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ABBREVIATIONS 

ASRT – Alternating Serial Reaction Time (task) 

CSE – Congruency sequence effect 

ERN – Error-related negativity (same as Ne) 

ERP – Event-related brain potential 

FDR – False discovery rate (correction) 

Ne – Error negativity 

Pe – Error positivity 

PES – Post-error slowing 

PFC – Prefrontal cortex 

RT – Reaction time 

 

  



2 
 

ABSTRACT 

Successful adaptation requires both automatic and goal-directed behaviours, and these 

often need to operate in parallel with one another. However, the nature of their interplay 

is yet to be fully unravelled: some studies suggest independent operation, whereas others 

propose an interactive relationship. Moreover, different lines of research have drawn 

different conclusions about the nature of the assumed interactive relationship. Through 

five studies (Study 1-4 and the Supplementary Study), I aimed to investigate how 

automatic and goal-directed behaviours naturally interact during behaviour adaptation in 

a reaction time task as well as when the engagement of goal-directed behaviours is 

manipulated during task solving. Automatic behaviours were modelled by the procedural 

memory system, whereas goal-directed behaviours were modelled by the components of 

the executive control system. Furthermore, I studied habit change, a challenging and 

complex aspect of behaviour adaption, which is closely related to procedural memory 

acquisition and expression. These studies provided cumulative evidence that procedural 

learning and memory expression are robust and take place independently of goal-directed 

behaviours. Importantly, when complex environmental and situational factors induced 

fragility in the procedural memory system, such as habit change or adaptation to 

interfering stimuli, a competing relationship emerged. Conversely, goal-directed 

behaviours seemed to operate independently of automatic behaviours, nevertheless, some 

evidence implied support for the executive control system from procedural learning. 

Overall, my doctoral research could shed light on the complex interplay behind adaptive 

behaviours in the ever-changing environment. 

 

Keywords: automatic behaviours, behaviour adaptation, executive control system, goal-

directed behaviours, habit change, procedural learning 
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GENERAL INTRODUCTION 

I. Summary 

Automatic and goal-directed actions are both essential in our everyday life. While 

our automatic behaviours allow us to act with little effort, goal-directed behaviours enable 

us to adjust our actions when required. By relying on both processes simultaneously, we 

can smoothly adapt our actions according to the requirements of the environment and our 

own goals. For example, when we take the same turn every day upon leaving our house 

to work absent-minded, we use our automatic behaviours. We don’t need to pay attention 

to the route, and this frees our cognitive resources thus allowing us to focus on our to-do 

list for the day. Sometimes, of course, we need to take unknown routes. In these cases, 

we rely on our goal-directed behaviours: we need to keep in mind our new destination, 

inhibit turning in a wrong direction, and keep our attention on the new route. However, 

one day our usual morning commute to work might be disrupted by road works, hence 

we need to adjust our route. What happens in such a situation? Do our automatic and 

goal-directed behaviours operate independently, or do they interact with one another? If 

yes, do they support or compete with one another? Although examples like these are 

familiar to all of us, the exact neurocognitive background of the interplay between our 

automatic and goal-directed behaviours during behaviour adaptation is yet to be fully 

unravelled. My doctoral research aimed to better understand this interplay in healthy 

humans by investigating the interaction of the procedural memory system and the 

executive control system. 

Automatic behaviours, such as habits and skills, at least partially rely on the 

procedural memory system (Ashby et al., 2010; Ullman, 2004). It enables us, through 

exposure, to process, extract, and acquire the probability-based structure organizing the 

noisy environment (Conway, 2020; Frost et al., 2019). This ability allows for the 

prediction of and adaptation to future events in the environment. Acquisition and memory 

expression in the procedural memory system are implicit, incidental, and automatic 

(Foerde, 2018; Graybiel, 2008; Jiménez & Mendez, 1999). The acquired automatic 

behaviours seem highly robust and resistant to forgetting and memory interference 

(Kóbor et al., 2017; Szegedi-Hallgató et al., 2017).  

Goal-directed behaviours rely on a complex ensemble of various cognitive 

processes that operate in an orchestrated manner (Friedman & Robbins, 2022; Miller, 



5 
 

2000; Miyake et al., 2000). To successfully execute these behaviours, our brain needs to 

continuously monitor our performance and detect and process if we committed an 

erroneous action and so our behaviour is no longer optimal in the light of our goals. While 

doing so, focused and selective attention needs to be maintained to effectively process the 

goal-relevant information, and, if necessary, our attention might even have to be divided 

between several concurrent tasks or goals. In addition, our brain needs to inhibit actions 

that are irrelevant or even harmful for good performance as well as any distracting and 

irrelevant information from the environment. In case we slip and our performance drops, 

we need to correct our behaviour by updating our goals, selecting a new plan, and shifting 

our attention and behaviour according to the new plans (Bari & Robbins, 2013). In this 

dissertation, I refer to this ensemble of cognitive processes as the “executive control 

system”, based on the different terms appearing in the related literature (e.g., executive 

functions, cognitive control, executive control processes).  

Procedural memory and the executive control system frequently need to operate 

simultaneously during behaviour adaptation. Contrary, previous research investigating 

these behaviours often ignored one another and the literature remained mostly separated. 

The nature of the procedural memory vs. executive control system interaction received 

less attention and the effort towards clarifying this issue has led to inconsistent findings. 

Some studies suggest a cooperative/supportive interaction (Coomans et al., 2011; Deroost 

et al., 2012), some found evidence for competition/interference (Borragán et al., 2016; 

Nemeth, Janacsek, Polner, et al., 2013; Poldrack & Packard, 2003; Vaquero et al., 2020), 

whereas others proposed an independent relationship (Jiménez, Abrahamse, et al., 2020; 

Jiménez, Méndez, et al., 2020) between the two systems. This inconsistency might 

originate from the wide array of processes contributing to our automatic and goal-directed 

behaviours, the partial focus on only some of these processes, the lack of systematic 

investigation of their relationship, and the variety of the experimental tasks and designs. 

