). The goodness of fit of the logarithmic models and their contrast can be seen in 



79

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft
1 8.5% 2.9% 1.0% 1.0% 0.4%

2 9.2% 5.6% 1.9% 0.4% 0.4%

3 2.3% 8.5% 2.9% 2.1% 1.7%

7 1.0% 1.3% 3.8% 6.9% 2.5%

8 0.4% 0.6% 2.5% 8.5% 8.1%

9 0.6% 0.8% 1.3% 4.0% 9.4%

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 1250 1252 1038 970 810

2 1374 1429 1212 1035 845

3 1263 1509 1301 1050 856

7 1118 1270 1386 1245 922

8 985 1047 1136 1194 996

9 823 839 818 967 925

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft 1 0.132 0.151 0.175 0.182 0.225

2 0.123 0.132 0.157 0.173 0.205

3 0.154 0.130 0.136 0.170 0.196

7 0.164 0.146 0.134 0.130 0.175

8 0.188 0.173 0.152 0.128 0.146

9 0.206 0.199 0.207 0.161 0.148

Figure 17. Error rates (top left), reaction times (in ms, top right), and drift rates

(bottom) in the whole stimulus space in the replication study.

Table 5. The Indo-Arabic study replicated the results of the main study, and also in the

error rates, the association model fitted significantly better than the value model.

Looking  strictly  at  the  significance  of  the  results,  the  replication  shows  a

somewhat different result pattern as the first measurement, because in error rate, the

significant differences support the value model instead of the association model, and in

reaction time and drift rate, not all hypothesis tests are significant. Clearly, some non-

significant effects might reflect not only due to the lack of an effect but also due to the

lack  of  statistical  power,  and  significant  effects  can  also  be  type-I  errors  (there  is

especially a chance for this, when replication studies find opposing significant effects).

To evaluate the accumulated data, a mini meta-analysis was run on the three set of data

(Maner,  2014).  Binary  random-effects  with  the  DerSimonian-Laird  method

(Viechtbauer, 2010; Wallace et al., 2012) was performed on the logarithm model fit data

measuring the ratio  of participants  where the association  model  was better  than the

linear model.  While  the error rate does not show a clear preference for any models

(45.9% mean preference  for  the  association  model  with  95% CI of  [17.5,  74.2%]),

reaction time and drift rate clearly prefer the association model (76.6% with CI of [65.0,
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88.2%]  for  reaction  time  and  72.9%  with  CI  [58.2,  87.7%]  for  drift  rate).  Taken

together, while the reaction time and drift rate show the superiority of the association

model, the results of the error rates are ambiguous. It is important to highlight that from

the viewpoint of the present question, reaction time and especially drift rates are more

relevant.  First,  reaction  time  data  are  usually  considered  to  be  more  reliable  and

sensitive than error rate, because error rate and reaction time data measure two strongly

correlating constructs. Error rate measures it in a dichotomous scale, whereas reaction

time is a continuous scale. Therefore, the latter have more information about the trial

performance. Second, drift rate measures the difficulty of the task more sensitively than

error  rates  or  reaction  times  in  themselves  (Wagenmakers  et  al.,  2007);  this  is  also

confirmed by the usually higher R2 values for drift rates than for reaction times or error

rates).  Therefore,  we consider  that  reaction  times  and drift  rates  reliably  reflect  the

superiority of the association model over the value model. At the same time, it might be

a question of future research whether heterogeneous error rates are the result of random

noise or whether there are aspects of performance that partly reflects the functioning of

the value model.

Table 4. Goodness of fit of the models (measured as R2) and comparison of the

correlations  (Difference  column) for  the error  rates,  reaction times,  and drift  rates

patterns based on the group average data, and hypothesis tests for choosing the better

model based on the participants’ data in the replication study.

Linear model (Figure 2) Logarithm model

Value

model

R2

Association

model R2

Difference

of the

group fits

Better

model for

the

participants

Value

model

R2

Association

model R2

Difference

of the

group fits

Better

model for

the

participants

Error rate 0.791 0.629 Z = 2.041,

p = 0.041

T = 130,

p = 0.012

0.862 0.724 Z = 2.081,

p = 0.037

T = 150,

p = 0.033

Reaction 

time

0.610 0.719 Z = -1.258,

p = 0.208

T = 233,

p = 0.562

0.517 0.713 Z = -2.236,

p = 0.025

T = 196,

p = 0.204

Drift rate 0.768 0.914 Z = -2.727,

p = 0.006

T = 232,

p = 0.550

0.695 0.929 Z = -4.284,

p < 0.001

T = 191,

p = 0.172
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Table 5. Goodness of fit of the models (measured as R2) and comparison of the

correlations  (Difference  column) for  the error  rates,  reaction times,  and drift  rates

based on the group average data, and hypothesis tests for choosing the better model

based  on  the  participants’  data  in  the  Indo-Arabic  study  (Kojouharova  & Krajcsi,

2018).

Logarithm model

Value model R2 Association model R2 Difference of the

group fits

Better model for the

participants

Error rate 0.634 0.825 Z = -2.766, p = 0.006 T = 17, p = 0.001

Reaction 

time

0.749 0.917 Z = -3.737, p < 0.001 T = 14, p < 0.001

Drift rate 0.681 0.864 Z = -3.080, p = 0.002 T = 31, p = 0.006

To summarize the results, it was found that (a) the association model described

the distance effect better than the value model; it measured with reaction time and drift

rate,  while  error  rate  displayed  an  inconsistent  pattern,  (b)  drift  rate  draws  more

straightforward picture than the reaction time or the error rate data, (c) logarithmic type

distance effect  describes the data more precisely than the linear  distance effect,  and

finally, (d) size effect is absent in the present paradigm with uniform number frequency

distribution.

Discussion

The present work investigated whether the numerical distance effect is rooted in

the values of the numbers to be compared or in the association between the numbers and

the small-large properties. In a new artificial number notation with omitted numbers, the

distance effect measured with reaction time and drift rate did not follow the values of

the numbers, as it would have been suggested in the mainstream ANS model (Dehaene,

2007; Moyer & Landauer, 1967) or in the value-based explanation of the DSS model.

Instead,  the effect reflected the association between the numbers and the small-large

categories, as proposed by the association-based explanation of the DSS model or by the

delta-rule connectionist  model  of numerical  effects  (Verguts et  al.,  2005). Measured

with error rate, the results were not conclusive, so it is the question of additional studies

whether the inconsistency in the error rate data is simply noise or there are additional

aspects of the distance effect that should be investigated with more sensitive methods.
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Together with the present results, several findings converge to the conclusion

that  the  symbolic  number  comparison  task  cannot  be  explained  by the  ANS.  First,

unlike the prediction of that model suggesting that distance and size effects are two

ways  to  measure  the  single  ratio  effect,  symbolic  distance  and  size  effects  are

independent  (Krajcsi, 2016), and the distance effect can be present even when no size

effect  can  be  observed  (shown in  the  present  results  and  in  (Krajcsi  et  al.,  2016).

Second, the size effect follows the frequency of the numbers as demonstrated in Krajcsi

et al.  (2016) and also in the present results, where the uniform frequency of the digits

induced no size effect (i.e., the slope of the size effect is zero). Third, the present data

demonstrated  that  the  distance  effect  is  not  directed  by  the  values  of  the  digits  as

predicted by the ANS model, but they are influenced by the frequency of the association

with the small and large categories (see also the extension of the present findings for

Indo-Arabic numbers in (Kojouharova & Krajcsi, 2018).

The present and some previous results also characterize the symbolic numerical

comparison task; an alternative model should take the following into consideration: (a)

symbolic distance and size effects are independent (Krajcsi, 2016; Krajcsi et al., 2016),

(b) the effects are notation independent (the present results and (Krajcsi et al., 2016), (c)

the size effect depends on the frequency of the numbers (the present results and (Krajcsi

et al., 2016), (d) the distance effect depends on the association between the numbers and

the small-large categories (present results), and (e) the distance effect can be described

with a logarithm of the difference of the values (present results).

It  is  again  highlighted  that  these  results  are  not  the  consequence  of  the

possibility that the new symbols are not related to their intended values and that the

independent  series  of  symbols  would  create  a  performance  pattern  similar  to  the

association model prediction, because it was already shown that the new symbols prime

the Indo-Arabic numbers, thereby revealing that the new symbols denote their intended

values (Krajcsi et al., 2016). The present findings were also replicated with Indo-Arabic

numbers (Kojouharova & Krajcsi, 2018).

From a methodological  point of view, it  is  worth to note that  in the present

comparison  task,  the  drift  rate  seemed  to  be  the  most  sensitive  index  to  describe

performance, which strengthens the role of the diffusion model analysis, among others

in cases when sensitivity and statistical power are essential.

To summarize, the results revealed that in an artificial number notation where

some omitted numbers might create a gap, the distance effect followed the association
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with the small-large properties and not the values of the numbers. This result contradicts

the  Analog  Number  System  model  and  the  value-based  DSS  explanation,  which

suggests that the distance effect is directed by the values or the ratio of the numbers. On

the  other  hand,  the  result  is  in  line  with  the  alternative  association-based  DSS

explanation  and  the  delta-rule  connectionist  model,  in  which  the  distance  effect  is

directed by the association between the number nodes and the small-large nodes.
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In the number comparison task distance effect (better performance with larger distance

between the two numbers) and size effect (better performance with smaller numbers)

are  used  extensively  to  find  the  representation  underlying  numerical  cognition.

According  to  the  dominant  Analog  Number  System (ANS)  explanation,  both  effects

depend on the extent of the overlap between the noisy representations of the two values.

An  alternative  Discrete  Semantic  System (DSS)  account  supposes  that  the  distance

effect  is  rooted  in  the  association  between  the  numbers  and  the  “small-large”

properties with better performance for numbers with relatively high differences in their

strength of association, and that the size effect depends on the everyday frequency of the

numbers with smaller numbers being more frequent and thus easier to process. A recent

study demonstrated that in a new, artificial digit notation, - where both association and

frequency  can  be  arbitrarily  manipulated  –  the  distance  and  size  effects  change

according to the DSS account. Here, we investigate whether the same manipulations

modify the distance and size effects in Indo-Arabic notation, for which associations and

frequency are already well established. We found that the distance effect depends on the

association between the numbers and the “small-large” responses. It was also found

that while the distance effect is flexible, the size effect seems to be unaltered, revealing

a dissociation  between the  two effects.  This  result  challenges  the  ANS view,  which
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supposes a single mechanism behind the distance and size effects, and supports the DSS

account,  supposing  two  independent,  statistics-based  mechanisms  behind  the  two

effects.
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Introduction

Source of the numerical distance effect.

Simple number representations are considered to be the foundation of numerical

and mathematical cognition. One of the most widely utilized effects to investigate the

nature of number representation is the numerical distance effect in a comparison task.

When participants compare two numbers in order to decide which one is the larger,

performance  increases  (participants  make  fewer  errors  and  respond  faster)  with  the

increase of the numerical distance between the numbers (Moyer & Landauer, 1967). For

example, participants respond faster when they have to select the larger member of the

3-7 number pair (numerical distance equals 4) compared to when they do the same for

the 3-4 pair (numerical distance equals 1).

The dominant explanation for the distance effect in a comparison task is that

numbers are grounded in the analog number system (ANS) which is a continuous, noisy

representation of quantities (Dehaene, 2007). The ANS works according to Weber's law,

where the performance depends on the ratio of the numbers to be compared. In this

model, the comparison distance effect is considered to be a behavioral consequence of

that ratio (Moyer & Landauer, 1967). Thus, according to the ANS model the numerical

distance effect is based on the values of the numbers, and more specifically, on the ratio

of those values.

There is, however, an alternative plausible explanation for the distance effect.

Based on recent studies  (Krajcsi,  2016; Krajcsi & Kojouharova, 2017; Krajcsi et al.,

2016),  it  was  suggested  that  a  system similar  to  the  mental  lexicon  or  a  semantic

network, the Discrete Semantic System (DSS) might be responsible for the symbolic

numerical effects, including the distance effect. According to the DSS model, numbers

might become associated with the “large” and “small” properties during the number

comparison task. For example, the number 7 will become relatively strongly associated

with the “large” property, while the number 1 will become relatively strongly associated

with the “small” property. Two numbers which are further apart will differ to a greater

extent in the strength of their associations with the “small” and “large” properties, and

consequently, they will be easier to process in the comparison task, thus, resulting in a

distance  effect.  One  such  implementation  of  this  explanation  can  be  found  in  a

connectionist model by Verguts and his colleagues (Verguts et al., 2005; Verguts & Van

Opstal,  2014).  In  that  model  a  number line layer  represents  the two numbers to  be
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compared. The number line layer is connected to an output layer, in which “number on

the left is larger” or “number on the right is larger” nodes can be found. Responding

with “larger” more often will increase the strength (weight) of the association between

the number and the “larger” response, and numbers with very different weights will be

easier  to  distinguish  than  numbers  with  similar  weights.  The  study  found  that  this

association-based model can successfully simulate the distance effect. According to the

DSS model and the connectionist model, the distance effect is based on the associations

between the numbers and the “large” and “small” properties, and not on the ratio of the

values to be compared.9

The value-based and the association-based models were contrasted in a recent

study  (Krajcsi  &  Kojouharova,  2017).  Whereas  the  ratios  of  the  values  and  the

associations between numbers and the “small-large” properties are strongly correlated in

number notations we use in everyday life (such as the Indo-Arabic notation), the two

critical properties – values and associations – can be dissociated by using an incomplete

set of artificial numbers. The participants learned new symbols for the numbers 1, 2, 3,

7, 8, and 9, and then compared them in a number comparison task. The new number

digits were presented with equal probability and it was supposed that the new digits

form new associations, which are independent of the already established associations of

the  well-known  Indo-Arabic  numbers.  In  this  situation,  it  can  be  specified  how

frequently a digit will be associated with the “larger” or “smaller” properties (see the

calculated proportions in Table 6).10 If the distance effect is based on the values of the

artificial numbers, as the ANS predicts, then a distance effect for distance 4 should be

observed around the 3-7 gap, e.g.,  the performance for the 3 vs. 7 values should be

similar to any other number pairs with the distance of 4 (see Figure 18). On the other

9 Note that  there  is  an increasing number of works suggesting that  the ANS explanation has

serious issues in its original form. For example, it has been proposed that symbolic and non-symbolic

number processing might rely on different types of representations (Lyons et al., 2015), that symbolic and

non-symbolic number representations may have different  role in math achievement  (Schneider  et  al.,

2017), or that the variance of the performance should also be considered when measuring the ratio effect

(Lyons et al., 2015). For more issues see, e.g., in the review of Leibovich and Ansari (2016) or Reynvoet

and Sasanguie  (2016). However,  in the present work we specifically test alternative models in which

distance and size effects are independent effects,  and in which models it is possible that the distance

effect is not originated in the value of the numbers, but in the associations of the numbers.

10 The proportion of being smaller or larger is directly proportional to the order of the values. The

ordinality  of  the  numbers  has  been  repeatedly  proposed  to  be  an  important  component  of  number

processing. See a recent review of this issue in Lyons, Vogel, and Ansari (2016).
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hand, if the distance effect is based on the associations between the numbers and the

“small-large” properties, then a distance effect for 1 should be observed, because unlike

the value,  the  associations  do not  create  a  gap  around the  4-7 pairs  (Table  6).  For

example,  performance for the 3-7 number pair should be similar to performance for

number pairs with distance 1, such as the 1-2, 2-3 etc. pairs. The results of that study

showed that the distance between the artificial numbers followed their associations with

the “small-large” responses rather than their values, supporting the association-based

DSS account.  In other  words,  it  was shown that the distance effect  is  based on the

associations between the numbers and the “small-large” properties.

Table 6. The proportion of being smaller or larger in a number comparison task

when the symbols are presented with equal probability.

Example symbols Ջ ƛ Շ Թ Ծ Ճ

Meaning of the symbols 1 2 3 7 8 9

Proportion  of  being  smaller  in  a

comparison
100% 80% 60% 40% 20% 0%

Proportion  of  being  larger  in  a

comparison
0% 20% 40% 60% 80% 100%

In  the  study  with  the  new  artificial  number  digits  described  above,  it  was

supposed that in the case of the well-known Indo-Arabic numbers, the critical properties

of the value-based account and the association-based account highly correlate  (Krajcsi

&  Kojouharova,  2017).  This  is  because  the  numbers  have  already  formed  stable

associations with the “small-large” properties during years of experience, e.g., 3 and 7

already formed their relatively different associations. However, the supposed rigidity of

Ջ ƛ Շ Թ Ծ Ճ

1 2 3 7 8 9

distance is 4 (value-based effect) or distance is 1 (association-based effect)

Figure  18.  If  the  numbers  between  3  and  7  are  omitted,  3  and  7  become

neighbors  in  the  sequence.  If  in  a  number  comparison  task,  participants  decide

according to their values, the distance between them should remain 4. If the decision is

made  based  on  their  association  with  the  “small–large”  responses  (which  is  their

ordinal position in the sequence), the distance between them should become 1.
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the Indo-Arabic notation has not been tested directly. In many cases statistics from the

environment can be acquired rather quickly  (Dehaene et al.,  1993; Fischer, Mills, &

Shaki, 2010), and it is possible that the associations between Indo-Arabic digits  and

“small-large” properties can be reshaped relatively fast. Therefore, one of the main aims

of the present study is to investigate whether the Indo-Arabic distance effect could be

modified with the use of an incomplete number series, as an association-based distance

effect was already demonstrated with new artificial symbols  (Krajcsi & Kojouharova,

2017).  Additionally,  the  potential  association-based  distance  effect  in  Indo-Arabic

notation  would  have  the  following  important  implication:  The  association-based

distance effect  has been revealed  with new artificial  digits  (Krajcsi  & Kojouharova,

2017) and the new digits have been shown to be processed like regular numbers (Krajcsi

et al., 2016) (demonstrating the priming distance effect between the new symbols and

the Indo-Arabic numbers), but still, the new notation could be processed differently in

many  –  yet  unspecified  –  ways,  making  the  new-symbol  based  evidence  for  the

association-based model  less  convincing.  Therefore,  if  an  association-based distance

effect could be observed for Indo-Arabic digits, it would mean a more direct evidence in

support of the association-based explanation.