Furthermore, most studies focused on only the acquisition phase of procedural learning 

and neglected further steps, notably, the short(er) and long(er) term retention of the 

acquired behaviour. I aimed to consider the different aspects and phases of the procedural 

memory system as well as the different subcomponents of the executive control system 

in newly designed experiments. Thereby, the findings presented in the dissertation might 

contribute to a better understanding of whether and how these systems interact. 
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Recently, the world has faced major environmental threats, such as climate change 

and the Covid-19 pandemic, which forced us to change our usual automatic behaviours 

rapidly and effectively. Through extended exposure, automatic behaviours can become 

habits, which are complex behaviours tied to and triggered by certain events and 

performed without any specific goals or rewards (Ashby et al., 2010; Dickinson, 1985; 

Wood & Rünger, 2016). To rapidly adjust habits, the involvement of the executive control 

system is often required: we need to implement new actions consciously or avoid 

unwanted ones intentionally, like actively remembering ourselves to switch off the light 

when we leave a room or stopping ourselves from shaking hands upon meeting someone 

for hygiene reasons. Alternatively, habits may adjust without conscious effort when the 

changed environment forces them: for example, our roommate could unplug our unused 

charger every time, and maybe one day we realize that we have been similarly unplugging 

the charger for some time. Or, our co-worker has been greeting us with a fist bump every 

day since the beginning of the pandemic, and now we happen to do the same with our 

friends naturally.  

From a cognitive point of view, to succeed in habit change, we need to 

simultaneously develop a new habit and unlearn—or at least fully inhibit—the old one 

(Hogarth et al., 2013; Szegedi-Hallgató et al., 2017). However, changing habits is 

challenging as the old behaviour seems to be hard to break (Poldrack, 2021). Research on 

habit change goes back a long way, yet its neurocognitive background is still poorly 

understood in the healthy human mind (Hardwick et al., 2019; Luque et al., 2020). 

Moreover, while the engagement of goal-directed behaviours is a common and seemingly 

obvious response, very little is known about how these interact with the procedural 

learning and memory processes underpinning habit change (Brevers et al., 2021; Quinn 

et al., 2010). 

To conclude, although both the procedural memory system and the executive 

control system have received much scientific attention, many critical gaps and 

unanswered questions remain about their interplay during behaviour adaptation. In my 

doctoral research, I aimed to make steps towards addressing these shortcomings through 

five empirical studies. 
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II. Main questions of the dissertation 

i. Do errors contribute to the retrieval of an automatic behaviour in order to 

enhance task adaptation? Performance monitoring, especially the 

processing of erroneous actions, is essential to maintain goal representations 

and achieve task goals. Study 1 investigated how error processing takes 

place during the retrieval of an automatic behaviour to enhance adaptation. 

To answer this question, I investigated the event-related brain potential 

(ERP) correlates of error processing as well as the behavioural correlates of 

error-related task adaptation (post-error slowing, PES). The experimental 

design enabled us to test the interplay of procedural memory and the 

executive control system during acquisition and retrieval of an automatic 

behaviour without experimentally manipulating either of the two systems. 

ii. When and to what degree can we adjust automatic behaviours when the 

environment becomes unpredictable without any noticeable change at the 

surface level? Study 2 investigated the changes in automatic behaviours 

induced by changes in the environment’s deep structure, without engaging 

the executive control system. First, I investigated the acquisition of a habit-

like behaviour, then probed the updating of this behaviour following 

unsignalled structural changes introduced in the task.   

iii. Does procedural learning remain intact when attention is divided between 

concurrent tasks and task goals? Next, I investigated whether we can 

successfully acquire automatic behaviours in a distracting environment 

where the engagement of the executive control system is experimentally 

manipulated. Study 3 tested if and how the division of attention between 

concurrent tasks and task goals impact procedural learning. In addition, this 

study focused on another crucial aspect of the procedural memory system: 

the long(er)-term retention of the acquired behaviour and investigated 

whether divided attention during acquisition hinders the procedural memory. 

iv. How does response inhibition influence the rewiring of automatic 

behaviours? Study 4 focused on the procedural memory vs. executive 

control system interplay during changing habit-like behaviours and probed 

whether we could ease the challenging process of habit change by inhibiting 



8 
 

the unwanted behaviour. More precisely, this study investigated the effect of 

response inhibition on the rewiring of automatic behaviours.  

v. How does procedural learning and interference suppression influence one 

another when simultaneously involved in fulfilling task goals?  In addition 

to the four main questions of the dissertation, the Supplementary Study 

(Appendix I.) targeted the relationship of procedural learning and the 

suppression of events interfering with the current task goals by manipulating 

the engagement of the latter process.  

 

To sum up, Study 1 and Study 2 investigated behaviour adaptation without 

manipulating either the procedural memory system or the executive control system. Then, 

Study 3 and the Supplementary Study experimentally manipulated the engagement of the 

executive control system during the acquisition of automatic behaviours, with the former 

taking the question further to the retention of the acquired behaviour over an offline delay. 

Finally, Study 4 focused on changing these automatic behaviours in parallel with the 

engagement of the executive control system. In the following chapters, I will elaborate 

on the background of the procedural memory system and the executive control system, 

the theoretical accounts describing their relationship as well as the unclear issues and 

unanswered questions in the literature. Finally, I will provide a more detailed summary 

of the studies included in this dissertation. 
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III. Graphical summary of the dissertation 

 

Figure 1. Schematic representation of processes contributing to behaviour adaptation. 