Source of the numerical size effect.

The numerical size effect is another simple effect that is used to investigate the

nature  of  numerical  representations.  In  a  number  comparison  task,  performance

decreases (response time and error rate both increase) as the value, i.e., the numerical

size of the numbers increases, hence the term size effect.

According to the widespread explanation, the ANS could be responsible for this

effect, too. The ANS account proposes that the size effect is another consequence of the

ratio-based performance: Larger numbers with the same distance form smaller ratios,

and the relatively bad performance with larger numbers is the consequence of the small

ratio. For example, performance is better for the 1-2 number pair (ratio is 2) than for the

8-9 number pair (ratio is 1.125).

As an alternative explanation, the DSS model proposes that the size effect is in

fact a frequency effect. Smaller numbers are used in everyday life more frequently than

larger numbers, and analysis of various corpora revealed that the frequency of a number

is proportional to the power of that value  (Dehaene & Mehler, 1992). Because it has

been demonstrated  repeatedly  that  relatively  rare  stimuli  are  harder  to  process,  it  is
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possible that for this reason larger numbers are slower and more error-prone to process,

which could also explain the size effect in comparison tasks. To test this explanation, in

a  recent  study,  participants  learned  new  symbols  and  compared  them,  while  the

frequency of the numbers was manipulated (Krajcsi et al., 2016). It was found that the

size  effect  followed  the  frequency  of  the  new  symbols,  e.g.,  if  all  symbols  were

presented with equal frequencies, then the size effect did not appear.

In the previously described study new symbols  were utilized  to test  the size

effect,  partly  because it  was supposed that  the statistical  knowledge about the over-

learned Indo-Arabic numbers is hard to modify. Additionally, the size effect in Indo-

Arabic numbers has been demonstrated in several studies, and in most studies equal

frequencies of the number digits were used (Moyer & Landauer, 1967), suggesting that

the Indo-Arabic size effect cannot be modified by manipulating the frequencies of the

numbers in a single session. However, to our knowledge it has not been investigated

whether the size effect begins to adapt to the statistics of the session, i.e., whether the

size of the size effect decreases throughout the session if participants are exposed to

uniform digit distribution. The second main aim of this study is to investigate whether

the  size  effect  decreases  when  the  Indo-Arabic  numbers  are  presented  with  equal

probability.

Aims of the study.

Whereas it has been demonstrated that the DSS model offers a better explanation

in a number comparison task with new symbols, the potential plasticity of the distance

and size effects has not been investigated in the well-known Indo-Arabic notation. The

aim of the present study is to examine whether the distance and size effects  can be

modified in an Indo-Arabic number comparison task, when the statistics of the actual

session  deviates  from the  everyday  statistics.  More  specifically,  first  we investigate

whether the distance effect can be modified when the strength of associations between

the “small-large” properties and the numbers is modified by omitting numbers 4, 5, and

6. Second, we investigate whether the size effect gradually decreases throughout the

session when the digits are shown with equal frequencies. If any of these modifications

occurs, this would strengthen the role of the DSS in symbolic number comparison, and

would question the role of the ANS in symbolic number processing.
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Methods

The participants  compared  the  Indo-Arabic  numbers  1,  2,  3,  7,  8,  and 9 by

selecting the larger member of a number pair.

Participants.

Twenty-three  university  students  participated  in  the  experiment  for  partial

course credit. All but one were right-handed, and all had normal or corrected to normal

vision. One participant was dyscalculic whose data were excluded from further analysis.

Two further participants were excluded for having an error rate higher than 5%. Thus,

the data of twenty participants were analyzed (16 females, mean age M = 20.15 years,

SD  =  2.28  years).  The  present  study  was  carried  out  in  accordance  with  the

recommendations  of  the Department  of Cognitive  Psychology ethics  committee.  All

participants  gave  written  informed  consent  in  accordance  with  the  Declaration  of

Helsinki.

Stimuli and procedure.

Indo-Arabic numbers were presented in pairs  to the participants in a number

comparison task. On each trial, the two numbers remained visible until response, and

the participants  had to choose the larger  number by pressing the R and I keys of a

computer keyboard (Figure 19). The pairs consisted of all possible combinations of the

numbers 1, 2, 3, 7, 8, and 9, excluding ties. The numbers were presented in three blocks,

and each number pair was presented 10 times in a block, resulting in a total of 900 trials

(300 trials  per  block).  The participants  could  rest  briefly  between the  blocks.  Each

number was presented with equal frequency.

left larger right larger

Figure 19. Number comparison task in the experiment. A pair of numbers was

presented to the participants who decided which of the numbers (number on the left or

number on the right) is larger by pressing a key.

2       7
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The presentation of the stimuli and recording of the responses were managed by

the PsychoPy software (Peirce, 2007).

Data analysis.

Generally,  the  data  analyses  investigate  whether  it  is  the  value-based or  the

association-based  explanation  that  describes  the  data  better.  To  contrast  the  two

descriptions, linear regression is utilized. Instead of the usual distance and size effect

calculations (i.e., mean error rates or reaction times are calculated for all distance and

size values, then the slopes for the effects are calculated), all effects are investigated and

tested in the whole stimulus space, as e.g., in Figure 20. The figure shows performance

or performance prediction for each number pair presented during the experiment with

columns  and  rows  denoting  the  two  numbers  to  be  compared  (all  possible  pairs,

excluding  ties),  and  cells  containing  expected  performance.  This  method  is  more

informative than the usual distance and size effect calculations, because any systematic

deviation from the expected patterns of the effects could be observed. Additionally, with

the relatively large number of cells  the presence of any systematic  pattern could be

convincing even without the statistical hypotheses tests.

Quantifying the distance and the size effects in the whole stimulus space.

First,  we describe  how the  distance  and size  effects  were  quantified  for  the

whole  stimulus  space.  These  effects  will  be  later  used  as  regressors  in  the  linear

regression.

The top panel of Figure 20 depicts the distance effect as predicted by the value-

based  and  the  association-based  accounts.  The  distance  effect  appears  as  an

improvement in performance from the top-left and bottom-right diagonal towards the

bottom-left and top-right corners of the stimulus space. For the value-based model the

cell values were calculated as the logarithm of the absolute value of the difference of the

two numbers (i.e., logarithm of the difference of the pairs comprised of 1, 2, 3, 7, 8, and

9), whereas for the association-based model they were computed as the logarithm of the

distance of their order (i.e., logarithm of the difference of the pairs comprised of 1, 2, 3,

4, 5, and 6) (see also Footnote  10). Logarithm of the distances instead of the linear

distances was used, because (a) linear distance effect would cause negative error rate

and reaction time values when the distance is very large, which values would not make

sense, and (b) previous data showing purely the distance effect without the size effect

suggested  that  the  distance  effect  can  be  described  more  appropriately  with  the
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logarithm function instead of the linear version (Krajcsi & Kojouharova, 2017; Krajcsi

et al., 2016) (See the possibilities for alternative formulations of the distance and size

effects in the Results section.) The cell values of those performance predictions were

later used as distance effect regressors in a multiple linear regression model fitting (see

details below). As can be observed, the two explanations predict different performance

not only for the two numbers next to the gap (3 and 7), but also for all number pairs

whose members are on opposite sides of the gap, e.g., the distance between 1 and 9 is 8

in the value-based, and 5 in the association-based model.

The bottom panel of Figure 20 shows the size effect regressor computed as the

sum of the two numbers of each pair. The size effect appears as a decrease in predicted

performance from the top-left towards the bottom-right corner.

Figure 21 portrays a possible linear combination of the distance and size effects,

illustrating what type of performance pattern can be expected. Additionally, if the size

effect was absent as the consequence of the uniform distribution of the digits in the

session,  then the results  should resemble the predicted performance for the distance

effect (top panel in Figure 20).

Calculating the error rate, the reaction time, and the drift rate.

In the present analysis, first, we calculated (a) the mean error rates, (b) the mean

reaction times of the correct responses, and (c) the drift rates for each participant and for

the whole stimulus space (i.e., for each presented number pair) (see more details about

the drift rate below). In the case of reaction time, extreme values above 2000 ms were

excluded which resulted in the removal of a total of 43 trials (0.23% of all trials).

As already mentioned, for all participants and all number pairs, the drift rates

were calculated. Drift rate is a part of the increasingly popular diffusion model analysis,

and  is  assumed  to  provide  a  more  sensitive  measure  of  performance  (Ratcliff  &

McKoon, 2008; Smith & Ratcliff, 2004), as it combines various properties of both the

error responses and the reaction time distribution. In this model evidence is accumulated

gradually  from perceptual  and  other  systems  until  a  sufficient  amount  of  evidence

becomes  available  for  a  decision  to  be  made.  Drift  rate  represents  the  quality  of

information upon which the evidence is built, and while error rates and reaction times

adequately  capture  performance  on a  task,  drift  rate  is  more  directly  related  to  the

background mechanisms of performance. Furthermore, drift rates can be recovered 
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Value-based model Association-based model
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Number 2

1 2 3 7 8 9
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be

r 
1

1 0.00 0.69 1.79 1.95 2.08

2 0.00 0.00 1.61 1.79 1.95

3 0.69 0.00 1.39 1.61 1.79

7 1.79 1.61 1.39 0.00 0.69

8 1.95 1.79 1.61 0.00 0.00

9 2.08 1.95 1.79 0.69 0.00

Number 2

1 2 3 7 8 9

N
um

be
r 

1

1 0.00 0.69 1.10 1.39 1.61

2 0.00 0.00 0.69 1.10 1.39

3 0.69 0.00 0.00 0.69 1.10

7 1.10 0.69 0.00 0.00 0.69

8 1.39 1.10 0.69 0.00 0.00

9 1.61 1.39 1.10 0.69 0.00
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Number 2
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1

1 3 4 8 9 10

2 3 5 9 10 11

3 4 5 10 11 12

7 8 9 10 15 16

8 9 10 11 15 17

9 10 11 12 16 17

Figure 20. Models used in the analysis. Top. The distance effect regressors for

the stimulus space used in the present study based on the value-based model (left side)

and  on  the  association-based  model  (right  side)  are  shown  in  the  top  panel.  The

regressors were calculated as log(large− small), where log is natural logarithm, large

and small are the large and small numbers of the pair, and either the value of that

number (in the value-based model) or the order of that number (in the association-

based model) was used (e.g., 7 is in the 4th place of the ordered set). Bottom. The size

effect regressor which was computed as large+small.

based on observed error rate and reaction time parameters (Ratcliff & Tuerlinckx, 2002;

Wagenmakers et al., 2007). Here, we applied the EZ-diffusion model (Wagenmakers et

al., 2007), a simplified version of the diffusion model which still allows for the recovery

of drift rates in the case of sparse data from a relatively small number of parameters. For

edge  correction  we  used  the  half-trial  solution  (see  the  exact  details  about  edge

correction in  Wagenmakers et al.,  2007). The scaling within-trials variability of drift

rate was set  to 0.1 in line with the tradition of the diffusion analysis  literature.  See

additional technical explanations about the EZ-diffusion model in Wagenmakers et al.

(2007).



96

Value-based model Association-based model
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1

1 0.30 -0.29 -0.99 -1.05 -1.08

2 0.30 0.50 -0.71 -0.79 -0.85

3 -0.29 0.50 -0.39 -0.51 -0.59

7 -0.99 -0.71 -0.39 1.50 0.91

8 -1.05 -0.79 -0.51 1.50 1.70

9 -1.08 -0.85 -0.59 0.91 1.70

Number 2

1 2 3 7 8 9

N
um

be
r 

1

1 0.30 -0.29 -0.30 -0.49 -0.61

2 0.30 0.50 0.21 -0.10 -0.29

3 -0.29 0.50 1.00 0.41 0.10

7 -0.30 0.21 1.00 1.50 0.91

8 -0.49 -0.10 0.41 1.50 1.70

9 -0.61 -0.29 0.10 0.91 1.70

Figure 21. Possible combination of the distance and size effects according to the

models,  showing  the  patterns  of  possible  behavioral  performance.  The  combined

pattern  was  calculated  according  to  the  a1 log(large  −small)+a2 (large  +small)+b

formula. Parameter  a1 is set to − 1 to align the direction of the change for the two

effects, a2 is set to 0.1 for scaling purposes, and b is set to 0. The specific values of the

parameters  are  arbitrary  with  the  constraint  that  a1  should  be  negative,  and  the

relative weights of the distance and size effects should follow the effect sizes of those

effects in the behavioral patterns. Darker shade indicates worse performance.

Analysis of the distance effect.

To investigate  the  distance  effect,  the  value-based  and  the  association-based

distance  effects  were  contrasted  in  error  rates,  reaction  times,  and  drift  rates.  Five

analyses  were utilized.  (1)  In a  group level  analysis,  two multiple  linear  regression

analyses were performed: first, the value-based distance (logarithm of the distance of

the two values) and the size effects (sum of the two values) were fitted (top-left and

bottom regressors  in  Figure  20)  to  the  group average  data  (top  row in  Figure  22),

second, the association-based distance (logarithm of the distance of the orders) and the

size effects (sum of the values) were fitted (top-right and bottom regressors in Figure 3)

to the group average data (top row in Figure 22). Finally, to contrast the two models, the

R2 of those two fittings were compared.11 Note that in this analysis the two competing

models are not included in the same regression as two regressors, but the two models

are  investigated  in  two  different  regressions  and  the  measurements  of  the  fit  are

11 An additional effect which may appear in a number comparison task is the end effect—reaction time
is much faster and error rate is lower for the cells containing the largest number of the set, in this case all
cells with number 9. Visual inspection suggests that there might be an end effect in the data. As this effect
can distort the stimulus space in a non-linear manner (it flattens the distance effect in the relevant cells),
an additional analysis was performed with the cells containing the number 9 excluded. The results were
similar to the ones described in the text.
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compared. It is also important to note that the distance effect regressors for the value-

based and the association-based models highly correlate (r = 0.86, p < 0.001) because of

the structure of the stimulus space. Thus, if one of the models is appropriate, the other

models will also be appropriate, albeit with a smaller R2 value. (2) In an individual level

analysis,  the  same multiple  linear  regressions  were  run  on individual  data,  i.e.,  the

regression was repeated for all  participants.  Then the  R2 of the participants  for both

models were compared with a non-parametric paired samples test (Wilcoxon signed-

rank test as R2 values can be considered to be an ordinal variable). (3) The same analysis

as described in the previous point (analysis 2) was repeated, with the trials divided into

three blocks. This allowed us to examine whether there is a slow transition from one

model to the other with the progress of the trials. R2 values were calculated for the error

rate,  reaction  time,  and  drift  rate,  for  both  models,  as  in  the  individual  analysis,

however, they were not calculated on the whole session, but separately for the three

blocks. Then, a 3×2 repeated measures analyses of variance were run with individual R2

as the dependent variable and with the block (Block 1, 2, and 3) and the model (value-

based and association-based) as factors, where an interaction between the factors would

indicate a transition between the models. (4) In the previous methods, the two models

(i.e., two types of distance effect regressors) were used in separate regressions, because

the  two  models  strongly  correlate.  However,  in  a  following  hierarchical  multiple

regression analysis, the three regressors were applied at the same time: The value-based

distance effect,  the association-based distance effect,  and the size effect.  In the first

block, either  the size and value-based distance or the size and the association-based

distance regressors were applied, while in the second block the other distance (either the

association- or the value-based) regressor was added, and it was investigated whether

the  newly  added  distance  regressor  can  improve  the  fit  of  the  whole  model.  The

regression analysis was run for the group average error rate, the reaction time, and the

drift rate data. (5) In a last analysis, a single multiple linear regression was performed

with  the  three  regressors  at  the  same time,  but  here  the  regression  was  run for  all

participants’ data, and not for the group average data. After performing the regression, it

was tested whether the weights (slopes) of the two distance regressors deviate from 0.

Analysis of the size effect.

To investigate the size effect, two analyses were utilized. (1) The slope of the

size effect regressor was taken from the multiple linear regression analysis described
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above for the participant whole session data (analysis 2) for error rate, reaction time,

and drift rate for each participant, then a one-sample t-test was performed to determine

whether it deviated significantly from 0. (2) Additionally, to test whether the size effect

decreased across the session, the change in the slope of the size effect regressor (taken

from the three blocks analyses described above, analysis 3) across the three blocks of

the experiment was compared as repeated measurements.

Results

Mean error rates, mean reaction times for the correct responses, and drift rates

were calculated  for  each participant  overall  and also  for  each block,  then  averaged

across participants for the whole stimulus space. The results are presented in Figure 22.

Visual inspection of the data suggests an advantage for the association-based model,

although less certain in the case of reaction time. The presence of the size effect is also

visible.

Type of the distance effect.

A multiple linear regression analysis was conducted on the averaged data of the

group for error rates, reaction times, and drift rates with distance (for each model) and

size as regressors (see Figure 20 for the regressors) (distance effect analysis 1, left panel

of Figure 23). The same analysis was performed for each participant separately, and the

goodness of fit (R2) values were entered as ordinal variables in a Wilcoxon signed-rank

test for a pairwise comparison (see the Methods section for more details). The results

are summarized in the right panel of Figure 23 (distance effect analysis 2).

The association-based model shows a better fit than the value-based model in the

case  of  error  rates,  reaction  times,  and  drift  rates.  Moreover,  this  difference  was

statistically significant for all indexes.

A  hierarchical  multiple  regression  analysis  (distance  effect  analysis  4)  also

confirmed the previous results. Adding the association-based distance regressor to the

value-based distance  and  size  regressors  significantly  increased  the  R2 value  of  the

model (F(1, 26) = 30.342,  p < 0.001 for error rates,  F(1, 26) = 57.593,  p < 0.001 for

reaction time, and F(1, 26) = 35.420, p < 0.001 for drift rates), while adding the value-

based distance regressor to the association-based distance and size regressors did not

increase the  R2 of the model (F(1, 26) = 1.007,  p = 0.325 for error rates,  F(1, 26) =

1.599, p =0.217 for reaction time and F(1, 26) = 0.163, p = 0.689 for drift rates).
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Error rate Reaction time Drift rate

O
ve

ra
ll

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.7% 0.8% 0.2% 0.3% 0.0%

2 0.8% 3.2% 3.0% 0.5% 0.5%

3 0.3% 2.2% 4.8% 1.2% 0.5%

7 0.3% 1.5% 5.5% 4.2% 3.2%

8 0.3% 0.5% 0.5% 6.8% 5.3%

9 0.3% 0.8% 0.7% 2.8% 6.5%

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 630 617 549 547 537

2 625 680 620 573 571

3 605 657 651 606 588

7 565 620 659 658 621

8 548 578 600 697 674

9 545 575 590 635 683

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.292 0.294 0.352 0.351 0.367

2 0.287 0.279 0.291 0.352 0.344

3 0.291 0.292 0.264 0.313 0.321

7 0.342 0.288 0.255 0.269 0.279

8 0.344 0.320 0.315 0.227 0.251

9 0.353 0.331 0.316 0.281 0.251

B
lo

ck
 1

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 1.0% 1.0% 0.5% 0.5% 0.0%

2 1.5% 2.0% 1.5% 0.5% 0.5%

3 0.0% 1.5% 5.5% 1.0% 0.0%

7 0.0% 0.5% 4.5% 2.0% 3.0%

8 0.5% 0.0% 0.5% 5.0% 4.5%

9 0.5% 1.5% 0.5% 1.5% 4.0%

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 640 628 567 555 562

2 635 693 635 598 591

3 617 665 658 631 611

7 581 629 671 673 646

8 558 580 618 725 696

9 573 594 614 644 705

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.293 0.273 0.348 0.336 0.352

2 0.276 0.281 0.292 0.333 0.312

3 0.285 0.275 0.258 0.296 0.312

7 0.328 0.308 0.261 0.260 0.263

8 0.339 0.339 0.307 0.230 0.261

9 0.323 0.313 0.280 0.280 0.268

B
lo

ck
 2

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 1.0% 0.0% 0.0% 0.0% 0.0%

2 0.5% 4.5% 1.5% 0.5% 0.5%

3 0.0% 2.5% 3.5% 0.5% 1.0%

7 0.5% 1.5% 7.0% 4.0% 2.5%

8 0.0% 0.5% 0.0% 8.5% 8.0%

9 0.0% 1.0% 1.0% 4.0% 6.5%

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 635 612 548 555 518

2 631 661 605 558 552

3 583 669 660 598 580

7 560 628 650 647 611

8 552 580 595 692 683

9 531 557 582 647 672

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.255 0.286 0.330 0.352 0.369

2 0.279 0.260 0.296 0.373 0.346

3 0.305 0.283 0.253 0.309 0.315

7 0.322 0.254 0.256 0.251 0.269

8 0.320 0.291 0.306 0.226 0.221

9 0.353 0.331 0.303 0.251 0.238

B
lo

ck
 3

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.0% 1.5% 0.0% 0.5% 0.0%

2 0.5% 3.0% 6.0% 0.5% 0.5%

3 1.0% 2.5% 5.5% 2.0% 0.5%

7 0.5% 2.5% 5.0% 6.5% 4.0%

8 0.5% 1.0% 1.0% 7.0% 3.5%

9 0.5% 0.0% 0.5% 3.0% 9.0%

Number on the right

1 2 3 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 614 610 533 530 529

2 607 686 616 564 571

3 617 637 634 590 571

7 555 608 652 653 607

8 533 572 589 673 643

9 530 574 572 615 672

Number on the right

1 2 3 7 8 9
N

um
be

r 
on

 t
he

 le
ft

1 0.282 0.277 0.331 0.353 0.346

2 0.285 0.237 0.246 0.324 0.315

3 0.281 0.265 0.253 0.279 0.298

7 0.318 0.265 0.241 0.236 0.257

8 0.331 0.304 0.313 0.217 0.255

9 0.360 0.321 0.319 0.262 0.221

Figure 22. Error rate, reaction time (in ms), and drift rate values for the whole

stimulus space for the whole session and for the three blocks. Darker shade indicates a

decrease in performance.

A similar analysis performed on the individual data (distance effect analysis  5) also

found that while the weight of the association-based distance effect deviates from zero

(M = 3.2%, t(19) = -5.86, p < 0.001; M = -66.0 ms, T = 0, p < 0.001; M = 0.054, T = 3,

p < 0.001, for the error rates, reaction time, and drift rate, respectively), the value-based

distance effect does not contribute to the variance of the performance (M = 0.4%, t(19)

= 1.37, p = 0.185; M = -7.7 ms, t(19) = -1.48, p = 0.155, M = 0.003, t(19) = 0.556, p =

0.585). These results mean that when the two distance effect are implied in the same

regression,  it  is  only  the  association-based  distance  effect  that  contributes  to  the

variance of the performance, and in regressions with a single distance effect regressor,

the value-based distance effect predicts the performance only because it correlates with 
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Error rate Reaction time Drift rate
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Figure  23. Left: goodness of fit of the models (measured as R2) for the error

rates, reaction times, and drift rates based on the group average data (distance effect

analysis 1). Right: box plot of the goodness of fit and hypothesis tests of the difference

of the fit for the value-based and association-based models based on the participants

data (distance effect analysis 2).

the association-based distance effect.

A 3×2 repeated measures analysis of variance was conducted on the  R2 values

with the factors  block (Block 1,  2,  and 3) and model  (value-based and association-

based) in order to account for a potential transition between the models which may have

occurred during the task (R2 values are summarized in Table 7) (distance effect analysis

3). Only a main effect of the model was found in the case of error rates (F(1,17) =

38.858,  p < 0.001, ηp
2 = 0.696),  reaction times (F(1,19) = 15.133,  p = 0.001, ηp

2 =

0.443), and drift rates (F(1,19) = 14.058,  p = 0.001, ηp
2 = 0.425). There was no main

effect  of  block  (all  Fs  between  0.413  and  2.018,  ps  =  0.147-0.665),  and  more

importantly, there was no interaction (all Fs between 0.382 and 1.474, ps=0.243-0.685).

Thus, not only was the association-based model a better fit overall, but it also described

the participants’ data better from the very beginning of the session.

Table 7. Goodness of fit (R2) for error rate, reaction time, and drift rate for the

three blocks of the experiment for the group average data (distance effect analysis 3).

Block 1 Block 2 Block 3

Value-

based

Association-

based

Value-

based

Association-

based

Value-

based

Association-

based

Error rate 0.452 0.682 0.657 0.779 0.528 0.696

Reaction time 0.756 0.895 0.734 0.925 0.689 0.846

Drift rate 0.633 0.739 0.664 0.813 0.621 0.810
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To display the distance effect in a way that is more in line with the methods used

in the literature, the distance effect was also calculated as mean errors or mean reaction

times  for  all  distance  values  and  for  all  participants,  then  the  group  mean  was

calculated. Top of Figure 24 on left shows the distance values for the number pairs (the

logarithm of these values can be seen in Figure  20), and cells with the same distance

values  were collapsed.  Practically,  the classic  distance  effect  calculation  utilizes  the

value-based model. Error rate and reaction time as a function of the distance can be seen

in the right panel of Figure 24. It is visible that the distance effect does not follow the

usual  curve,  but there is a discontinuity between the distance 2 and 4,  which is  the

consequence of the distortion caused by the unusual association pattern formed by the

4-6 gap in the present paradigm. More specifically, the distance values come from the

value-based model, which handles the large distance values incorrectly, as demonstrated

in the previous analyses, and in fact, the distance values 4-8 should be handled as 1-5

(see also Figure  20). This is  also the reason why the performance for 4-5 distances

shows similar error rate and reaction time as the 1-2 distance cells. On the other hand, if

distance is calculated based on the association strength (or in other terms, based on the

order of the numbers) as seen at the bottom of Figure 24, the usual distance effect can

be  observed,  which  again  demonstrates  that  the  distance  effect  is  rooted  in  the

association of the numbers and not in their value.

Size effect.

To assess the presence of the size effect, the slope of the size effect regressor

was tested against 0 (size effect analysis 1). As the size effect regressor (sum of the

numbers to be compared) does not correlate with distance effect regressor (difference of

the numbers to be compared) in either of the two models, its contribution to the model,

and thus its slope, should remain the same, independent of which of the two models is

fitted. The results revealed that the slope of the size effect was significantly different

from 0 for error rates (M = 0.003, 95% CI [0.002, 0.004], t(19) = 5.45, p < 0.001, d =

1.250), reaction times (M = 2.498, 95% CI [1.096, 3.900], t(19) = 3.73, p = 0.001, d =

0.856), and drift rates (M = -0.002, 95% CI [-0.004, -0.001], t(19) = -4.16, p < 0.001, d

= -0.954). Figure 25 summarizes the average slopes and confidence intervals for the size

effect  regressor  for  each  of  the  three  blocks  (size  effect  analysis  2).  Although  the

descriptive data indicate an increase in the slope for error rate and a decrease in the 
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Stimulus space with the distance of the

specific number pairs

Error rate and reaction time as a

function of numerical distance
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Figure 24. Distance effect calculated in the traditional way (top) and based on

the associations (bottom). The figure shows the whole stimulus space with the distance

of the specific number pairs (left), and the error rate and reaction time as a function of

numerical distance (right).

slope for reaction time, none of these changes were significant with ps between 0.182-

1.000 for the Friedman test.

Sign of learning effects.

One might suggest that in the present data no direct learning can be observed,

because  there  are  no  performance  changes  between  the  blocks.  However,  we  must

suppose that  the initial  state  (before the experiment)  should be either  a  value-based

model predicted distance effect (prediction of the ANS model, and the prediction of the

DSS  model  in  case  of  learned  statistics  from  former  experience),  or  a  “blank”

performance (i.e., the performance does not depend on the distance). The latter can be a

prediction of the DSS model, if the distance effect works only within a session, and

former experience would not influence the actual performance. Because the observed

pattern in the first block already deviates from these possible initial states, we can only

conclude that learning has occurred.
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Error rate Reaction time Drift rate

Block 1 Block 2 Block 3

-0.001

0.001

0.003

0.005

Block 1 Block 2 Block 3

-1

1

3

5
Block 1 Block 2 Block 3

-0.006

-0.004

-0.002

0

Figure 25. Means of the slope of the size effect for error rates, reaction times,

and drift  rate  for  the  three  blocks  of  the  experiment.  Error  bars  indicate  the  95%

confidence intervals.

Reliability of the distance and size effects.

Distance and size effect slopes are often utilized as potential predictors of other

numerical  performance,  such as math grades in school or general math performance

(Goffin & Ansari, 2016; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013). For that

purpose it is not only the supporting mechanism that is important in such studies (which

is the main question of the present study), but also the reliability of those indexes. To

test the reliability of the reaction time effect slopes in the present data, the test-retest

correlations  were  calculated  between  the  first  and  second  blocks  and  between  the

second  and  third  blocks  for  the  association-based  distance  effect,  the  value-based

distance effect,  and the size effect.  While  both the association-based distance effect

(r(18) = 0.738, 95% CI [0.439, 0.890],  p < 0.001 and  r(18) = 0.583, 95% CI [0.190,

0.815],  p = 0.007, for the block 1-block 2 and for the block 2-block 3 correlations,

respectively) and the value-based distance effect (r(18) = 0.757, 95% CI [0.473, 0.899],

p < 0.001 and r(18) = 0.624, 95% [0.251, 0.836], p = 0.003) displayed relatively high

test-retest correlations, the size effect was not reliable (r(18) = 0.164, 95% CI [-0.300,

0.566],  p = 0.489, and  r(18) = 0.354, 95% CI [-0.105, 0.689],  p = 0.125). The main

reason for the low reliability  of the size effect  can be the relatively  low effect  size

compared to the effect size of the distance effect, while the measurement noise in those

effects could be approximately the same (see the descriptive data to find the different

slopes across the size and distance effects on Figure 22). Still, the distance effect was

found  to  be  reliable  which  makes  it  an  appropriate  index  in  correlational  studies,

although its meaning should be reconsidered according to the present results.
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Alternative functions for the distance and size effects.

In the present analysis, the distance effect in the model was formulated as the

logarithm of the distance,  and the size effect was formulated as the sum of the two

values.  However,  one  could  imagine  that  other  functions  would  describe  these

phenomena more precisely. While there could be debates about the exact formulation of

the distance and size effects functions, it most probably would not modify our results. In

the case of the distance effect, it is no matter how the distance (or even ratio) effect is

formulated, because value-based models would predict a gap between 3 and 7 (see top

right  model  in  Figure  20),  independent  of  the  exact  shape  caused  by  the  specific

function. Importantly, our data do not reveal a gap between 3 and 7 (Figure 22), which

result cannot be described in any alternative formulation. In the case of the size effect,

performance change with increasing numbers could be detected with most reasonable

size effect  formulations,  and based on the descriptive  data  (Figure  22) it  is  hard to

suppose that a large enough slope change that could be significant could be detected.

(The  group  mean  results  with  the  model  fitting  can  be  downloaded  from

https://osf.io/qjymb/ where alternative functions can be tested interactively.)

To  summarize,  according  to  our  results,  (1)  the  association-based  model

described the participants’ data better than the value-based model, (2) the association-

based model was dominant from the very beginning of the session with no significant

change across trials, (3) the size effect was present for the whole duration of the task,

again, with no significant change across blocks.

Discussion

In the present study we investigated the plasticity of the distance and size effects

in the Indo-Arabic notation.

First, we tested whether the numerical distance effect in Indo-Arabic notation

depends on their value as suggested by the ANS or stems from their associations with

the “small-large” properties in accordance with the DSS account. For that purpose only

the numbers 1, 2, 3, 7, 8, and 9 were presented in a number comparison task. The results

showed that the association-based model explains the data better than the value-based

model, and this advantage is observable from the very beginning of the session. The

same  results  have  been  seen  in  a  new  artificial  number  notation  (Krajcsi  &

Kojouharova, 2017), and now have now been demonstrated in the Indo-Arabic numbers.

The present result means that the distance effect depends on the association between the

https://osf.io/qjymb/
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numbers and the “small-large” responses, and this effect is very flexible even in the

overpracticed Indo-Arabic number notation. Also, because this result replicates similar

findings with new artificial symbolic notation, it confirms that new symbols and Indo-

Arabic notation are processed in a similar way.

The second goal of the experiment was to examine whether the size effect could

be  modified  gradually  if  the  numbers  were  shown  to  the  participants  with  equal

frequency.  The  results  suggest  that  the  size  effect  remains  non-zero  in  the  number

comparison task, and even if there is a slight decrease in the size effect (as suggested by

the descriptive data), this effect size is too small to be significant in the present sample.

It shows that in the already well-known Indo-Arabic notation, the size effect cannot be

changed entirely, and it is less flexible than the distance effect.

The present results challenge the ANS model in several ways. First, the distance

effect does not depend on the values of the numbers,  but on the associations of the

numbers with the “smaller-larger” responses. Second, the distance and size effects are

independent of each other, thus they cannot be the two consequences of the same ratio

effect (Weber’s law) as suggested by the ANS model.  The independence of the two

effects was also demonstrated in a correlational study, where the slopes of the distance

and size effects of a symbolic comparison did not correlate  (Krajcsi, 2016), and in a

new, artificial  digit  comparison task  where  the  distance  effect  was observable  even

when the size effect was absent (Krajcsi et al., 2016). Similar to that correlational study,

the present data also confirm the low correlation of the association-based distance and

the size effect slopes in the reaction time:  rs(18) = 0.347,  p = 0.133, 95% CI [-0.112,

0.685].

While the present results challenge the ANS model, these findings are in line

with the DSS model.  It  is  possible  that  in  a discrete  network,  the distance effect  is

rooted in the associations of the number nodes and the “small”-“large” nodes (Krajcsi et

al., 2016; Verguts et al., 2005; Verguts & Van Opstal, 2014). According to the DSS

account, the size effect may be rooted in the frequency of the stimuli, and because the

distance  and size  effects  stem from two different  mechanisms,  the two effects  may

dissociate, and their flexibility may be different.

To summarize, the present study demonstrated that in the case of Indo-Arabic

numbers the distance effect in a number comparison task originates in the strength of

the  associations  between  the  numbers  and  the  “small-large”  properties,  and  these

associations  are  subject  to  rapid  changes  depending  on  the  statistics  in  a  session.
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Furthermore, the size effect was shown to be relatively unaltered, thus dissociating from

the  distance  effect.  The  results  strengthen  the  argument  that  symbolic  number

processing cannot be explained by the ANS model, instead the results are in line with

the DSS explanation.
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In the symbolic number comparison task, the size effect (better performance for small

than for large numbers) is usually interpreted as the result of the more general ratio

effect, in line with Weber’s law. In alternative models, the size effect might be a result of

stimulus frequency: smaller numbers are more frequent, and more frequent stimuli are

easier to process. It has been demonstrated earlier, that in artificial new number digits,

the size effect reflects the frequencies of those digits. In the present work we investigate

whether  frequency  also  directs  the  size  effect  in  Indo-Arabic  numbers,  in  which

notation, unlike in new symbols, the frequencies are already firmly established for the

participants. We found that frequency has an effect on the size effect in Indo-Arabic

notation,  but  this  influence  is  limited.  However,  this  limited  size  effect  change  is

acquired fast at the beginning of the session. We argue that these results are more in

line with the frequency-based accounts of the size effect.