Successful behaviour adaptation relies on both automatic (illustrated by orange colour) 

and goal-directed behaviours (yellow). So far, the interplay between these two types of 

behaviours (solid line) is unclear: previous research suggests competitive/interfering, 

cooperative, or independent operation. Sometimes, however, environmental changes 

(purple) force us to adjust our automatic or goal-directed behaviours (dotted lines) and 

may influence their interplay as well (dashed line). The studies included in the dissertation 

aimed to target some of these interactions from different perspectives and methodological 

approaches. 
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Figure 2. Overview of the studies included in the dissertation. In Study 1, we investigated 

the interplay of automatic and goal-directed behaviours during behaviour adaptation 

without any manipulations by focusing on the electrophysiological correlates of 

performance monitoring. In Study 3 and the Supplementary Study, we manipulated the 

engagement of the executive control system, namely attention and inhibition of 

interfering events and examined the acquisition of automatic behaviours in this way. 

Study 2 and Study 4 focused on behaviour adaptation when changes occur in the 

environment, illustrated by a purple background shading. In Study 2, we investigated the 

updating of automatic behaviours when the executive control system is not engaged, 

whereas, in Study 4, we manipulated the engagement of the executive control system, 

namely response inhibition, during behaviour change. From another perspective, Study 1 

and Study 2 investigated behaviour adaptation without manipulating the engagement of 

the executive control system, while Study 3, Study 4 and the Supplementary Study 

directly manipulated the corresponding behaviours illustrated by a yellow background. 
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IV. Theoretical background 

In this chapter, I will describe the two neurocognitive systems underpinning 

automatic and goal-directed behaviours contributing to behaviour adaptation. First, I will 

introduce the procedural learning and memory system with an emphasis on its 

contribution to behaviour change. I will also address some of the key methodological 

issues related to procedural memory. Second, I will cover the executive control system 

following a similar logic. Finally, I will briefly review the literature on the interaction 

between these two systems. 

i. The procedural memory system 

Procedural learning is a broad concept that covers the acquisition of complex 

automatic behaviours (Squire et al., 2004; Ullman, 2004). It is a fundamental ability 

contributing to numerous cognitive processes, such as language or perceptual 

categorization (Conway, 2020; Zwart et al., 2019), and it allows us to adjust our behaviour 

to the environment without effort (Hikosaka & Isoda, 2010). At the behavioural level, 

procedural learning and memory are characterized as implicit, incidental, (relatively) 

slowly encoded, and robust. It is implicit, that is, acquisition and expression take place 

without conscious access to the acquired behaviour or even the learning situation itself 

(Reber & Squire, 1994). It is incidental as intention and effort are not required for the 

acquisition or expression of the acquired behaviour (Perruchet & Pacton, 2006; Turk-

Browne et al., 2005). Encoding of procedural memories usually takes place relatively 

slowly through repeated exposure as opposed to, for instance, episodic memories where 

a single exposure can result in a long-lasting memory trace (Henke, 2010). Finally, the 

acquired behaviour is robust, as per it is retained during the offline period following 

acquisition (Arciuli & Simpson, 2012; Gómez, 2017; Kim et al., 2009; Simor et al., 2019), 

it is resistant to long-term forgetting (Kóbor et al., 2017; Romano et al., 2010), interfering 

information (Szegedi-Hallgató et al., 2017), and cannot be flexibly altered (Henke, 2010). 

At the neural level, procedural learning is linked to large-scale brain networks consisting 

of cortico-basal ganglia-cerebellar circuits and the medial temporal lobe, with a supposed 

key role of the striatum (Batterink et al., 2019; Conway, 2020; Graybiel & Grafton, 2015; 

Janacsek et al., 2020; Squire et al., 2004).  

Procedural learning underlies the formation of skills and habits. While these both 

require an extended period of exposure, they are fundamentally different. Skills are well-
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learnt and resilient behaviours that can be executed with precision and little variety. 

Importantly, although a large proportion of skills is automatic, the execution itself is 

intentional and often consciously controlled (Du et al., 2022; Graybiel & Grafton, 2015). 

Therefore, skills are not addressed in this dissertation. Habits are traditionally defined as 

obligatory stimulus-response associations that are automatically triggered and elicited by 

an environmental stimulus or context and insensitive to changes in the outcome of the 

behaviour (Dickinson, 1985). Nevertheless, this definition comes from animal studies and 

thus cannot fully describe habits in humans (Foerde, 2018; Robbins & Costa, 2017). 

Alternatively, human habits can be defined as complex automatic behaviours that we are 

tied to, that are performed automatically and with little effort, and that can only be 

suppressed by conscious control (Du et al., 2022; Hardwick et al., 2019; Wood & Rünger, 

2016). Habits are often associated with a negative connotation in our everyday life—think 

of the expressions “creature of habits” or “by force of habit”. However, habits help us to 

switch into an “autopilot mode” in a familiar environment and save mental resources for 

additional tasks. When it comes to the necessity of changing habits, behaviour adaptation 

processes face a major challenge (Poldrack, 2021). So far, despite habit change being 

extensively studied in non-human animals and clinical populations, there have been only 

a few successful attempts to describe the basic cognitive processes involved in habit 

change (Krakauer & Shadmehr, 2006; Luque et al., 2020; Szegedi-Hallgató et al., 2017).  

The procedural memory system is linked to another crucial aspect of smooth and 

effective behaviour adaptation: the ability to form predictions about future events based 

on recurring environmental patterns with probability-based relationships (Conway, 2020; 

Frost et al., 2019; Siegelman et al., 2017; Batterink et al., 2019; Conway, 2020)). By 

extracting these patterns, expectations about upcoming events can be made allowing for 

preparation to changes of the noisy environment (Bubic et al., 2010). 