Highlights

• The numerical size effect follows in part the frequency of Indo-Arabic numbers.

• The change in frequency is incorporated early, but then remains stable.

• There is also a stable component to the numerical size effect.

• The  frequency-based  account  is  a  better  explanation  for  the  numerical  size

effect.
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The Source of the Size Effect

In the field of mathematical cognition, numerical distance and size effects are

among the most intensively investigated phenomena. In a number comparison task, the

distance effect refers to better performance (e.g., lower error rates or faster responses)

when  the  distance  between  the  two  numbers  to  be  compared  is  relatively  large

(supposing the size of the stimuli is controlled for), and the size effect refers to better

performance  when the  numbers  to  be  compared  are  relatively  small  (supposing  the

distance  between  the  numbers  is  controlled  for)  (Moyer  &  Landauer,  1967).  For

example, according to the distance effect it is easier to compare the 1-9 pair (distance 8)

than the 3-7 pair (distance 4), and according to the size effect it is easier to compare the

1-3 pair (average size 2) than the 7-9 pair (average size 8).

The mainstream literature assumes that both distance and size effects result from

the ratio effect, i.e., the performance depends on the ratio of the two values, in line with

Weber’s law. The ratio effect suggests that numbers are processed by an evolutionary

ancient and simple representation, the Analogue Number System (ANS), similar to the

representation processing simple physical properties  (Dehaene, 1992, 2007; Moyer &

Landauer, 1967).

Alternatively,  some other  models  suggest  that  the  size  effect  is  a  frequency

effect. In everyday life, small numbers are more frequent than large numbers, and the

frequency  of  the  numbers  is  proportional  to  the  power  of  the  values  (Dehaene  &

Mehler, 1992). Alternative explanations of the size effect rely on this property of the

numerical stimuli. One model proposes a connectionist network to account for various

number processing phenomena (Verguts et al., 2005; Verguts & Van Opstal, 2014). The

model  introduces  a hidden layer  where not  only the nodes  representing a  value are

activated, but also the nodes for the neighboring values, generating the distance effect.

Importantly, the activation of the neighboring nodes does not depend on the value of the

numbers; in other words, the noise of the represented value has a fixed width. Unlike

other ANS models, this representation is appropriate to explain the distance effect, but it

cannot  explain  the  size  effect.  To  account  for  the  size  effect,  uneven  everyday

frequencies of the numbers are introduced to the model (Verguts & Fias, 2004; Verguts

et al., 2005). Overall, this connectionist model suggests that the size effect is a direct

consequence of the uneven frequency of everyday numbers.

Another alternative account which suggests that the size effect is a frequency
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effect  proposed  that  symbolic  numbers  could  be  processed  by  a  discrete  symbolic

network, the Discrete Semantic System (DSS) (Krajcsi et al., 2016). In this model, the

distance effect might be rooted in the associations between the numbers and the large-

small concepts, where numbers with closer values have similar associations with the

large-small  concepts,  resulting  in  a  more  difficult  decision  (Krajcsi  et  al.,  2016).

Importantly, in the DSS model, similar to the connectionist model described above, the

size  effect  is  a  frequency  effect  (Krajcsi  et  al.,  2016):  Smaller  numbers  are  more

frequent in everyday life (Dehaene & Mehler, 1992), and because more frequent stimuli

are easier to process, smaller numbers are also easier to process, resulting in the size

effect. See more details about the DSS model and the comparison of the DSS and the

connectionist model in Krajcsi et al. (2016).

It has recently been shown that the distance and size effects do not correlate in

symbolic number comparison  (Krajcsi, 2016). This result is in contrast with the ANS

model: The model proposes that the two effects are simply two ways to measure the

single ratio effect, therefore, the two effects should correlate. On the other hand, the

result is in line with the connectionist and the DSS model, which models suppose that

the two effects have different sources. In another study, it has been shown that for new

artificial number digits, where the participants do not have former information about the

frequencies of those digits, the size effect follows the frequency of the digits in that

session (Krajcsi et al., 2016). To our knowledge this was the first study that empirically

and directly investigated the role of the frequency of the symbols in the size effect. In

that study it was found that when the frequency of the digits followed the frequency of

the Indo-Arabic numbers in everyday life, the usual size effect was observed. However,

when the frequency of the new symbols was uniform, the size effect did not appear,

suggesting that the size effect is a frequency effect. Both of these studies support the

connectionist and the DSS models, and provide new evidence that cannot be explained

by the ANS model.

In the latter  study, in which the size effect of the new symbols followed the

frequency of those digits, new artificial symbols were utilized. Because it was supposed

that  while  the former experience with the already well-known Indo-Arabic numbers

could influence the perceived frequency, new symbols may lack this prior information.

Thus, new symbols may start to accumulate frequency statistics from an empty initial

state (Krajcsi et al., 2016). In line with this, most of the former studies that investigated

the size effect in Indo-Arabic numbers, applied uniform frequency for the digits in the
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sessions, and to our knowledge none of them reported zero size effect. This means that

the uniform distribution statistics of a session cannot, at least not entirely, overwrite the

statistics of former life experience. However, there could be partial changes which may

be observed as a gradual change throughout the session. To test this possibility, in a

recent study, the size effect was investigated in three blocks within a session where

participants  compared  Indo-Arabic  number  pairs  and  numbers  were  presented  with

uniform frequencies (Kojouharova & Krajcsi, 2018). No significant changes were found

across the blocks of the session, even if the descriptive data showed a slight decrease in

the size effect slope.  This result  is  also interesting in contrast  to the distance effect

flexibility  in  Indo-Arabic  numbers,  which  flexibility  was  also  tested  in  the  same

experiment. It was found that the distance effect has already significantly changed in the

first block of that single session. (In that study it was investigated whether the distance

effect  is  based  on  the  association  between  the  digits  and  the  “smaller”-“larger”

categories. To test this property, the frequency of the association of the numbers with

the “larger” category was manipulated, and the distance effect was already found to be

specifically distorted according to the manipulated associations at the beginning of the

session.  See Kojouharova & Krajcsi  (2018) for the exact  nature of this  association-

based distortion of the distance effect.) Returning to the size effect, while the effect did

not change significantly, there was a slight decrease in the descriptive data. This may be

either simply a noise of random sampling, or it is possible that there has been some

change in the size effect slope, though the effect size (i.e., the magnitude of the effect,

and not the size effect, which is the effect related to the size of the stimuli) was not large

enough to reach significance with that sample size. Unfortunately, we are not aware of

any similar studies investigating the change of the size effect through time with uniform

stimuli distribution. One way to increase the potentially small statistical power in the

Kojouharova and Krajcsi (2018) study is to utilize a different design: we might increase

the effect size by applying not only uniform frequency, but everyday-like frequency

(frequent small numbers and rare large numbers) and reversed everyday-like frequency

(rare small numbers and frequent large numbers) (see Figure 26).

The aim of the present study is to extend the findings of Krajcsi et al. (2016) and

Kojouharova & Krajcsi  (2018) and test the flexibility of the size effect in Indo-Arabic

numbers:  Whether  the  size  effect  of  the  Indo-Arabic  numbers  also  depends  on  the

frequency  of  the  digits.  We  investigate  whether  everyday,  uniform  and  reversed

everyday number frequency of the session can change the size effect between 
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Figure  26.  Example  frequencies  with  distribution  similar  to  everyday  life

(Dehaene  &  Mehler,  1992),  uniform  distribution  and  a  distribution  of  reversed

everyday life. Frequencies of the values were generated based on the round (value−1 ×

10) function.

conditions and within session. Additionally, compared to the study by Kojouharova &

Krajcsi  (2018),  the  length  of  the  session  was  increased  from  300  trials/block  to

approximately 800 trials/block, to potentially increase signal-to-noise ratio. If the size

effect  can  be  changed  even  within  a  single  session  (as  can  be  the  distance  effect,

Kojouharova & Krajcsi, 2018)), then it would mean that frequency guides the size effect

not  only  for  new number  symbols  (Krajcsi  et  al.,  2016),  but  also  for  Indo-Arabic

numbers. This result would offer a more direct evidence for models highlighting the role

of the frequencies in the number comparison size effects (Krajcsi et al., 2016; Verguts

& Van Opstal, 2014).

Method

The participants compared Indo-Arabic numbers from 1 to 9 by selecting the

larger  member  of  a  number  pair.  The  numbers  were  presented  in  three  different

frequency conditions in a between-subjects experimental design.

Participants.

Forty-nine university students participated in the experiment for partial course

credit. Because the effect of the frequency manipulation in Indo-Arabic numbers has not

been investigated before, it is impossible to perform a power analysis. (Note that the

effect the Kojouharova and Krajcsi (2018) study investigated was the change across the

blocks  within  a  session,  and  not  the  effect  of  frequency  manipulation  between

conditions,  therefore,  the  potentially  small  power  of  that  study  is  not  relevant  in

assessing  the  power  of  the  present  measurement.)  We  chose  a  sample  size

(approximately 15 participants per condition) that usually gives reliable distance and
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size  effects  in  symbolic  comparison  tasks.  One participant’s  data  was  not  recorded

properly,  and  was  excluded  from  further  analysis.  Two  further  participants  were

excluded for having an error rate higher than mean + 2 standard deviations (higher than

16%). Thus, the data of 46 participants were analyzed (35 females, 21.02 years of mean

age, 2.37 years SD): In the everyday frequency group 13 participants, 8 females, 20.31

years of mean age, 1.14 years  SD; in the uniform frequency group 11 participants, 8

females, 21.64 years of mean age, 2.57 years  SD; in the reversed everyday frequency

group 22 participants, 19 females, 21.14 years of mean age, 2.68 years  SD.12 All but

three participants were right-handed, and all had normal or corrected to normal vision.

The  present  study  was  carried  out  in  accordance  with  the  recommendations  of  the

Department  of  Cognitive  Psychology  ethics  committee.  All  subjects  gave  written

informed consent in accordance with the Declaration of Helsinki.

Stimuli and procedure.

Pairs of Indo-Arabic numbers were presented to the participants in a number

comparison task. In each trial, the participants decided which was the larger number by

pressing the R and I keys of a keyboard (Figure 27). The two numbers remained visible

until response. After the response a blank screen was visible for 300 ms, then the next

trial started.

left larger right larger

Figure 27. Number comparison task in the experiment. The participants selected

of the larger number (number on the left or number on the right) of the presented pair

by pressing a key.

12 The three frequency groups were planned to be equal in size, but because of an administrative

error,  the  reversed  everyday  frequency  group  became  larger  than  the  other  two  groups.  Still,  the

assignment of the participants was random. Importantly, the presented analyses handle the unequal size of

the groups, and our replication study (see below) with equal group sizes also finds the same results as the

present study, therefore, unequal group size cannot be an issue here.

2       7

R I
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Each condition consisted of three blocks for which the number pairs (trials) were

generated as follows. In the everyday frequency condition the frequency of each number

was calculated according to the frequencyvalue = value-1 × 10 formula which yielded the

following (rounded) frequencies (value:frequency): 1:10, 2:5, 3:4, 4:3, 5:2, 6:2, 7:2, 8:2,

9:1 (Figure 26) (see Dehaene & Mehler, 1992; Krajcsi et al., 2016). The 2-permutations

of all  numbers excluding ties  were generated,  resulting in 794 trials.  Each pair  was

presented once in each of the three blocks for a total of 2382 trials. The same procedure

was repeated for the reversed everyday frequency, but the frequencies were reversed

before creating the number pairs, i.e., value:frequency: 1:1, 2:2, 3:2, 4:2, 5:2, 6:3, 7:4,

8:5, 9:10 (Figure  26). In the uniform frequency condition all possible pairs excluding

ties were generated. Each pair was presented 11 times in a block, resulting in 792 trials

per block and 2376 trials overall. The order of the trials within a block was random.

There were no practice trials in the session. All participants were assigned randomly to

the appropriate condition.

The presentation of the stimuli and recording of the responses were managed by

the PsychoPy software (Peirce, 2007).

Data analysis.

In the present analysis we investigate the presence of the size effect throughout

the experimental  blocks (i.e.,  within a session) and the difference between the three

frequency conditions in the whole stimulus space (i.e., between groups).

The size effect was investigated in the whole stimulus space. Expected patterns

for the whole stimulus space if frequencies entirely influence the performance can be

observed in Figure 28. Performance is depicted with columns and rows denoting the two

numbers  to  be  compared  (all  possible  pairs,  excluding  ties),  and  cells  containing

performance.  The size effect is  analyzed in the whole stimulus space instead of the

usual  method  (i.e.,  combining  cells  with  the  same  size),  because  (a)  it  is  more

informative than simpler indexes of the effects, since any systematic deviation from the

expected patterns of the effects  could be observed, and (b) with the relatively large

number  of  cells  any  systematic  pattern  could  be  convincing  independent  of  the

statistical hypotheses tests.

Figure 28 shows expected patterns in the three frequency conditions if frequency

entirely influences performance. The figures display not only the size effect, but also the

distance effect. The distance effect appears as an improvement in performance from the
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main diagonal towards the bottom-left and top-right corners13, whereas the size effect

appears as a change of performance along the main diagonal (top-left to bottom-right

corner).  In all  cases,  the size effect  regressor was quantified as the sum of the two

numbers. Size and distance effects are combined as the sum of the two effects.

Size effect is present Size effect is absent Reversed size effect is present
1 2 3 4 5 6 7 8 9

1 -0.30 0.29 0.60 0.79 0.91 0.99 1.05 1.08

2 -0.30 -0.50 0.09 0.40 0.59 0.71 0.79 0.85

3 0.29 -0.50 -0.70 -0.11 0.20 0.39 0.51 0.59

4 0.60 0.09 -0.70 -0.90 -0.31 0.00 0.19 0.31

5 0.79 0.40 -0.11 -0.90 -1.10 -0.51 -0.20 -0.01

6 0.91 0.59 0.20 -0.31 -1.10 -1.30 -0.71 -0.40

7 0.99 0.71 0.39 0.00 -0.51 -1.30 -1.50 -0.91

8 1.05 0.79 0.51 0.19 -0.20 -0.71 -1.50 -1.70

9 1.08 0.85 0.59 0.31 -0.01 -0.40 -0.91 -1.70

1 2 3 4 5 6 7 8 9

1 0.00 0.69 1.10 1.39 1.61 1.79 1.95 2.08

2 0.00 0.00 0.69 1.10 1.39 1.61 1.79 1.95

3 0.69 0.00 0.00 0.69 1.10 1.39 1.61 1.79

4 1.10 0.69 0.00 0.00 0.69 1.10 1.39 1.61

5 1.39 1.10 0.69 0.00 0.00 0.69 1.10 1.39

6 1.61 1.39 1.10 0.69 0.00 0.00 0.69 1.10

7 1.79 1.61 1.39 1.10 0.69 0.00 0.00 0.69

8 1.95 1.79 1.61 1.39 1.10 0.69 0.00 0.00

9 2.08 1.95 1.79 1.61 1.39 1.10 0.69 0.00

1 2 3 4 5 6 7 8 9

1 0.30 1.09 1.60 1.99 2.31 2.59 2.85 3.08

2 0.30 0.50 1.29 1.80 2.19 2.51 2.79 3.05

3 1.09 0.50 0.70 1.49 2.00 2.39 2.71 2.99

4 1.60 1.29 0.70 0.90 1.69 2.20 2.59 2.91

5 1.99 1.80 1.49 0.90 1.10 1.89 2.40 2.79

6 2.31 2.19 2.00 1.69 1.10 1.30 2.09 2.60

7 2.59 2.51 2.39 2.20 1.89 1.30 1.50 2.29

8 2.85 2.79 2.71 2.59 2.40 2.09 1.50 1.70

9 3.08 3.05 2.99 2.91 2.79 2.60 2.29 1.70

Figure  28.  The  expected  distance  and  size  effects  in  the  three  frequency

conditions,  if  the  frequency  entirely  influences  performance.  The  distance  effect

regressor was calculated as log(large − small), where log is natural logarithm (see

Footnote 14), and large and small are the large and small numbers of the pair. The size

effect regressor was computed as the sum of the two values. The combined pattern was

calculated according to the log(large − small) + a (large + small) formula. Parameter

a is set to −0.1 for the everyday frequency condition, to 0.1 for the reversed everyday

frequency  condition,  and  to  0  (i.e.,  it  removes  the  size  effect  component  from  the

function)  for  the  uniform  frequency  condition.  Darker  shade  indicates  worse

performance.

In the present analysis,  the size effect  regressor was fitted to the error rates,

reaction times and drift rates (see the next paragraph for details about the drift rate),

then the slope of the size effect was tested between conditions and blocks.14 First, for

each condition, we calculated (a) the mean error rates, (b) the mean reaction times of the

correct responses, and (c) the drift rates for each participant as well as for the whole

13 Here, logarithm of the distances instead of the linear distances was used, because (a) linear

distance  effect  would  cause  negative  performance  values  when  the  distance  is  very  large,  which

performance would not  make sense,  and (b)  previous data suggested that  the distance  effect  can  be

described  more  appropriately  with  the  logarithm  function  instead  of  the  linear  version  (Krajcsi  &

Kojouharova, 2017; Krajcsi et al., 2016).

14 Note that  while  the distance  effect  is  discussed in the Introduction and in the Discussion,

because the ANS model supposes that both distance and size effects originate in the ratio effect, in the

present test, which manipulates the frequencies of the digits, it is only the size effect that is relevant, and

the distance effect is not investigated



115

stimulus  space  (i.e.,  for  each  presented  number  pair).  In  the  case  of  reaction  time,

extreme values above 2000 ms were excluded which resulted in the removal of 0.57%

of  all  trials  (0.27%  for  the  everyday  frequency  condition,  0.96%  for  the  uniform

frequency condition, and or 0.54% for the reversed everyday frequency condition).