Experimental paradigms assessing procedural learning 

Procedural learning is most often studied by (probabilistic) sequence learning 

tasks or probabilistic categorization tasks in different sensory modalities or cognitive 

domains (e.g., auditory tasks targeting [artificial] language learning, purely visual shapes, 

or visuomotor associations; Conway, 2020; Frost et al., 2019; Romberg & Saffran, 2010; 

Shohamy et al., 2008). It is still debated whether performance on these tasks models the 

same or distinct processes (Bogaerts et al., 2022; Frost et al., 2015); thus, in my doctoral 

dissertation, I focused only on learning in a visuomotor probabilistic sequence learning 
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task. Namely, I used various versions of the prominent Alternating Serial Reaction Time 

(ASRT) task (J. Howard & Howard, 1997; Kóbor et al., 2019; Nemeth, Janacsek, Londe, 

et al., 2010) which has good reliability, outperforming most sequence learning tasks 

(Farkas et al., 2022; Stark-Inbar et al., 2017). 

The ASRT task is a four-choice reaction time (RT) task where, unbeknownst to 

participants, the stream of stimuli is defined by a repeating regularity. Participants are 

asked to press the button corresponding to the position/direction of the stimulus as fast 

and as accurately as possible. Within the repeating regularity, predefined stimuli alternate 

with randomly selected ones. One example of such regularity is the 1 – r – 3 – r – 2 – r – 

4 – r sequence, where numbers denote the four predefined location on the screen or spatial 

direction of an arrow and ‘r’ denotes to a randomly chosen location/direction. Due to the 

alternating nature of the stimulus stream, some runs of consecutive trials (so-called 

triplets) are more probable than others. In the example above, 1 – r – 3 and 4 – r – 1 appear 

with a greater probability as these are presented in every repetition of the sequence (high-

probability triplets). These triplets can also appear by chance consisting of two random 

trials and one pattern trial as the middle element. On the other hand, 1 – P – 2 and 4 – P 

– 3 (where ‘P’ denotes one of the predefined elements of the regularity) appear with a 

lower probability as these can be formed by chance only (low-probability triplets). For all 

triplets, the third element (n) of a triplet is predictable by the first one (n-2) with a given 

probability, while the middle element (n-1) does not have a predictive value. High-

probability triplets constitute 62.5% of all trials, while the remaining 37.5% are 

constituted by low-probability triplets. Through practice, performance on the high-

probability triplets improves, whereas it falls or stagnates on the low-probability ones. 

The magnitude of procedural learning can be measured as the difference in performance 

between these two triplet types.  

Over the years, many different versions of the ASRT task have been used and 

published. A notable version is the so-called cued ASRT task, where the repeating 

predefined trials are indicated (cued) by visually different stimuli than the random ones 

(Kóbor et al., 2018; Nemeth, Janacsek, & Fiser, 2013; Tóth-Fáber et al., 2021). 

Additionally, participants are informed about the presence of a repeating sequence in the 

task but not the underlying probability structure. This allows us to simultaneously 

measure different aspects of learning (i.e., acquiring the cued sequence order vs. the 

hidden probability-based structure). Another relevant version of the ASRT task is 
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characterized by a more complex regularity design: it contains an interfering regularity. 

In this task version, the underlying regularity is changed at some point in the task, which 

enables us to challenge the acquired behaviour (Kóbor et al., 2017; Zavecz et al., 2020). 

When practice is extended on the interference regularity, behaviour (habit) change can be 

induced in the task (Szegedi-Hallgató et al., 2017). In my dissertation, I applied the 

original, the cued, and two different interference versions of the ASRT task as well as 

created new task versions by combining the task with additional paradigms of goal-

directed behaviours.  

 Aspects of learning in the procedural memory system 

The ASRT task is a powerful tool as it allows for assessing several aspects of the 

procedural memory system. In earlier publications, it was commonly linked to skill 

learning (e.g., Hallgató et al., 2013; Janacsek et al., 2012; Nemeth & Janacsek, 2010). 

Importantly, more recent publications suggest that skills are flexible and expressed 

intentionally (Du et al., 2022), unlike the rigid and implicit behaviour acquired in this 

task. In contrast to skills, habits and habit-like behaviours have similar characteristics to 

the behaviour learnt in the ASRT task (Ashby et al., 2010; Du et al., 2022; Graybiel & 

Grafton, 2015), yet this term has not been frequently used so far (Horváth et al., 2022). 

Sequence learning is another commonly used term, originating from the literature on 

deterministic Serial Reaction Time (SRT) tasks (e.g., Fletcher et al., 2005; Song et al., 

2007; Stark-Inbar et al., 2017). This term can be somewhat misleading when used for the 

ASRT task specifically, as the most commonly used measure of this task relates to the 

extraction and acquisition of the probability-based structure instead of the repeating 

sequence order (Kóbor et al., 2019; Szegedi-Hallgató et al., 2019). Meanwhile, acquiring 

the repeating sequence is indeed possible in the task, but, in the original (non-cued, fully 

implicit) version, it seems to require extended practice (at least nine sessions, more than 

15.000 trials; D. Howard et al., 2004), and relatively little is known about how exactly 

this process takes place (Kóbor et al., 2019; Szegedi-Hallgató et al., 2019). Sequence 

learning can be effectively induced in the cued version of task (Kóbor et al., 2018; Simor 

et al., 2019). This version enables the engagement of more intentional and conscious 

learning processes that can be contrasted with the incidental acquisition of automatic 

behaviours within the task. Finally, the term statistical learning is another often-used term 

to describe learning in the ASRT task (Arciuli, 2017; Obeid et al., 2016; Szegedi-Hallgató 

et al., 2019), which refers to the efficient extraction and acquisition of probability-based 
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regularities in the environment and originates from the research line of language learning 

in infancy (Saffran et al., 1996). Overall, with the appropriate modification, the ASRT 

can measure at least three different aspects of the procedural memory system: habit 

learning, sequence learning, and statistical learning.  