Drift rate is an index from the increasingly popular diffusion model analysis, and

is assumed to provide a more sensitive measure of performance  (Ratcliff & McKoon,

2008; Smith & Ratcliff, 2004). In this model, evidence is accumulated gradually from

perceptual and other systems until a sufficient amount of evidence becomes available

for  a  decision  to  be  made.  For  example,  in  a  comparison task,  the  evidence  is  the

information about which of the two numbers is larger. Drift rate represents the quality

of information upon which the evidence is built, and while error rates and reaction times

adequately  capture  performance  on a  task,  drift  rate  is  more  directly  related  to  the

background mechanisms of performance. For example, in a comparison task, larger drift

rate means a more solid information about which number is larger, which leads to faster

and less erroneous responses. Drift rates can be recovered based on the observed error

rate and reaction time parameters  (Ratcliff & Tuerlinckx, 2002; Wagenmakers et al.,

2007).  While  in  a  diffusion  model  other  parameters  than  drift  rate  could  also  be

recovered, only drift rate is investigated here, because it is the parameter that mostly

reflects the difficulty of the relevant feature processing according to both the diffusion

models  (Smith  &  Ratcliff,  2004;  Wagenmakers  et  al.,  2007) and  the  ANS  model

(Dehaene, 2007). Here, we applied the EZ-diffusion model (Wagenmakers et al., 2007),

a simplified version of the diffusion model which still allows for the recovery of drift

rates from a relatively small number of trials in a cell. (In the present experiment, in the

uniform frequency condition, a cell included 33 trials, and in the everyday and reversed

everyday condition, a cell could include trials between 6 and 150, depending on the

frequencies of the numbers.) For edge correction we used the half-trial solution (see the

exact  details  about  edge  correction  in  Wagenmakers  et  al.,  2007).  The  scaling

parameter, within-trials variability of drift rate was set to 0.1 in line with the tradition of

the diffusion analysis literature.15

15 Edge correction is used when the error rate is either 0%, 50% or 100%, and the formulas

recovering the parameters would lead to an undefined operation result (see Wagenmakers et al., 2007 for

the exact formulas). The within-trial variability can be set to any arbitrary values, because it only “scales”

all other parameters without changing their relations, therefore, any values could be used. To make our

results more comparable with other diffusion analysis studies, we use the usual 0.1 value as a scaling

parameter.
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An additional effect which may appear in a number comparison task is the end

effect – reaction time is faster and error rate is lower for the cells containing the largest

number  of  the  set  (Balakrishnan  & Ashby,  1991;  Piazza,  Mechelli,  Butterworth,  &

Price, 2002; Sathian et al., 1999; Scholz & Potts, 1974), in this case all cells with the

number 9 in them (see Figure 29). This effect must be taken into account as it distorts

the slopes of the size and distance effects in the concerned cells, i.e.,  the size effect

slope would include not only the size effect, but also an unknown portion of the end

effect. If the end effect is not linearly added to the distance and size effects, it cannot be

disentangled with the help of multiple linear regression. Thus, if an end effect is present,

an  appropriate  solution  is  the  exclusion  of  the  concerned  cells  from the  statistical

analysis.  Therefore,  in the present study, cells  including the number 9 were omitted

from the analysis.

Because  the  distance  effect  regressor  and  the  size  effect  regressor  (i.e.,  the

predictors  of  our  analysis)  do  not  correlate  at  all  (i.e.,  r =  0.0),  and  uncorrelated

regressors  do not  influence  each other’s  slopes,  it  was  possible  to  measure the size

effect  with  a  simple  linear  regression,  and  there  was  no  need  for  multiple  linear

regression.

Overall, size effect regressor was fitted to the error rate, reaction time, and drift

rate data for each participant, and for the cells including numbers from 1 to 8 (i.e., cells

not affected by the end effect). Then, the slopes of the size effects were tested against 0

with one-sample hypothesis test,  and the difference between the conditions was also

tested by comparing the slopes of the size effect across the three conditions. Finally, to

examine whether the size effect decreased across the blocks, first,  size effect slopes

were calculated as above for all the three blocks. Then the change in the slope of the

size effect as well as the difference between the conditions were compared in a 3 × 3

analysis of variance with blocks (Block 1, 2, and 3) and conditions (everyday frequency,

uniform frequency, and reversed everyday frequency) as factors.

Results

The raw data of the measurement is available at https://osf.io/2hrms/. Figure 29

shows mean error rates, reaction times, and drift rates for the whole stimulus space for

each condition. Figure 30 illustrates the size effect, already observable in Figure 29, in a

more traditional way, which is more in line with the usual depiction of the distance and

size effects in former works. (Note that the latter figure is only for illustration purposes,

https://osf.io/2hrms/
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and the size effect is calculated on the whole stimulus space displayed on Figure 29, and

as explained in the Methods section).

Everyday frequency Uniform frequency Reversed everyday frequency

E
rr

or
 r

at
e

Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.01

2 0.02 0.06 0.07 0.03 0.01 0.05 0.03 0.03

3 0.01 0.03 0.15 0.06 0.04 0.08 0.02 0.05

4 0.01 0.03 0.08 0.06 0.07 0.10 0.07 0.03

5 0.01 0.02 0.04 0.07 0.12 0.15 0.07 0.06

6 0.01 0.01 0.04 0.03 0.15 0.22 0.12 0.09

7 0.01 0.04 0.10 0.09 0.22 0.26 0.17 0.10

8 0.01 0.01 0.02 0.02 0.07 0.11 0.22 0.17

9 0.00 0.02 0.03 0.03 0.08 0.04 0.23 0.26

Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.03 0.02 0.03 0.04 0.01 0.01 0.02 0.01

2 0.05 0.03 0.04 0.03 0.01 0.04 0.01 0.02

3 0.05 0.06 0.09 0.05 0.03 0.05 0.02 0.02

4 0.04 0.05 0.06 0.07 0.03 0.06 0.02 0.02

5 0.04 0.04 0.05 0.07 0.07 0.08 0.06 0.04

6 0.04 0.03 0.03 0.07 0.10 0.15 0.08 0.06

7 0.03 0.04 0.05 0.09 0.17 0.17 0.15 0.07

8 0.04 0.05 0.06 0.05 0.08 0.10 0.20 0.12

9 0.04 0.03 0.04 0.05 0.06 0.06 0.15 0.15

Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.01 0.04 0.01 0.01 0.01 0.00 0.01 0.00

2 0.02 0.08 0.04 0.01 0.01 0.02 0.02 0.01

3 0.04 0.04 0.09 0.02 0.02 0.04 0.02 0.01

4 0.02 0.03 0.03 0.04 0.04 0.04 0.02 0.02

5 0.00 0.01 0.03 0.08 0.06 0.07 0.03 0.02

6 0.02 0.02 0.02 0.03 0.08 0.16 0.06 0.02

7 0.01 0.03 0.05 0.05 0.10 0.21 0.07 0.06

8 0.01 0.01 0.01 0.02 0.03 0.07 0.10 0.07

9 0.01 0.01 0.02 0.02 0.02 0.03 0.05 0.07

R
ea

ct
io

n 
tim

e 
(m

s) Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 500 476 476 471 457 459 465 455

2 483 548 538 509 495 518 482 501

3 480 532 617 546 550 530 509 531

4 467 497 581 619 565 544 516 528

5 462 490 548 559 630 616 566 603

6 452 482 542 546 635 636 606 551

7 465 504 533 533 592 689 606 610

8 456 490 516 515 571 611 632 628

9 467 485 504 514 542 595 617 650

Number on the right

1 2 3 4 5 6 7 8 9

N
um
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ft

1 571 554 528 538 524 509 517 512

2 585 604 604 580 567 567 525 533

3 563 618 672 628 619 588 546 552

4 541 579 649 615 604 585 586 557

5 567 557 607 637 659 641 620 615

6 550 563 589 599 677 663 641 608

7 530 563 594 628 660 709 673 611

8 533 551 543 580 618 681 686 662

9 526 543 541 563 593 624 661 692

Number on the right

1 2 3 4 5 6 7 8 9

N
um
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he
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ft

1 593 562 561 525 522 517 509 494

2 607 633 601 560 546 552 540 514

3 572 607 632 602 594 581 536 521

4 576 589 650 634 604 585 564 522

5 563 572 608 641 648 640 572 539

6 524 565 591 614 666 672 624 577

7 523 564 599 604 636 722 611 560

8 521 527 540 555 591 644 650 593

9 502 514 527 527 548 577 570 596
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Number on the right

1 2 3 4 5 6 7 8 9

N
um
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ft

1 0.32 0.36 0.37 0.34 0.42 0.38 0.37 0.37

2 0.33 0.27 0.27 0.34 0.37 0.31 0.36 0.36

3 0.33 0.29 0.18 0.28 0.28 0.27 0.35 0.30

4 0.36 0.33 0.24 0.23 0.24 0.24 0.29 0.34

5 0.36 0.35 0.26 0.25 0.21 0.19 0.27 0.22

6 0.40 0.35 0.27 0.29 0.19 0.13 0.21 0.26

7 0.37 0.30 0.26 0.26 0.18 0.11 0.18 0.21

8 0.39 0.37 0.33 0.29 0.24 0.21 0.15 0.21

9 0.36 0.34 0.33 0.29 0.31 0.27 0.15 0.17

Number on the right

1 2 3 4 5 6 7 8 9

N
um
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r 
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 t
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ft

1 0.27 0.31 0.33 0.28 0.34 0.33 0.35 0.34

2 0.27 0.28 0.27 0.30 0.32 0.28 0.36 0.33

3 0.26 0.24 0.21 0.25 0.29 0.27 0.32 0.33

4 0.31 0.27 0.23 0.24 0.27 0.25 0.27 0.32

5 0.29 0.29 0.26 0.22 0.22 0.23 0.24 0.26

6 0.29 0.31 0.26 0.25 0.20 0.16 0.23 0.25

7 0.32 0.28 0.27 0.22 0.16 0.16 0.16 0.24

8 0.31 0.30 0.32 0.30 0.22 0.20 0.14 0.20

9 0.30 0.32 0.33 0.28 0.28 0.25 0.17 0.17

Number on the right

1 2 3 4 5 6 7 8 9

N
um

be
r 

on
 t

he
 le

ft

1 0.27 0.30 0.28 0.31 0.32 0.35 0.34 0.39

2 0.26 0.23 0.25 0.31 0.34 0.31 0.31 0.36

3 0.26 0.27 0.24 0.30 0.29 0.29 0.35 0.35

4 0.25 0.28 0.25 0.25 0.27 0.29 0.30 0.35

5 0.31 0.29 0.26 0.24 0.25 0.23 0.28 0.32

6 0.31 0.31 0.28 0.27 0.22 0.16 0.24 0.28

7 0.34 0.30 0.27 0.26 0.21 0.14 0.22 0.25

8 0.33 0.33 0.33 0.32 0.28 0.22 0.19 0.23

9 0.37 0.34 0.34 0.32 0.30 0.28 0.25 0.24

Figure  29. Average error rates, reaction times, and drift  rates for the whole

stimulus space for the everyday frequency,  the uniform frequency,  and the reversed

everyday  frequency  conditions  for  all  trials.  Darker  shade  indicates  worse

performance.

Visual  inspection  suggests  that  there  is  a  moderate  end effect  present  in  all

conditions (see a description and present handling of the end effect in the Data analysis

section), albeit to a different extent. Because the end effect was mostly present, the cells

containing the number 9 were removed from further statistical analysis.

The  size  effect  regressor  was  fitted  with  simple  linear  regression  to  the

remaining cells, and the slope of the effect was tested against 0. The average slopes of

the size effect regressor for all trials are presented on Figure 31. All slopes significantly

deviated from 0 for error rates (everyday frequency: Z = 3.180, p = 0.001, tested with

Wilcoxon  signed-rank test,  uniform frequency:  Z =  2.934,  p =  0.003,  and  reversed

everyday frequency: Z = 4.075, p < 0.001), for reaction times (everyday frequency: Z =

3.180,  p = 0.001,  uniform frequency:  Z = 2.845,  p = 0.004, and reversed everyday
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frequency: Z = 3.782, p < 0.001), and for drift rates (everyday frequency: Z = -3.180, p

= 0.001, uniform frequency: Z = -2.485, p = 0.004, and reversed everyday frequency: Z

= -3.425, p = 0.001).
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Figure  30.  Size  effect:  performance  as  a  function  of  size  (sum  of  the  two

numbers to be compared) for error rates,  reaction times,  and drift  rates.  Note that

number pairs containing the number 9 are excluded.

The differences of the size effect slopes between the frequency conditions were

also significant: The size effect was largest for the everyday frequency, smaller for the

uniform frequency, and smallest for the reversed everyday frequency condition (error

rates: χ2(2, N = 46) = 9.670, p = 0.008, tested with Kruskal-Wallis test, reaction times:

χ2(2,  N = 46) = 14.399, p = 0.001, and drift rates: χ2(2,  N = 46) = 20.407, p < 0.001).

Dunn’s post-hoc tests revealed that the slope of the size effect in the everyday frequency

condition differed significantly from that in the reversed everyday frequency condition

for error rates (p = 0.006), reaction times (p = 0.001), and drift rates (p < 0.001).

An additional  analysis  of  variance  was conducted  for  changes  of  size  effect

slopes with the progression of the task with factors for blocks (1st, 2nd and 3rd blocks)

and frequency (everyday, uniform and reversed frequencies) conditions. The average

slopes for each block and frequency condition can be seen on Figure 31. There was a

main effect of frequency condition for error rates (F(2, 43) = 8.882,  p = 0.001, ηp
2 =

0.292), reaction times (F(2, 43) = 7.576, p = 0.002, ηp
2 = 0.261), and drift rates (F(2, 43)

= 20.5507, p < 0.001, ηp
2 = 0.489), repeating the result of the previous analysis on the

role of frequency conditions. There was also a main effect of block only for error rates

(F(2, 86) = 9.4629, p < 0.001, ηp
2 = 0.180) with less steep slopes in the first block than

in the following two (p = 0.014 for the difference between Block 1 and Block 2 and p <

0.001 for the difference between Block 1 and Block 3, tested with the Tukey HSD post

hoc test). The main effect of block was not significant either for the reaction times (F(2,
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86) = 0.891,  p = 0.414, ηp
2 = 0.020) or drift rates (F(2, 86) = 1.824,  p = 0.168, ηp

2 =

0.041) and none of the interactions were significant (F(4, 86) = 1.154, p = 0.337, ηp
2 =

0.051, F(4, 86) = 0.714, p = 0.585, ηp
2 = 0.032, F(4, 86) = 1.905, p = 0.117, ηp

2 = 0.081

for error rates, reaction times and drift rates respectively).

Error rate Reaction time Drift rate
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Figure 31. Average slopes of the size effect regressor for error rates, reaction

times, and drift rates for all trials and for each block of the experimental session. Error

bars show the 95% confidence intervals.

To summarize, the slope of the size effect was investigated in the whole stimulus

space, excluding the cells containing the end effect. The frequency condition had an

effect  on  the  size  effect,  although  the  size  effect  did  not  disappear  in  the  uniform

condition or did not reverse (or even disappear) in the reversed everyday condition.

Additionally,  the effect of the frequency is observable even in the first block of the

session, and the size of the effect did not change in the second and third blocks (except

for the error rates where the effect size increased, but only between the first and the

second blocks).

Replication study

In  recent  years,  an  increasing  number  of  papers  highlight  the  difficulty  of

replicating published results, revealing a distortion in published effect sizes and many

times  questioning  whether  the  published  phenomena  are  real  (e.g.,  Open  Science

Collaboration, 2015). In line with these warnings, we rerun the previous experiment to

see if the results are replicable.

Methods.

The stimuli, procedure and data analyses of the replication study was identical to

the original experiment.
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Thirty-two university students participated in the replication of the experiment

for partial  course credit.  Two participants were excluded for having an error rate of

approximately  50% (46.81% and 47.15%) which suggests chance performance.  One

additional  participant  was  excluded  for  having  an  error  rate  higher  than  mean  +  2

standard  deviations  (higher  than  20.47%).  Thus,  the  data  of  29  participants  were

analyzed  (18  females,  21.28  years  of  mean  age,  1.98  years  SD):  In  the  everyday

frequency group 9 participants, 3 females, 22.2 years of mean age, 1.69 years SD; in the

uniform frequency group 10 participants, 6 females, 21.6 years of mean age, 1.63 years

SD; in the reversed everyday frequency group 10 participants, 9 females, 20.1 years of

mean age,  1.97 years  SD.  All  but  three  participants  were  right-handed,  and all  had

normal or corrected to normal vision.

Results.

Overall, the present results replicated the findings of the previous experiment.

The raw data of the measurement is available at https://osf.io/2hrms/.

The  slopes  of  the  size  effect  (calculated  with  single  linear  regression)

significantly deviated from 0 for all frequency conditions for error rates, reaction times,

and  drift  rates  (all  ps  <  0.041)  with  the  only  exception  of  the  reversed  everyday

frequency condition in the case of reaction times (t(9) = 2.03, p = 0.073).

The differences of the size effect slopes between the frequency conditions were

significant for reaction times and drift rates; see Figure 32 (reaction times:  F(2, 26) =

3.608, p = 0.041, ηp
2 = 0.217 and drift rates:  F(2, 26) = 7.81, p = 0.002, ηp

2 = 0.375).

Tukey HSD post-hoc tests revealed a significant difference between everyday frequency

and reversed everyday frequency conditions in reaction time (p = 0.032) and in drift rate

(p = 0.002). The size effect slopes followed the same tendency for error rates, but the

difference was not significant with F(2, 26) = 2.113, p = 0.141, ηp
2 = 0.140.

The analysis of variance for changes of the size effect slopes between the blocks

with factors for blocks (1st, 2nd, and 3rd blocks) and frequencies (everyday, uniform,

and reversed everyday frequencies)  conditions  showed a tendency for the frequency

main effect for reaction times (F(2, 26) = 3.151, p = 0.059, ηp
2 = 0.195) and a significant

frequency main effect for drift rates (F(2, 26) = 16.451, p < 0.001, ηp
2 = 0.559), while

the frequency main effect  for error rates was not significant  (F(2,  26) = 2.113,  p =

0.141, ηp
2 = 0.140). Tukey HSD post-hoc tests showed that for reaction times the slope

of  the  size  effect  in  the  everyday  frequency  condition  was  larger  than  that  in  the

https://osf.io/2hrms/
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reversed everyday frequency condition (p = 0.048), whereas for drift rates the slope in

the everyday frequency condition was larger than the slopes in the other two conditions

(ps < 0.003). The main effect of the blocks (F(2, 52) = 0.897, p = 0.414, ηp
2 = 0.033,

F(2,52) = 0.696,  p = 0.503, ηp
2 = 0.026,  F(2, 52) = 0.413,  p < 0.664, ηp

2 = 0.016 for

error rates, reaction times and drift rates respectively) and the interactions (F(2, 52) =

0.329, p = 0.857, ηp
2 = 0.025, F(2, 52) = 0.962, p = 0.436, ηp

2 = 0.069, F(2, 52) = 1.812,

p = 0.141, ηp
2 = 0.122 for error rates, reaction times and drift rates respectively) were

not significant.
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Figure 32. Average slopes of the size effect regressor for error rates, reaction

times, and drift rates for all trials and for each block of the experimental session. Error

bars show the 95% confidence intervals.

Discussion

The present study investigated the flexibility of the size effect in the Indo-Arabic

number comparison task by testing whether the size effect  can be changed within a

single session. First, we found that the modified frequency of the stimuli of a single

session can change the size effect. This was reflected in the significant size effect slope

differences between the frequency conditions, suggesting that the size effect is flexible,

and it can be modified even in a single session. However, we also found that the change

is not complete, and with uniform frequency we still can see a significant positive slope,

instead of a zero slope for the size effect,  and even reversed everyday frequency is

unable to reverse the size effect, or make it disappear (i.e., approaching zero slope). A

final finding is that the effect of the frequencies can be observed during the first block

of the session, however the size of the effect does not change throughout the second and

third blocks. This latter aspect of the results may be considered as unusual: seemingly
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there  is  a  very  quick  and  efficient  learning  in  the  first  block  (as  observed  in  the

difference between the frequency conditions), but this learning is halted very quickly,

and there is no change in the second and third blocks, even if the statistics of the session

are not acquired entirely (reflected by the lack of interaction between the frequency

condition and the block numbers). This seems to be an unusual result, because learning

is often a gradual process, and typically an exponential learning function is observed,

while here the learning is halted before the end of the first block. To summarize, we

found that there is a fast, flexible component of the size effect, and there is also a stable

component still kept throughout the session.

Contrasting the present  results  with similar  previous studies,  while  with new

symbols the size effect is entirely dependent on the frequency statistics of the session

(Krajcsi et al., 2016), with Indo-Arabic numbers the size effect seems to be a mixture of

the frequency statistics of the session and other effect(s) (as found in the present work).

Also, while the frequency statistics of the session have an effect on the slope of the size

effect  as  observed  in  the  different  slopes  between  conditions  with  different  digit

frequencies (present work), this change cannot be observed with the present power as a

change within the session, because the change takes place at the very beginning of the

session (Kojouharova & Krajcsi, 2018 and the present results).

Regarding the roots of the flexible component of the size effect, since the size

effect changed with the experimental manipulation of the frequency, it is reasonable to

assume that the flexible part of the size effect should be a frequency effect. What is

more interesting and important is the root of the stable component of the size effect.

One possible source of the stable  component  of the size effect  might  be the

ANS. The ANS model supposes a ratio-based effect that  can also be observed as a

distance or a size effect, and the stable part of the size effect can be that ratio effect. The

presence of the distance effect is also in line with this account, which effect could also

confirm the presence of the ratio effect. In this explanation, the stable and flexible parts

of the size effect can come from different sources: the former is rooted in the ANS, and

the latter  is  caused by the  frequency of  the stimuli.  Although this  explanation  may

account for the present results, it cannot explain other features of symbolic comparison:

For example, the distance and size effects were found to be independent in symbolic

comparison  (Krajcsi, 2016); the distance effect can be present without the size effect

when the frequency is uniform  (Krajcsi et al.,  2016); the distance effect follows the

statistics  of  associations  between numbers  and small-large  categories  instead  of  the
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values of the numbers  (Kojouharova & Krajcsi, 2018; Krajcsi & Kojouharova, 2017);

unlike  non-symbolic  comparison  performance,  symbolic  Indo-Arabic  comparison

performance  cannot  be  described  properly  with  psychophysical  functions  (Krajcsi,

Lengyel, & Kojouharova, 2018). Overall, while the ANS model can explain the present

results, it cannot explain the independence and flexibility of distance and size effects

found in related studies.

Another possible explanation is that both stable and flexible parts of the size

effect are frequency effects (i.e., the frequency of the stimuli are learned and reflected

e.g., in processing time), and the seeming split of the size effect is only the consequence

of a constrain in the learning process. It might seem unusual that instead of a gradual

learning curve,  frequency  statistics  of  the  session  has  an  effect  very  quickly  at  the

beginning of the session, and there are no further changes in the rest of the session, even

if the statistics of the session is clearly not acquired entirely. This might seem unusual,

because  mostly  it  is  supposed  that  the  learning  process  is  based  on  a  gradual

accumulation  of  environmental  information,  representationally  updated  by  the  delta

rule. With this supposition, in the present data, either the statistics should show further

changes  in  the  second and third  blocks,  or  the  change in  the  first  block should  be

smaller. However, recent findings reveal that learning might show different patterns not

only  by  dynamically  changing  the  learning  rate  (Behrens,  Woolrich,  Walton,  &

Rushworth, 2007), but for example, participants might consider perceived change in the

environment, whether represented parameters should be updated (Arató, Khani, Rainer,

& Fiser, submitted; Gallistel, Krishan, Liu, Miller, & Latham, 2014). Also, learning the

statistics  of  an  actual  session  would  mean  forgetting  the  statistics  of  all  former

experience,  which  is  not  always  an  ideal  learning  strategy,  so  occasionally  some

combination of the old and new information is required. Thus, it is not impossible that

in  the present  data  statistics  of the session is  integrated  only partly  into  the former

knowledge about digit statistics. Still, if this explanation is correct, it is not yet clear

why the frequency statistics of the new session is utilized only partially. This is also an

interesting question in light of the flexibility of the distance effect. As mentioned in the

introduction, the distance effect might be the result of the association between the digits

and the larger-smaller categories, and the statistics of the session is dominantly followed

not only in new symbols (Krajcsi & Kojouharova, 2017) but already in the beginning of

the session in Indo-Arabic numbers  (Kojouharova & Krajcsi,  2018). In other words,

unlike the size effect, distance effect follows dominantly the session statistics, ignoring
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former  experience.  Thus,  if  the  frequency  explanation  is  correct  for  the  stable

component of the size effect, it is not yet clear why the distance effect is more flexible

than the size effect observed here.

There could be other explanations for the stable part of the size effect other than

the ANS (Dehaene, 1992, 2007; Moyer & Landauer, 1967) or the models that propose

the role of the frequency in the size effect, such as the connectionist model of symbolic

number processing  (Verguts  et  al.,  2005;  Verguts & Van Opstal,  2014) or the DSS

model  (Krajcsi,  2016; Krajcsi et al., 2016). However, we are not aware of any other

model that could give a consistent explanation for the size effect.

The present work confirmed that symbolic comparison size effect is a frequency

effect. This finding extends the idea that comparison distance and size effects are rooted

in different mechanisms, not in a single ANS, as demonstrated by the independence of

the symbolic distance and size effect slopes (Krajcsi, 2016), and by the fact that while

the  distance  effect  depends  on  the  association  of  the  digits  and  “small”-”large”

categories (Kojouharova & Krajcsi, 2018; Krajcsi & Kojouharova, 2017), the size effect

depends on the frequency of the digits (Krajcsi et al., 2016 and the present work). In a

more applied line of research, the symbolic comparison task with distance effect slope is

utilized routinely to predict everyday and school math performance (for a review, see

e.g., Schneider et al., 2017), and it is usually interpreted that the sensitivity of the ANS

is measured with this index. In the light of these recent findings, the role and validity of

those indexes should be reconsidered. The comparison distance effect slope cannot be

an ANS index, because in that case it also should measure the same construct as the size

effect slope, which is seemingly not the case. Instead, symbolic distance and size effect

slopes measure different constructs, and most probably none of them are related to the

sensitivity  of  the  ANS, but  some properties  of  a  symbolic  system.  Further  research

should  find what  exactly  these properties  are,  and why they are  good predictors  of

several math abilities and math performance indexes.

To summarize,  the present  experiment  investigated  the flexibility  of the  size

effect in Indo-Arabic numbers, and it was found that the size effect is partly flexible and

follows the frequency of the stimuli in the session. On the other hand, there is a stable

part of the size effect, and importantly, while the session statistics is incorporated early

in the session, no further change is observable in the rest of the session. While this

restricted flexibility of the size effect can be explained by both the ANS model and the

models proposing the role of the stimuli frequency in size effects, only the latter models
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can  give  a  coherent  view on  the  flexibility  of  distance  and  size  effects  in  various

symbolic number comparisons. Further research can determine whether the stable part

of  the  size  effect  is  also  rooted  in  the  frequency of  the  stimuli,  and  why size  and

distance effects have different flexibility.
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Discussion

Summary of the Results

Four studies investigated the source of the distance and size effects in symbolic

numbers  in  the  number  comparison  task,  one  of  the  most  common  paradigms  in

numerical  cognition.  As  both  effects  are  believed  to  be  indicators  of  how  the

representation of numerosity works, this was also an indirect way of testing which of

the proposed accounts provides a better explanation of the results from the manipulation

utilized  in those studies.  On the one hand, the ANS, the Analogue Number System

account, suggests a noisy, continuous, analogue representation that works according to

Weber’s law, and both effects stem from the same source: The ratio of the values of the

numbers that are compared. On the other hand, the DSS, the Discrete Semantic System

account,  supposes a semantic  network in which the numbers are nodes, the distance

effect is rooted in the strength of their connections or associations with other nodes, and

the size effect depends on the everyday frequency of the numbers.

Thesis Study 1 began with a direct comparison the ANS and the DSS accounts.

The models were quantified according to the available models in the literature in the

former case, and possible quantification in the latter based on the known constraints.

Then  they  were  fitted  with  a  linear  regression  to  the  performance  in  the  number

comparison task, which was measured in error rates, reaction times, and drift rate. For

error rates and reaction times the results were inconclusive, with both models showing a

similar  fit  where the advantage  of one model  over the other depended on the exact

formulation of the quantification. For drift rates, the DSS seemed a better fit. Because of

the relatively high noise and the uncertainties  of the diffusion analysis  method,  this

result can only be interpreted with caution. However, there were two conclusions that

served as grounds for our further work: 1) a direct comparison of the ANS and the DSS

is unlikely to be successful, so a different approach was required, and 2) there was not a

clear preference for either of the models, which, at the very least, was an indication that

the DSS could be as plausible an account for the distance and size effects as the ANS.

In an additional analysis, the presence of the distance and size effects was tested

with both a multiple and a single linear regressions calculated for each participant and

for the full stimulus space. The distance as a predictor was quantified as the absolute

difference of the two numbers, and size was the sum of the two numbers. The slopes of
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the distance and size effect predictors from the linear regression fit were tested against

0, and the deviation was statistically significant for both effects and for both analyses.

Along with confirming the trivial expectation that both effects should be present, this

also  meant  that  this  type  of  analysis  could  be  used  in  the  rest  of  the  studies.  In

Experiments 2 and 3 only multiple linear regression was used.

As both accounts offer putative sources for the distance and size effects, it was

possible  to  turn  to  them as  an  indirect  approach  of  comparing  the  two  models.  In

Experiment 2 of Thesis Study 1 participants were taught new, artificial symbols for the

numbers from 1 to 9. The reason for this choice was that the frequency of the new

numbers can be manipulated when presented in a task unlike the everyday frequency of

the Indo-Arabic digits.  The new symbols were compared in the number comparison

task. In one group the symbols were presented with uniform frequency, and in the other

their frequency was biased towards the everyday frequency of Indo-Arabic digits (i. e.,

the new symbol for 1 was seen most frequently, the new symbol for 9 most rarely).

Error rates and reaction times were analyzed. The slopes obtained from the multiple

linear regression fit for the distance and size effects16 showed that while the distance

effect was present and similar in both groups, a size effect emerged only for the biased

frequency condition. Moreover, the slopes of the size effect in the uniform frequency

condition and in the biased frequency condition differed significantly from each other.

Experiment  3  investigated  a  possible  confound  –  the  semantic  congruence  effect,

according to which reaction times are faster for larger numbers when the instruction is

“choose the larger”. This effect could have extinguished a possible size effect in the

uniform frequency condition as it is in a direction opposite to that of the size effect. In

Experiment 3 only the uniform frequency condition was run with a “choose the smaller

number” instruction. The results of the multiple linear regression showed that the size

effect was not present, and its slope in this condition was comparable to the slope in the

uniform frequency condition in Experiment 2.

Crucially, the study utilized new symbols as numbers, so we had to ensure that

the new symbols were treated as numbers. A priming task was included, in which the

prime was always a new symbol and the target was always an Indo-Arabic digit. The

presence of a priming distance effect, i. e., responses for the target are faster if the prime

was semantically close (close in value) is considered to be an indicator of the same

underlying  representation  or  a  representational  overlap.  While  the  results  from this

16 For the end effect refer to the relevant analysis section in Thesis Study 1.
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study alone lacked statistical power, a meta-analysis confirmed that a priming distance

effect was present, i.  e.,  the new symbols had the same meaning as the Indo-Arabic

digits.

In  Thesis  Study  2  the  source  of  the  distance  effect  in  symbolic  number

comparison was investigated. On the one hand, it could be rooted in the values of the

numbers – a supposition that is in line with both the ANS and the DSS account. In the

case of ANS, the distance effect is a direct result of the representation of the number.

According to the DSS account, the distance effect could depend on the strength of the

connections between the nodes, with stronger connections reflecting a closer meaning.

On the other hand, it is also possible that the distance effect stems from the associations

of  the  numbers  with  the  “small-large”  properties  (also  prominent  in  the  delta-rule

connectionist model (Verguts et al., 2005; Verguts & Van Opstal, 2014)). We quantified

both predictions for the distance effect in the full stimulus space for a partial  set of

artificial numbers (1, 2, 3, 7, 8, 9), where the value-based model stated that the predictor

for the performance for each number pair  is the difference of their  value,  while the

association-based model suggested that it is the difference between the values of their

places  in an ordered sequence (e.g.,  number 9 is  in  the  6th place  in  the sequence).

Moreover, in both cases the linear difference and the logarithm of the difference were

used as regressors, as there was an indication that the latter describes the distance effect

somewhat better. Error rates, reaction times and drift rates were used in the analysis. A

linear regression model fit at the group level indicated a better  R2 for the association-

based model for reaction times and drift rates. The individual linear regression fit and

the  subsequent  comparison  of  the  individual  R2 provided  further  evidence  for  this

conclusion. When the logarithm of the distance was used, the difference between the

two models was larger and thus better defined. In addition to this study, a replication

experiment was conducted. The R2 result for error rates here clearly supported the value-

based model at both group and individual level, while the results for the reaction times

and drift rates were in line with the association-based model with the difference being

significant at the group level.  A meta-analysis including the original experiment,  the

replication experiment, and the experiment with Indo-Arabic digits from Thesis Study 3

was inconclusive  in  the case of  error  rates,  but  quite  straightforward in  the case of

reaction times and drift rates: The association-based model was a better fit overall. Two

additional  results  were  that  the  lack  of  a  size  effect  when  artificial  numbers  are

presented with uniform frequency replicated the result from Thesis Study 1, and that the
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logarithm  of  the  difference  (distance)  between  the  numbers  seems  to  be  a  better

predictor than the linear difference.

Thesis Study 3 furthered the case for an association-based model for the distance

effect by testing it against the value-based model in Indo-Arabic digits with the same

method as in Thesis Study 2. We originally supposed that the associations formed with

“small-large”  properties  in  Indo-Arabic  numbers  would  be  stable,  however,  this

presumption, i. e., the flexibility of the distance effect, had not been investigated before.

Additionally,  our  results  obtained  with  artificial  numbers  could  still  stem  from  a

different source,  thus an experiment in the Indo-Arabic notation could strengthen or

weaken the evidence for an association-based account. This experiment also provided

an opportunity to explore the flexibility of the size effect as numbers were presented

with uniform frequency. Here, a decrease rather than full disappearance was expected,

because  the  studies  found  in  the  literature  that  presented  the  stimuli  with  uniform

frequency  still  produced  the  size  effect.  This  was  made  possible  by  using  a  larger

number of trials per stimulus pair (30), which were then divided into three blocks, so

that a possible gradual change in both effects could be observed. Error rates, reaction

times, and drift rates were analyzed in a multiple linear regression with the distance

effect regressor being the logarithm of the absolute  difference between the numbers

(once for the value-based model and once for the association-based model) and the size

effect regressor being the sum of the two numbers. The association-based model was a

better fit in all cases, at the group and at the individual levels. Moreover, an analysis of

variance for the possible change in the distance effect over the course of the experiment

showed that the change happened fast,  already in the first block. Regarding the size

effect, it was present (its slope from the multiple linear regression significantly deviated

from 0) for error rates, reaction times, and drift rates overall, with no change occurring

between the blocks, although descriptively both an increase (error rates) and a decrease

(reaction times) could be observed. The distance effect was reliable across blocks based

on test-retest correlations between the first and the second block, and the second and the

third block. The size effect was not reliable, but this may have been due to its low effect

size. Thesis Study 3 further supported the use of the logarithm of the absolute distance

as  a  predictor  for  the  distance  effect,  and also suggested  that  the  distance  and size

effects likely dissociate which argues against the idea of a common source.