Some of these terms put the emphasis on the way of extraction and the nature of 

the acquired knowledge (statistical or sequence learning), whereas others highlight the 

type of behaviour developed by practicing the task (skill, habit, or procedural learning). 

While both approaches have their benefit, using various terms to label the same aspect of 

learning in the ASRT task can easily lead to conceptual discrepancies in the literature and 

separation of related research lines. In the studies included in this doctoral dissertation, 

we also used various terms to best describe learning in the specific task version applied 

in the given study. In Study 1, where we applied the cued version of the task, we focused 

on the quick learning of the (cued) sequence order which then could have possibly been 

retrieved to achieve better task performance. To grasp the essence of these processes, we 

used the term “probabilistic sequence retrieval”. In Study 2 and 3, we focused on the 

acquisition of the probability-based structure present in the task under implicit and 

incidental conditions. Accordingly, we used the terms “statistical learning” and “implicit 

acquisition of second-order transitional probabilities”, with the latter being closely related 

but not fully corresponding to the former. In Study 4, we labelled learning as “habit 

learning” since practice here was extended and thus the formation of habit-like behaviours 

was enabled in the task. Finally, in the Supplementary Study, we opted for the umbrella 

term of procedural learning to connect to a wider scope in the literature. Taking into 

consideration the different aspects of learning the ASRT task can grasp, I use the terms 

‘procedural learning’ and ‘procedural memory’ in my dissertation as it can encompasses 

all of those targeted in the five studies.   

To summarize this subchapter, procedural learning and memory are undoubtedly 

important for successful behaviour adaptation; nevertheless, it is rarely discussed from 

such a point of view leaving a gap in the literature. In this dissertation, I aim to cover the 

various aspects of the procedural memory system from the initial acquisition of automatic 

behaviours through their expression to the formation and change of habits. 
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ii. The executive control system 

Successful goal-directed behaviours rely on an executive control system. This 

system contains numerous cognitive processes that act together in an orchestrated way to 

achieve internal and external goals (Friedman & Robbins, 2022). Goal-directed 

behaviours have been extensively studied from various scientific directions. Therefore, it 

is unsurprising that there are several different terms and definitions to describe these 

processes, such as executive functions (Miyake et al., 2000), cognitive control (Botvinick 

et al., 2001; Miller, 2000), or executive control (Pessoa, 2009). The executive control 

system depends on large-scale neural networks of the prefrontal cortex (PFC) and other 

cortical (among others, the posterior parietal regions and the anterior cingulate cortex) 

and subcortical (including the thalamus and the basal ganglia) brain regions. Though 

these networks are characterized as distinct functional and anatomical units, they act 

together and not in isolation to successfully execute goal-directed behaviours (Arnsten & 

Rubia, 2012; Friedman & Robbins, 2022; Menon & D’Esposito, 2022). In this 

dissertation, I follow the comprehensive theoretical account proposed by Bari & Robbins 

(2013) and conceptualize the executive control system accordingly.  

In their concept, Bari & Robbins (2013) identified two core components and four 

auxiliary components of goal-directed behaviours that need to function interactively for 

successful behaviour adjustment. One of their core components is attention. Attention is 

responsible for selecting which stimuli are to be attended to as well as for processing the 

relevant changes in the environment. The second, and probably the most significant, core 

component is inhibition or inhibitory control. Inhibition is a compound process with 

various aspects. In general, it can be described as the cognitive function for suppressing 

prepotent but unwanted actions, filtering interfering and distracting information, and 

stopping irrelevant cognitive and emotional processes. Attention and inhibition are 

continuously supported by performance monitoring processes whose task is to detect and 

signal any suboptimal actions or drops in performance. In case of such slips, the processes 

of updating, selection, and shifting are activated in order to update task goals, select a 

new plan, and shift resources accordingly (Bari & Robbins, 2013). 

It is important to note, however, that despite this concept being relatively 

comprehensive, the executive control system is yet to be fully understood. A crucial issue 

is the unity and diversity of these processes (Duncan et al., 2010; Friedman & Robbins, 

2022; Miyake et al., 2000). There is behavioural, neural, and clinical evidence for both 
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an overlap (unity, i.e., correlated processes) and a differentiation (diversity, i.e., 

uncorrelated processes) between the processes involved in the executive control system. 

The full description of the phenomenon goes beyond the scope of this dissertation. Still, 

according to Friedman & Robbins (2022), inhibition is most probably responsible for 

unity as it explains the covariance observed between tasks assessing the executive control 

system and its neural background. The remaining processes (e.g., shifting, updating) are 

thought to be contributing to diversity, that is, to the observed variance in these specific 

tasks. To put it simply, all sorts of executive control processes seem to require some level 

of inhibition. In my doctoral research, I focused on the two core components, attention 

and inhibition, as well as on performance monitoring as an important auxiliary component 

(based on Bari & Robbins, 2013). I chose these processes because they are possibly 

involved in any goal-directed behaviours (attention and inhibition due to their central role 

and performance monitoring due to the constant need for monitoring the outcome of the 

behaviour). 

Components of the executive control system and their corresponding experimental 

paradigms 

Attention – Attention can refer to a wide range of processes from a minimal level 

necessary for stimulus processing to sustained focus and the filtering of relevant 

information in a noisy environment (Hommel et al., 2019). Earlier research distinguished 

between an intensity and a selectivity aspect of attention: the former referring to arousal 

and sustained attention related processes and the latter referring to processes enabling to 

attend to a certain set of information only, such as focused and divided attention (van 

Zomeren & Brouwer, 1994). More recent studies define the aspects of attention based on 

large-scale neural networks. Among others, the dorsal and ventral attention networks 

have been linked to involuntary and voluntary redirection of attention, respectively, and 

the salience network has been linked to attention towards the most relevant external or 

internal information (Bressler & Menon, 2010; Menon & D’Esposito, 2022; Vossel et al., 

2014). Alternatively, Posner and colleagues have identified three independent attentional 

networks: the alerting, the orienting, and the executive systems, the latter one showing 

overlap with other components of the executive control system, such as error detection 

and conflict resolution (Fan et al., 2002; Posner et al., 2016). From the viewpoint of goal-

directed behaviours, attention is essential for selecting the relevant environmental events 
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and maintaining focus on these as well as on our goals (Lavie et al., 2004; Miller, 2000; 

Yeung, 2014).  

The engagement of attention can be experimentally investigated by selective 

attention and divided attention paradigms. Selective attention refers to the filtering of 

which stimuli are to be attended to or ignored. In contrast, divided attention refers to the 

simultaneous execution of at least two concurrent tasks within the same stimulus stream 

(Jiménez & Mendez, 1999). It is challenging to determine which of the above-introduced 

networks support divided attention. So far, this process has been linked to the executive 

system of attention (Fernandez-Duque & Posner, 2001) and there is accumulating 

evidence to suggest that the PFC plays a key role in it (Johnson & Zatorre, 2006; Nebel 

et al., 2005; Salo et al., 2017; Vohn et al., 2007). 

It is still unclear how an increased attentional load interacts with the procedural 

memory system (Jiménez & Mendez, 1999; Vékony, Török, et al., 2020). Thus, in Study 

2, I introduced the manipulation of divided attention in the ASRT task. To do so, the cued 

version of the task was manipulated. In the cued task, participants ultimately had two 

goals: to discover and memorize the order of the cued repeating pattern trials and to 

meanwhile maintain sufficiently fast and accurate responses on all trials. However, 

instead of the usually applied self-paced task timing, stimuli were presented with a fast 

and fixed-paced time setting which made it difficult for participants to intentionally learn 

the repeating sequence (task 1) while maintaining a good response speed and accuracy 

(task 2). That is, their attention had to be divided between the two concurrent tasks. This 

was contrasted in a between-subject manner to a similarly fast and fixed-paced version of 

the fully implicit ASRT task, where participants’ only task was to maintain good task 

performance.  

Inhibition – Inhibition or inhibitory control is another broad term that has been 

used to describe various processes and phenomena since its emergence in the scientific 

literature (Bari & Robbins, 2013; Friedman & Robbins, 2022; Munakata et al., 2011). 

Based on the seminal partitioning of Nigg (2000), automatic, motivational, and effortful 

inhibition can be distinguished. From another perspective, aspects of inhibition can be 

defined based on different dimensions: behavioural (i.e., stopping the execution of 

unwanted actions or not letting interfering information exert their distracting effect) vs. 

cognitive (i.e., stopping irrelevant information to be maintained in the working memory; 

Harnishfeger, 1995; Kipp, 2005) or selective (cancelling a certain action while keeping 
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others active) vs. nonselective (i.e., stopping all actions; de Jong et al., 1995; van Boxtel 

et al., 2001). In a more recent attempt, Bari and Robins (2013) proposed that inhibition 

of manifest behaviour can be partitioned into response inhibition, deferred gratification, 

and reversal learning. To conclude, there have been several somewhat different but 

overlapping attempts to describe the many aspects of inhibition, but the full picture is still 

unclear. 

There seems to be a consensus, however, that processes related to behavioural 

inhibition encompass two fundamental abilities: response inhibition (Luk et al., 2010; 

Menon et al., 2001; Ridderinkhof et al., 2004; Verbruggen & Logan, 2008b) and 

interference suppression (Luk et al., 2010; Miller & Cohen, 2003; Verbruggen et al., 

2004), which can be separated at the neurocognitive level (Bryce et al., 2011; Brydges et 

al., 2012). It is important to note that evidence of various nature points towards that 

response inhibition and interference suppression are closely related and not necessarily 

separable at the behavioural level (Friedman & Miyake, 2004). Together, they contribute 

to effectively maintaining task goals and goal-directed information, making inhibitory 

control the core (and presumably exclusive) component of the executive control system 

(Aron, 2007; Aron et al., 2003; Friedman & Robbins, 2022; Miyake & Friedman, 2012). 

The experimental manipulation of response inhibition or interference suppression 

is a promising candidate for studying the interplay between automatic and goal-directed 

behaviours. Response inhibition can be induced by introducing task events where 

responses are prohibited, such as in the Go/No-go task (Gordon & Caramazza, 1982) or 

the Stop-Signal task (Logan & Cowan, 1984). Interference suppression can be induced 

by presenting distracting events together with the target event, like in the Eriksen flanker 

task (Eriksen & Eriksen, 1974) or the Stroop task (Stroop, 1935). In my doctoral research, 

I investigated the interplay between inhibitory control and procedural learning in two 

ways. In the Supplementary Study, I introduced an interference suppression manipulation 

during procedural memory acquisition assessed via the ASRT task. Subsequently, I 

studied this interplay during habit change as well; that is, I introduced a response 

inhibition manipulation to the ASRT task during the rewiring of habit-like behaviours in 

Study 4. This manipulation modelled the common everyday attempt for stopping 

undesired habits. 