Thesis  Study 3 demonstrated  that  the  distance  effect  is  flexible  in  the Indo-

Arabic notation. Although the study also examined possible changes in the size effect, it



131

was not  optimized for testing its  possible  flexibility.  Building on the results  for the

flexibility of the distance effect in both artificial numbers and Indo-Arabic digits and

our  success  in  invoking  a  size  effect  in  artificial  numbers  by  introducing  biased

frequency, a study of the a possible flexibility of the size effect in the Indo-Arabic digits

seemed justified (Thesis Study 4). Again, our presumption that the everyday frequency

is well-established had not been investigated before. All Indo-Arabic digits (numbers 1

to 9) were used. In one condition they were presented with their everyday frequency, in

the second with uniform frequency, and in the third with reversed everyday frequency.

There  were  30 trials  per  number  pair  which  allowed  for  following the  course  of  a

possible change throughout the study by dividing the trials into three blocks. The slope

of the size effect was significantly different from 0 for all three conditions for error

rates,  reaction times,  and drift  rates.  It  also significantly different  between the three

conditions for all three measurements. The slope, however, did not differ between the

blocks except for error rates where it increased between the first and the second. That

increase  was  present  for  all  three  conditions,  thus  it  was  likely  driven  by different

factors. A replication experiment showed the same results for the slope of the size effect

overall with the difference between conditions not being significant only for the error

rates.  The  slope  did  not  change  between  blocks.  The  replication  study  was

underpowered, which may have contributed to a lack of statistical power for error rates,

nevertheless, all results were in the same direction as in the original study. Overall, the

results are in favor of either a two-component size effect, with one flexible and one

stable component, or a partially flexible single component17.

17 The latter explanation is explored, but not emphasized in Thesis Study 4.
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Results and Aims

Here, I list once again the aims of the studies included in the thesis along with a

statement based on the results:

1. examine whether a different  model (DSS) is a better  description for the data

obtained in the symbolic number comparison task than the ANS (Thesis Study 1,

Experiment 1);

The results  were inconclusive about  which model  is  a better  description,  but

provided evidence that the DSS is, at the very least, a plausible alternative model

for explaining the distance and size effects in the number comparison task.

2. examine frequency as a possible source of the size effect by testing whether it

can be induced by manipulating the frequency of presentation of the numbers

when recently learned artificial  numbers are used for which there is no prior

experience (Thesis Study 1, Experiment 2 and 3);

Manipulating the frequency of the numbers was sufficient to induce a size effect,

which did not appear for the uniform frequency. Thus, frequency is the source of

the size effect for new, artificial numbers.

3. examine the associations between the numbers and the “small-large” properties

as a possible source of the distance effect by manipulating those associations in

a new, artificial number sequence (Thesis Study 2);

The association-based model was a better fit for the data obtained in this study,

thus the associations between the numbers and the “small-large” properties are

the  source  of  the  distance  effect  in  the  number  comparison  task  for  new,

artificial numbers.

4. examine  whether  the  associations  between  numbers  and  the  “small-large”

properties  can  be  modified  in  Indo-Arabic  numbers  within  a  session  of  the

comparison task,  i.e.,  seek  further  confirmation  for  the  distance  effect  being

association-based (Thesis Study 3);
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The association-based model was a better fit for the data in this study, thus the

associations between the numbers and the “small-large” properties are the source

of the distance effect in the number comparison task for Indo-Arabic numbers.

5. examine  whether  the  size  effect  shows  similar  flexibility  in  Indo-Arabic

numbers by manipulating the frequency of presentation of the numbers within a

session, i.e. further confirmation for frequency being the source of the size effect

(Thesis Study 3 and Thesis Study 4);

The  size  effect  was  modified  but  not  entirely  removed  by  manipulating  the

frequency  of  the  numbers  in  the  number  comparison  task  for  Indo-Arabic

numbers.  Frequency  nevertheless  contributes  to  the  size  effect  as  a  flexible

component, and it is possible that everyday frequency could explain the stable

component.

6. examine whether the distance and the size effects change independently of each

other (all Thesis Studies);

The  distance  and  size  effects  changed  independently  as  a  result  of  the

manipulation  in the experiments,  thus they are dissociated,  i.  e.,  they have a

different source.

7. more generally, an aim present in all reported studies, contrast the two proposed

models of numerical cognition,  the ANS and the DSS, in symbolic numbers.

Here, the sources of the numerical distance and size effects are examined for

being consistent with either account,  and conclusions about the two accounts

will be drawn based on that, but any further investigation of the two models is

beyond the scope of the thesis;

The  distance  and  size  effects  changed  as  a  result  of  the  experimental

manipulation in a way predicted by the DSS and not predicted by the ANS. In

this light, the DSS is the better account for symbolic numerical processing.
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Theoretical Conclusions and Consequences

Source of the distance effect.

In both new symbols and the Indo-Arabic notation the distance effect was shown

to be rooted in the associations between the numbers and the “small-large” properties

(Thesis Study 2 and 3)18. The change occurred at the beginning of the session for the

Indo-Arabic  numbers,  which  points  to  the  flexibility  of  the  effect.  The  results  are

decisive in regards to reaction times and drift rates, confirmed also by the mini meta-

analysis in Thesis Study 2. When measured with error rate, the results were equivocal,

and it remains to be seen whether this was due to noise or any additional aspects of the

distance  effect.  Nevertheless,  the  overall  results19 are  a  definite  statement  against  a

value-based explanation of the distance effect as suggested by the mainstream ANS

model  (Dehaene, 2007; Moyer & Landauer, 1967) or by the value-based version that

can be formulated within the DSS model. The results are in line with the association-

based  explanation  of  the  DSS  model  or  by  the  delta-rule  connectionist  model  of

numerical effects (Verguts et al., 2005; Verguts & Van Opstal, 2014).

Source of the size effect.

The size effect was shown to be a consequence of the frequency manipulation of

the numbers in new symbols (Thesis Study 1), and at least in part for the Indo-Arabic

notation (Thesis Study 4). The effect did not take on entirely the session’s statistics in

the latter  case,  and could not be reversed or nullified even when the numbers were

presented with reversed everyday frequency. It is possible that the size effect is a two-

component effect, one of which is the frequency of the session and flexible, whereas the

other is stable. Another possibility is that the size effect is rooted in the frequency with

the numbers only partially acquiring the statistics of the session. In this respect the size

effect is less flexible than the distance effect.

18 All  results  and  interpretations  here  are  under  the  understanding  that  both  effects  were

investigated in the number comparison task; however, as performance in this task has extensively been

used as proof of the automatic activation of the ANS in the case of symbolic numbers (e.g.,  Moyer &

Landauer, 1967), this does not lessen the arguments against the ANS and the support for the DSS:

19 In my interpretation, the inconsistency regarding the error rate does not weaken the evidence

against the ANS as according to the latter an inconsistency like this one should not be observable unless

there is an additional mechanism that could distort the mapping between the symbolic and non-symbolic

magnitudes proposed by the ANS. We argued against such a possibility in Krajcsi et al. (2018).
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Here’s the important point: No size effect was observed in Thesis Study 1 when

the frequency of the numbers (new symbols) was uniform. It can be supposed that the

putative stable component observed in Thesis Study 4 needs to be introduced into the

system at some point during the time when numbers are learned. One possible source of

this stable component of the size effect might be the ANS. That would mean that the

size effect is a consequence of the ratio effect together with the distance effect. The

presence of both effects in Thesis Study 4 is consistent with such a supposition. Thus,

the size effect could have two sources: The ANS is the source for the stable component,

and the frequency of the stimuli as the flexible component. However, 1) in Thesis Study

1 there is a distance effect when there is no size effect and the new symbols primed the

Indo-Arabic numbers which supposes the same representation (or at least an overlap), 2)

the distance  effect  does  not  reflect  the  value  of  the numbers  as  observed in  Thesis

Studies 2 and 3, and 3) the distance effect showed more flexibility by acquiring the

statistics  of a  session in  Thesis  Study 3,  while  the size effect  did not.  If  the stable

component appears at a later stage through the involvement of the ANS in symbolic

numerical cognition, that should mean either no distance effect before that, or there are

two distance effects, and the ANS takes over or the two are combined. Since the same

manipulation caused the same change in the distance effect in both new symbols and

Indo-Arabic numbers (Thesis Studies 2 and 3), it is more likely that this is the same

distance effect. Furthermore, there is no indication in our studies for a two-component

distance effect. Some additional evidence is provided by the independence of the two

effects  (Krajcsi, 2016, also see below) as well as by another study of our laboratory

(Krajcsi,  Lengyel,  &  Kojouharova,  2018) demonstrating  that  unlike  non-symbolic

comparison  performance,  symbolic  Indo-Arabic  comparison  performance  cannot  be

described properly with psychophysical functions. To summarize, although the ANS is

a plausible explanation for a two-component size effect, it cannot explain the additional

findings from the Thesis Studies and other related studies.

The DSS offers an alternative explanation that can explain not only the partial

flexibility,  but can also accommodate the unusual result  of a  learning that  does not

occur gradually, i.e. gradual accumulation of environmental information, but very fast

in the beginning with no changes later in the session. Here, the frequency of stimuli

presentation is the cause of the size effect, and the observation that it is only partially

flexible  is  a  result  of  a  constrain  in  the  learning  process.  Recent  works  found that

learning might show different patterns not only by dynamically changing the learning
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rate (Behrens et al., 2007), but for example, participants will likely deliberate whether

the parameters of a perceived change in the environment should be updated  (Arató et

al.,  submitted;  Gallistel  et  al.,  2014).  Moreover,  a  combination  of  old  and  new

information seems the more reasonable strategy if it is uncertain whether and to what

extent former experience needs to be updated. A partial integration of the statistics of

the session is a sensible explanation for the present data. However, this raises further

issues: Is there any specific reason as to why frequency (and possibly word frequency in

general) only partially follows the session’s statistics, and why is it that the distance

effect (i.e., associations with a property) adopts it entirely from the beginning?

A third explanation for the stable component of the size effect besides the ANS

(Dehaene, 2007; Dehaene, 1992; Moyer & Landauer, 1967), the DSS  (Krajcsi, 2016;

Krajcsi et al., 2016) or the delta-rule connectionist model (Verguts et al., 2005; Verguts

& Van Opstal, 2014) is a definite possibility, but to our knowledge, no such explanation

is available at present. 

The distance and size effects are independent.

Further  evidence  that  argues  against  a  common  (ratio-based)  source  of  the

distance and size effects is the independent change of the two effects. In Thesis Study 1

a size  effect  appeared  only in  the  biased frequency condition,  whereas  the  distance

effect  was  present  in  both  conditions  (also  in  line  with  the  delta-rule  connectionist

model). In Thesis Study 2, again, there was no size effect with the uniform frequency of

stimuli presentation.  In Thesis Study 3 the distance effect changed as a result of the

manipulation, while the size effect was still observed, and in Thesis Study 4 the distance

effect did not follow the change in frequency. An additional calculation in Thesis Study

3 shows a low correlation between the slopes of the two effects, thus further supporting

an earlier correlational study by Krajcsi  (2016) in which the slopes of the two effects

were found not to correlate in symbolic numbers (Indo-Arabic digits),  although they

correlated highly for non-symbolic numbers.

Results regarding methodology.

Along with the theoretical implications for numerical cognition, there are also

several methodological points that can be made based on our results. First, and as an

entirely  empirical  result  at  this  point,  the  distance  effect  is  better  described  by the

logarithm of  the absolute  difference  of  the values  of  the numbers  to  compare.  This

provides a more exact specification of the regressor, and is a step forward toward a
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possible quantification of the DSS model (or a part of the model).

The drift rate repeatedly proved to be the most sensitive index of performance in

the comparison task, thus increasing support for the use of the diffusion model analysis

as a more powerful method of analysis than the traditional error rate and reaction time.

By  using  the  full  stimulus  space  instead  of  collapsing  the  number  pairs

according  to  distance  and  size,  we  were  able  to  use  regressors  for  both  effects

simultaneously, recognize and handle a non-linear effect that influenced the results, and

visualize our predictions and results in a more accessible manner. More importantly,

with this data-driven approach it was possible to show that our results are observed

systematic patterns in the data and not simply artifacts. In the cases where the traditional

method of analysis is also depicted (Thesis Studies 3 and 4), the changes in the distance

and the size effects can be clearly observed, however, because of the collapsing of cells

into different categories depending on the prediction (more specifically in Thesis Study

3), it would have been more difficult to analyze the data appropriately.

The appearance of the priming distance effect in Thesis Study 1 between new

symbols  and  Indo-Arabic  digits,  which  interpreted  according  to  the  available

information  in  the literature  at  present  means  that  they shared a  representation  is  a

smaller but nonetheless important methodological point for future research that includes

artificial numbers.

In some cases,  we also  included a  replication  study and applied  mini  meta-

analyses  in  the  studies.  This  is  in  line  with  current  recommendations  (e.g.,  Maner,

2014), and can contribute to a possible guideline in cases when the results of a study are

inconsistent  with  the  mainstream  models  and  more  evidence  within  one  study

contributes to making them more believable.

Last, one of the phenomena observable in the studies, but not discussed in detail,

the end effect,  may also  have methodological  and theoretical  implications.  The end

effect  means  that  decision  is  faster  and  with  a  lower  error  rate  for  number  pairs

containing the largest number of the set if the instruction is “which one is larger”, and

there are very few studies that take this effect into account or use it from a theoretical

point of view. For example, Pinhas and Tzelgov  (2012) use the appearance of an end

effect for the numbers 0 and 1, but not for the number 2 as an indication that the former

two can serve as a starting point for the mental number line, while the latter cannot. Jou

(2003) interprets it as those numbers being an anchoring point for making decisions. As

a non-linear distortion of the data, it influences the analysis and the interpretation of the
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results. There are no guidelines as to how to handle the end effect. In the Thesis Studies,

it was once included in a multiple linear regression and removed (Thesis Study 1), the

cells containing the effect were removed (Thesis Studies 2 and 4), or it was ignored

(Thesis Study 3). In all cases the decision was based on visual inspection of the effect

and the extent of distortion. Future work may yield better methods for handling this

effect.

ANS and DSS: Conclusions.

Based on the evidence obtained in the Thesis Studies regarding the distance and

size effects, the following can be stated: 1) the source of the distance effect are the

associations between the numbers and the “small-large” properties, 2) the source of the

size effect  is,  at  least  in  part,  the frequency of the numbers,  3) the two effects  are

independent  of  each  other,  4)  the  effects  seem to  be  notation-dependent,  i.  e.,  the

changes observable in both new symbols and Indo-Arabic numbers do not stem from

the  same  representation  (although  they  are  caused  by  the  same  mechanisms:

associations and frequency). The ANS and the DSS accounts make different predictions

about the source of the two effects, thus, an indirect comparison is possible. According

to the ANS the source of both effects is the ratio of the to-be-compared numbers, a

consequence  of  their  representational  overlap.  It  also  suggests  a  direct  connection

between a number and its value. The ANS model cannot explain the present results for

symbolic numbers – any possible modification to align it with the data would mean

changing a defining feature, the ratio-based performance, and so leading to an entirely

new model.

The DSS, on the other hand, was able to present an alternative explanation that

was comparable to the ANS model in the direct comparison as well as a better overall

explanation for the changes in the distance and size effects caused by the experimental

manipulation. With the same numerical effects being observed in both new symbols and

Indo-Arabic numbers, a common mechanism for symbolic numerical processing is the

parsimonious  account.  A  further  argument  supporting  this  account  would  be  that  a

system handling abstract symbolic operations such as the mental lexicon or a conceptual

network is a reasonable proposal for symbolic numbers.

The DSS is an underspecified model. It relies on models describing higher-level

cognitive (possibly linguistic) functions, so a quantitative description is not as readily

available  as  the  quantitative  description  (psychophysics  formulas)  of  a  low-level
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perceptual  model  such  as  the  ANS.  Whereas  the  ANS  offers  one  explanation,  the

overlap of the representations of the numbers, for many of the properties of the numbers

in different tasks, the DSS seemingly relies on several sources: connections between

nodes, frequency, spreading activation. It is also more flexible, and may have several

predictions about the outcome of an experiment. The latter can be seen in Thesis Study

2 where one of the predictions of the DSS is indistinguishable from the one of the ANS

(value-based account), while the other contrasts it (association-based account). It is easy

to  focus  on  these  shortcomings  and miss  the  important  points.  First,  the  DSS is  a

comprehensible, cohesive account with precedents in the literature. Second, it is a more

parsimonious  account  than  the  ANS  for  the  processing  of  symbolic  numbers:  The

organization of the system is responsible for the observed effects, i.e., the appearance of

there  being  multiple  sources  is  (in  this  sense  only)  illusory,  and the  effects  can  be

observed for any processing of symbols in the relevant tasks. An example is the delta-

rule connectionist model (Verguts et al., 2005; Verguts & Van Opstal, 2014), a possible

implementation of the DSS, which accounts for belonging to a category (parity), the

comparison distance effect, the priming distance effect, and the comparison size effect.

Third, the DSS can explain all relevant symbolic numerical effects and phenomena at

least as well as the ANS, and in some cases it provides a better explanation as seen, for

example,  in  the  present  studies.  Fourth,  it  can  supply  testable  hypotheses  not  only

against the ANS model, but also to contrast its own properties with one another, which

in turn will result in a more precise description.