Performance monitoring – For successful behaviour adaptation, we need to 

continuously monitor our behaviour and adjust it if we erred. Such processes can be 
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described as performance monitoring, with error processing as a core component 

(Gehring et al., 1993; Ullsperger & von Cramon, 2001), and can be closely examined via 

the method of ERPs (i.e., stereotypical electrophysiological responses of the brain to 

external or internal events; Coles et al., 1990). The different stages of error processing 

can be tracked by the error negativity (Ne or ERN; Falkenstein et al., 1991; Gehring et 

al., 1993) and the error positivity (Pe; Falkenstein et al., 1991; Overbeek et al., 2005). 

The Ne reflects the automatic detection that an error has occurred. In other words, this 

component can provide evidence if and how the executive control system detected that 

the provided response was not optimal, even in the absence of awareness to the erroneous 

action. The magnitude of the Ne is associated with, among others, the motivational 

significance and relevance of the error (Falkenstein et al., 1991; Hajcak et al., 2005), the 

discrepancy between the intended and the executed response (Falkenstein et al., 1991; 

Gehring et al., 2012), and the amount of conflict between the correct and incorrect 

response representations (Botvinick et al., 2001; Yeung et al., 2004). That is, a larger Ne 

suggests a larger error. The Pe, on the other hand, reflects the conscious evaluation of the 

error; that is, this component can indicate that a conscious representation of the committed 

error was formed. The magnitude of the Pe is associated with the amount of awareness 

that the response was incorrect (Endrass et al., 2007; Nieuwenhuis et al., 2001), the 

salience of the error (Ridderinkhof et al., 2009), and the level of confidence that an error 

was committed (Boldt & Yeung, 2015). 

So far, it is unclear how automatic error detection and conscious error evaluation 

take place during and contribute to procedural learning and memory expression (Beaulieu 

et al., 2014; Ferdinand et al., 2010; Rüsseler et al., 2018). At the behavioural level, 

detection of errors and the subsequent behaviour adjustment processes can be tracked by, 

among others, the post-error slowing (PES) effect which refers to the phenomenon that 

RTs increase on the trial directly following an incorrect response (Danielmeier & 

Ullsperger, 2011; Ullsperger & Danielmeier, 2016). In Study 1, I focused on the Ne and 

Pe ERP components and the PES effect to investigate performance monitoring during the 

initial acquisition and subsequent retrieval of an automatic behaviour. These effects were 

contrasted to an embedded baseline process where adaptation to the task took place in the 

absence (or direct involvement) of procedural learning processes. 
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iii. The relationship between procedural memory and the executive control 

system 

Previous studies led to controversial conclusions on the relationship between 

procedural learning and the executive control system. These can be roughly divided into 

two distinct approaches: the associative learning account (Deroost et al., 2012; Egner, 

2014; Jiménez, Abrahamse, et al., 2020) and the competitive systems framework 

(Janacsek et al., 2015; Poldrack & Packard, 2003; Smalle et al., 2022). 

On the one hand, the associative learning account originates from the observations 

that the resolution of and the adaptation to conflicting events, like in interference 

suppression or response inhibition tasks, can be supported by learning processes (Egner, 

2007, 2014). Based on these observations, numerous studies have investigated the 

relationship between procedural learning and inhibition/inhibitory control in combined 

paradigms featuring both processes. The results are inconclusive, however. Some argue 

that procedural learning can support inhibition (Deroost et al., 2012; Koch, 2007), as 

procedural learning can lead to a less demanding conflict resolution by facilitating the 

binding of task-relevant information. Another line of research revealed an opposite 

direction: higher level of conflict in the task can lead to better procedural learning or the 

expression of procedural memory because of increased task demands promoting the 

reliance on learning processes (Coomans et al., 2011; Deroost et al., 2012; Deroost & 

Coomans, 2018; Deroost & Soetens, 2006). Finally, some studies found that inhibition 

and procedural learning are independent (Jiménez, Abrahamse, et al., 2020; Jiménez, 

Méndez, et al., 2020). There are some important critiques towards these studies, however: 

i) the applied deterministic sequence learning tasks are limited to a single aspect of the 

procedural memory system, ii) the simple deterministic regularity can easily become 

available to conscious processes, and iii) the tasks cannot closely model the complexity 

of automatic behaviours used in our everyday life.  

The competitive systems framework, on the other hand, originates from the notion 

that the procedural memory system and the executive control system, when activated in 

parallel, compete for the same mental resources (Poldrack et al., 2001; Poldrack & 

Packard, 2003). Studies following this framework tested clinical populations 

(correlational designs) or applied interventional designs to manipulate the engagement of 

the executive control system and/or the PFC. So far, evidence for better/intact procedural 

learning when the PFC is less active/impacted has been found in alcoholic patients (Virag 
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et al., 2015), in autism (Nemeth, Janacsek, Balogh, et al., 2010), in non-invasive brain 

stimulation of the dorsolateral PFC (Ambrus et al., 2020; Smalle et al., 2022), in hypnosis 

(Nemeth, Janacsek, Polner, et al., 2013), in cognitive fatigue (Borragán et al., 2016), and 

in a dual-task situation (Foerde et al., 2006). Analogue to these studies, the simultaneous 

involvement of procedural memory and executive control processes in combined 

paradigms can lead to impaired acquisition and expression of automatic behaviours 

(Prutean et al., 2022; Vaquero et al., 2020). On the contrary, other pieces of evidence 

showed that the reduction in executive resources hindered subsequent procedural learning 

and memory expression (Thompson et al., 2014). Overall, the studies described above 

mostly investigated the interplay of procedural learning and the executive control system 

by i) manipulating the latter and ii) reducing/taxing it leading to one-sided and 

inconclusive results. Therefore, though mainly focused on complex, automatic, and 

incidental/implicit behaviours, these cannot fill in the gap left by the associative learning 

account. 