It is important to note that he DSS does not account for meaning. A different

mechanism  (presented  fully  by  Krajcsi  (2014))  suggests  that  initially  number

understanding  is  acquired  via  an  object-based  conceptual  representation  of  natural

numbers, stored and processed as exact values in an abstract layer. Further properties of

the numbers can later be anchored in other domains (e.g., incorporating the meaning of

zero as “nothing”  (Krajcsi, Kojouharova, & Lengyel, in preparation), moving along a

line for negative numbers (Krajcsi, 2014)) to extend their meaning. In this account the

ANS is likely one of the systems in which number knowledge is grounded.

To sum up, the results about the distance and size effects in the Thesis Studies

are already a step forward for a more precise specification of the DSS. Additionally, the

results call for a re-evaluation of the interpretations from earlier studies based on the

comparison  of  symbolic  numbers.  Further  research  is  still  needed  to  determine  the

feasibility of the DSS and to reveal and define its properties.
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Other research supporting a distinct system for symbolic numerical cognition.

Despite  the recent increased interest  in the ANS and its  relation to symbolic

numerical  processing,  there  are  hardly  any  studies  that  challenge  the  nature  of  the

distance and size effects in the number comparison task with direct manipulation as in

the Thesis Studies (especially the size effect is rarely studied on its own). The results of

Krajcsi  (2016) revealed that the slopes of distance and size effects correlate highly in

non-symbolic  comparison,  but  do  not  correlate  in  symbolic  comparison.  The  latter

finding was also replicated in Thesis Study 3. Based on earlier studies Chesney (2018)

modeled the distance effect for non-symbolic numbers and examined its relationship to

the Weber fractions typically found in human subjects. The relationship was not linear,

but rather J-shaped, and the distance effect correlated best with the Weber fraction at

around 0.2-0.3 which is often not the Weber fraction range reported in studies. Thus, the

distance effect is not even an optimal measure for ANS acuity,  especially in special

groups.

Nevertheless, more and more converging evidence is emerging in different tasks

and  experimental  settings  that  supports  the  existence  of  a  mechanism  devoted  to

symbolic numerical processing. Some of the studies were discussed as a starting point

for the Thesis Studies, grouped roughly as inconsistency with the ANS accounts in tasks

when  results  for  non-symbolic  and  symbolic  numbers  were  compared,  neurological

evidence,  predictiveness  of  non-symbolic  and symbolic  number processing for  math

achievement,  and  numerical-like  effects  in  non-numerical  tasks.  A  few  additional

studies are discussed as well below.

First,  earlier  studies  found  that  the  physical  similarity  of  symbolic  numbers

contributed to the distance effect in a same/different task (Cohen, 2009; Ganor-Stern &

Tzelgov,  2008).  To avoid this  problem Sasanguie et  al.  (2017) developed an audio-

visual paradigm in which participants matched a number word or a tone sequence to a

set of dots or a digit, and measured the ratio effect. In their first experiment there was no

ratio effect in the pure symbolic (number word-digit) task, but it was observable in all

tasks that  included non-symbolic  stimuli.  In their  second experiment,  to rule  out an

asemantic  route (i.  e.,  meaning was not  assessed in the pure symbolic  condition),  a

comparison task was utilized. There was a reversed ratio effect only for reaction time in

the number  word-digit  condition  which contradicts  the ANS account  for  an  amodal

common representation,  although  this  result  may  have  been  confounded  by an  end

effect.  Also,  interestingly,  there  was  a  correlation  for  the  number  word-digit  and a
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sound-letter  condition,  a  non-numerical  condition.  The  audio-visual  paradigm  was

applied  in  another  study  (Marinova,  Sasanguie,  &  Reynvoet,  2018) to  resolve  a

contradiction  regarding the presence of a switching cost between notations  that  was

observed in an earlier study (Lyons, Ansari, & Beilock, 2012), but not in the first two

experiments of this study. Seemingly, the problem for this inconsistency was the faster

reaction  time  for  digits  (in  a  dots-to-digit  condition)  than  dots  (in  a  digit-to-dots

condition). The audio-visual paradigm kept the same “respond-to” stimulus independent

of whether the trial was mixed or pure, and a switching cost, interpreted as an indication

of  two  distinct  systems  for  symbolic  and  non-symbolic  numerical  processing,  was

obtained.

There are also numerous examples of interference of discrete properties that are

not easily explained by the ANS account. The numerical congruence effect  (Henik &

Tzelgov,  1982) may  be  attributed  to  an  interference  between  (the  continuous)

numerosity and physical size as well as to the discrete “small-large” properties with

which both numerosity and physical size can be described, i.e., the “numerical small-

large”  and  the  “physical  small-large”  properties  interfere.  The  SNARC  effect

(responding to small numbers faster with the left hand and to large numbers with right

hand) does not necessarily imply a space-numerosity interaction – it is possible that the

“left-right”  and  the  “small-large”  properties  interfere  with  each  other.  The  SNARC

effect was shown to appear when a spoken  “yes-no” response, which should not have a

spatial property, was required (Landy et al., 2008). In another study (Leth-Steensen et

al.,  2011) numerosity  was associated with the “cold-warm” properties.  Krajcsi  et  al.

(2018) investigated the interference of the discrete properties parity (“odd-even”), side

(“left-right”) and numerosity (“small-large”). They showed that contradictions in earlier

studies  in  regards  to  the  interference  of  these  properties  may  have  been  due  to

measurement  –  whether  an  effect  is  homogeneous  like  SNARC  (the  interference

between the properties is similar for all participants) or heterogeneous like the other two

(the  interference  was  in  different  directions  depending  on  the  participant,  but  was

consistent for the participant). Only discrete models are consistent with these results.

More  precise  methods  and  diverse  designs  seem  to  improve  the  results  in

neuroimaging studies. Event-related potentials (ERPs) remain a controversial approach

mainly  because  of  the  difficulty  of  controlling  for  visual  properties  in  both  non-

symbolic and symbolic stimuli. A recent study (van Hoogmoed & Kroesbergen, 2018)

used a match-to-sample same/different task (match a target to a prime), where the prime



142

and the target could be either a symbolic number or a set of dots. There was no ratio

effect  for the pure symbolic  prime-target  pairs  for accuracy.  No effect  of ratio  was

found in the ERP waves for the difference between the prime and target in either of the

conditions.  Thus,  it  was  not  possible  to  compare  directly  the  ratio  effect.  Still,  the

authors  found  differences  in  the  processing  of  non-symbolic  stimuli  in  the  mixed

conditions compared to the respective stimuli in the pure non-symbolic condition, and

reasoned  that  because  the  differences  were  in  amplitude,  they  were  the  result  of

different cognitive processes. Their conclusion was that symbolic numbers do not map

onto the ANS. However, the study used double-digit  numbers as stimuli  which may

have had a confounding effect on the results, i.e., additional non-numerical processes

may have played a role.

fMRI  (functional  magnetic  resonance  imaging)  studies  seem  to  yield  more

promising results (for a review see  Matejko & Ansari,  2018). Lyons and colleagues

(2015) investigated the patterns of voxelwise correlations  between pairs  of numbers

which should mirror the amount of overlap in their tuning curves. A match-to-sample

task was used with the 1 to 9 numerosities. The expected overlap was found for non-

symbolic numbers, but not for symbolic numbers whose pattern was more consistent

with discrete  representations.  There was across-format  correlation that  did not  show

evidence  of  shared  representation.  However,  the  dot-array  stimuli  included  the

subitizing range (1 to 4) which may have affected the results. Two already mentioned

studies (Bulthé et al., 2014; Bulthé et al., 2015) showed that symbolic numbers 1) likely

recruit the entire cortex, 2) do not show a neural distance effect whereas dot arrays do,

3)  do  not  have  overlapping  representations  with  non-symbolic  numerosities  in  the

selected regions of interest, 4) are recognized as an object (i. e., one digit is one object)

in the IPS (intraparietal sulcus). The same authors (Bulthé, De Smedt, & Op de Beeck,

2018) recently published a study in which three groups were compared in a symbolic

and non-symbolic comparison task. The groups differed in levels of arithmetic skills

and experience: high, average, and low (developmental dyscalculia). Interestingly, there

was  a  negative  correlation  between  the  MVPA  (multi-voxel  pattern  analysis)

generalization  between  symbolic  and  non-symbolic  numbers  and  arithmetic

performance  in  the  parietal  cortex.  This  result  could  be  interpreted  as  a  gradual

separation (estrangement) between ANS and symbolic numerical processing, but could

also entail a change in the representations of the symbolic numbers only.
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Finally, a recent and rather novel study by Amalric and Dehaene (2017) targeted

arithmetic skills in experts (mathematicians) and non-experts. They reported the results

only  for  the  expert  group.  In  this  group  the  mathematical  and  non-mathematical

semantics separated, and mathematical semantics activated the IPS in a way similar to

basic arithmetic and number recognition. This can be interpreted as higher arithmetic

relying on the ANS or a similar mechanism. However, as the authors also recognize, the

separation does not mean isolation from the language system, and they acknowledge the

possibility for an organization similar to that of language. Furthermore, the IPS has been

shown to be active for ordered sequences (Marshuetz et al., 2006; Matejko, Hutchison,

& Ansari, 2018), and performance on ordinality tasks in turn is a good predictor of math

achievement (e..g, Sasanguie, Lyons, De Smedt, & Reynvoet, 2017).

An interest in the role of ordinality in numerical cognition has recently re-surged

(for a detailed review see  Lyons, Vogel, & Ansari,  2016). The typical paradigm for

measuring  the  role  of  ordinality  is  presenting  pairs  or  triplets  of  stimuli  (numbers,

letters) either in ascending, descending, or mixed order, and participants make decisions

about their order (ascending/descending or correct/incorrect). A reversed distance effect

is  usually  observed  when  the  digits  are  in  ascending  or  descending  order,  i.  e.,

performance is worse when the distance between the stimuli is large (Lyons & Beilock,

2013; Matejko et al., 2018; Sasanguie et al., 2017; Turconi, Campbell, & Seron, 2006

but see Experiment 1 in Sasanguie et al., 2017 for an exception). The usual numerical

distance effect is obtained for mixed order trials  (Lyons & Beilock, 2013; Matejko et

al., 2018), but seems rarely to be the target of investigation. Behaviorally, a reversed

distance effect was obtained in an ordinality task only for symbolic, but not for non-

symbolic numbers  (Lyons & Beilock, 2013). Goffin and Ansari  (2016) showed that it

did not correlate with the distance effect from the number comparison task, and was a

unique predictor of math achievement along with the distance effect. A recent study by

Sasanguie and colleagues  (2017) found that when the ordering task used pairs,  then

performance on the comparison task predicted arithmetic performance, but was partially

mediated by performance on the ordering task and fully mediated when performance on

a letter ordering task was included in the model. In the same study when the ordering

task included triplets, then it fully mediated between comparison and arithmetic, while

letter  ordering  did  not.  From  neurological  point  of  view,  a  dissociation  between

cardinality  and  ordinality  has  been  found  (Lyons  & Beilock,  2013;  Matejko  et  al.,

2018),  although  the  results  are  somewhat  inconsistent  about  whether  there  is  a
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difference between numerical and non-numerical order processing and where it is. The

parietal (and more specifically the IPS), prefrontal and even premotor regions have been

implicated for both (Franklin & Jonides, 2009; Fulbright, Manson, Skudlarski, Lacadie,

& Gore, 2003; Ischebeck et al., 2008; Lyons & Beilock, 2013; Marshuetz et al., 2006),

although more sensitive analysis are likely necessary to investigate whether there really

is  an overlap  between the brain  networks  (Zorzi,  Di  Bono,  & Fias,  2011).  Overall,

ordinality seems to be distinct from cardinality, not limited to numbers, and is a major

contributor to performance in symbolic numerical tasks.

Moving on to the adequacy of performance on the symbolic and non-symbolic

number  comparison  task  as  a  predictor  of  math  achievement  as  investigated  in

developmental studies, we have already discussed that symbolic comparison distance

effect  seems  to  be  a  better  predictor  for  math  achievement  in  children  than  non-

symbolic comparison performance (e.g.,  (Holloway & Ansari, 2009; Sasanguie et al.,

2014, 2013). Additionally, there is a developmental trajectory:1) the symbolic distance

effect  correlates  stronger  for  younger  children  (Holloway  &  Ansari,  2009) which

underlines  its  importance  in  learning  basic  numeric  skills;  2)  children  show greater

variability for both non-symbolic and symbolic comparison in younger age which is

likely due to a general noisier cognitive processes, and which may blur the difference

between the performance in the two comparison tasks (Lyons, Nuerk, & Ansari, 2015);

3) in Grade 1 (around the age of six) the development of symbolic skills outpaces that of

non-symbolic skills, and the refinement of non-symbolic skills seems to be guided by

the symbolic skills (Matejko & Ansari, 2016), and 4) the latter reverse connection can

be also observed by in children with dyscalculia – symbolic numerical impairment is

displayed throughout  their  development,  while  ANS impairment  appears  only  at  10

years of age and later (Noël & Rousselle, 2011). A meta-analysis study by Schneider et

al. (2017) non-symbolic comparison correlates much less with math achievement, but a

correlation with the number comparison task was found repeatedly, and another very

recent study  (Schwenk et al.,  2017) showed that when comparison performance was

measured with reaction time, children with mathematical difficulties were worse in both

non-symbolic and symbolic comparison compared to typically achieving children, but

to  a  greater  extent  in  symbolic  comparison.  Factors  such as  age,  diagnostic  cutoff,

number range did not affect the difference. These results suggest that if there is mapping

between  the  symbolic  numbers  and  ANS,  it  happens  later  in  life,  correlates  with

education, and is guided by the symbolic numerical knowledge rather than the other
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way around.

The DSS account, in contrast to the ANS model, can easily accommodate these

results.  As  a  mechanism  dedicated  to  the  processing  of  symbolic  numbers,  it  is

reasonable  to  assume  that  proficiency  with  tasks  targeting  basic  skills  such  as  the

comparison task will predict better performance in more complex skills that are built on

this  foundation.  The  strength  of  the  connections  between  the  nodes  representing

numbers and properties can explain the interference effects such as the SNARC effect

or  the  size-congruity  effect,  and  their  flexibility  can  account  for  the  fast  changes

observed in the distance and size effects in the presented studies. The strong evidence

about a semantics network and non-numerical properties in the IPS brain region also

supports the DSS account, although this supposition still has to be treated with great

caution.  Obtaining different  results  in  different  tasks is  also in line with the DSS –

different  parts  of  the  network  could  be used  depending on the  task.  The  lack  of  a

distance effect in the same/different tasks when an audio-visual paradigm is used is a

curious deviation from the prediction of DSS if we suppose that the distance effect in

these  tasks  is  a  result  of  a  spreading  activation  between  the  nodes.  One  possible

explanation is that number words and digits are not represented by the same nodes, thus

there is no interference or facilitation. However, when visually presented, number words

and Indo-Arabic  digits  show a distance  effect  in  a  same/different  task  (Dehaene &

Akhavein, 1995), and prime each other in a priming task (Dehaene et al., 1998), i. e.,

there  is  a  shared  representation.  Another  unresolved question  is  that  of  the  role  of

ordinality.  The  studies  discussed  here  suppose  that  it  is  rooted  in  the  connections

between the symbols  (nodes),  which is  possible  in  the DSS.  However,  if  ordinality

mediates between number comparison and arithmetic (Sasanguie et al., 2017), it might

stem from the associations of the digits with the “small-large” properties which also

gives the impression of an order-like quality.
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Future Research and Practical Implications

From  the  point  of  view  of  the  numerical  cognition  research,  an  important

implication is that results obtained and interpreted on the basis of the distance and size

effects  need  to  be  re-evaluated.  Another  line  for  future  research  is  identifying  and

describing the properties of the DSS, which also means a more precise quantification of

the  account.  Furthermore,  the  accumulated  knowledge  of  symbolic  numerical

processing  could  be  applied  to  language,  e.g.,  acquiring  of  meaning,  forming

associations with properties, learning the statistics of the environment. Also, if Amalric

and  Dehaene’s  (2017) data  about  a  specialized  mathematical  semantic  network  is

further corroborated, this could inform the forming of specialized language networks as

well. On an even more general note, the present results can be extended to any field that

seeks  domain-specific  evolutionary  mechanisms  for  higher-level  knowledge  to  be

grounded in, more specifically, that the interpretation of such results in such way should

always be treated with caution (see Núñez, 2017).

Application in practice could target mathematical education and intervention for

children  and  adults  with  mathematical  disabilities  by  developing  new  methods  for

teaching  and  testing,  or  providing  a  support  system,  tools  that  can  help  to  process

numerical information.
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Conclusions
The studies presented in the thesis systematically investigated two phenomena

stated to be an indicator of the underlying representation of numerosity and thus used to

draw conclusions about its nature: the distance effect and the size effect in the number

comparison task. Unlike other studies attempting to disentangle the non-symbolic and

symbolic numerical cognition, we targeted directly the source of the two effects, or in

other  words,  the  numerosity  representation.  Our  results  were  incompatible  with  the

mainstream  ANS  account,  which  supposes  an  innate,  analogue,  noisy,  continuous

representation with evolutionary roots and in which the distance and size effects have

the same source, the overlap of the number representations. The results are compatible

with a representation in a semantic network such as the DSS as proposed in Krajcsi

(2016) and Krajcsi et al.  (2016) where the two effects are independent of each other.

The distance effect is rooted in the associations of the numbers with the “small-large”

properties,  and  the  size  effect  is  caused  by  the  frequency  of  the  numbers.  By

establishing the sources of the two effects it was possible to indirectly compare the two

accounts.  Additionally,  the  studies  contributed  to  the  quantitative  description  of  the

DSS, and provided methodological  suggestions for future research.  The studies thus

become a part of the ever-growing body of research that distinguishes between symbolic

and non-symbolic numerical cognition.
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