To conclude this subsection, there are two distinguishable approaches to studying 

the interplay of automatic and goal-directed behaviour adaptation: the associative 

learning account using combined paradigms and the competitive systems framework 

using correlational and interventional designs. However, neither could answer the 

question of how this interplay takes place when complex automatic behaviours are 

acquired and expressed while goal-directed behaviours are involved in the task 

simultaneously. With Study 3, Study 4, and the Supplementary Study, I aimed to fill in 

this gap. 

 

iv. Chapter overview 

I believe that by understanding the different behaviours underpinning behaviour 

adaptation and their interaction, we can contribute to addressing recent challenges in our 

lives. We live in a world that changes faster than ever before, where we are surrounded 

by an increasing amount and variety of stimuli, and where we are urged to adjust our 

well-established habits as quickly as possible. Although both procedural learning and the 

executive control system have attracted considerable scientific interest so far, much 

remains to be discovered, especially about how exactly they influence one another. This 

dissertation aims to unravel some of the questionable points in the literature. To this end, 
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I have set out to systematically probe the interplay between these two systems with 

different aspects (statistical, sequence, and habit learning) and phases of learning 

(acquisition, retention, and habit adjustment/change) and with different components of 

the executive control system (error processing, divided attention, response inhibition, and 

interference suppression). In the next sections, I will present altogether five studies 

focusing on various combinations of these processes, with a follow-up analysis of 

individual differences providing additional insight into the nature of the procedural 

memory vs. executive control systems interplay. 
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STUDIES 

V. Study 1: Do errors contribute to the retrieval of an automatic behaviour in 

order to enhance task adaptation? 

 

Publication: 

Horváth, K., Kardos, Z., Takács, Á., Csépe, V., Nemeth, D., Janacsek, K., & Kóbor, A. 

(2021). Error processing during the online retrieval of probabilistic sequence 

knowledge. Journal of Psychophysiology, 35(2), 61-75. 
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Error Processing During the
Online Retrieval of Probabilistic
Sequence Knowledge
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Abstract: Adaptive behavior involves rapid error processing and action evaluation. However, it has not been clarified how errors contribute to
automatic behaviors that can be retrieved to successfully adapt to our complex environment. Automatic behaviors strongly rely on the process
of probabilistic sequence learning and memory. Therefore, the present study investigated error processing during the online retrieval of
probabilistic sequence knowledge. Twenty-four healthy young adults acquired and continuously retrieved a repeating stimulus sequence
reflected by reaction time (RT) changes on a rapid forced-choice RT task. Performance was compared with a baseline that denoted the
processing of random stimuli embedded in the probabilistic sequence. At the neurophysiological level, event-related brain potentials
synchronized to responses were measured. Error processing was tracked by the error negativity (Ne) and the error positivity (Pe). The mean
amplitude of the Ne gradually decreased as the task progressed, similarly for the sequence retrieval and the embedded baseline process. The
mean amplitude of the Pe increased over time, likewise, irrespective of the type of the stimuli. Accordingly, we propose that automatic error
detection (Ne) and conscious error evaluation (Pe) are not sensitive to sequence learning and retrieval. Overall, the present study provides
insight into how error processing takes place for the retrieval of sequence knowledge in a probabilistic environment.

Keywords: adaptation, error negativity, error positivity, error processing, probabilistic sequence learning

Adaptive behavior requires a monitoring system that
evaluates actions, adjusts performance to the environmen-
tal conditions, and detects the possible negative out-
comes, such as errors. Although errors have been widely
researched in the context of learning in general (Gehring,
Goss, Coles, Meyer, & Donchin, 2018; Rüsseler, Münte, &
Wiswede, 2018), it has remained less clear how error pro-
cessing takes place during the retrieval of the acquired
knowledge. Probabilistic sequence learning enables us to
form automatic behaviors that can be retrieved to success-
fully adapt to the environment (Armstrong, Frost, &
Christiansen, 2017; Turk-Browne, Scholl, Johnson, & Chun,
2010). The most prominent neurophysiological correlates
of error processing are the error negativity (Ne; Falkenstein,
Hohnsbein, Hoormann, & Blanke, 1991) or error-related

negativity (ERN; Gehring, Goss, Coles, Meyer, & Donchin,
1993) and the error positivity (Pe; Falkenstein, Hohnsbein,
Hoormann, & Blanke, 1991) event-related brain potential
(ERP) components. Here we use these neurophysiological
markers to investigate the different aspects of error pro-
cessing in an intentional probabilistic sequence learning
task. We report evidence that both the Ne and the Pe are
sensitive to performance improvement and adaptation to
the task, but these components are not affected by the pre-
dictability of the sequence.

The Ne is a response-locked negativity of fronto-central
maximum peaking approximately 50–150 ms after an
error is committed by the individual (Falkenstein et al.,
1991; Gehring et al., 1993). The Ne has been shown to
indicate the automatic detection of an erroneous response

�2020 Hogrefe Publishing Journal of Psychophysiology (2021), 35(2), 61–75
https://doi.org/10.1027/0269-8803/a000262

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/0

26
9-

88
03

/a
00

02
62

 -
 D

ez
so

 N
em

et
h 

<
de

zs
o.

ne
m

et
h@

un
iv

-l
yo

n1
.f

r>
 -

 T
ue

sd
ay

, A
pr

il 
06

, 2
02

1 
2:

07
:4

7 
A

M
 -

 I
P 

A
dd

re
ss

:9
3.

7.
14

8.
11

0 



(i.e., independently of the error-apperception; Nieuwenhuis,
Ridderinkhof, Blom, Band, & Kok, 2001). The Ne is usually
followed by the Pe that is a response-locked positivity
occurring with a centro-parietal maximum in a wider time
window, ca. 100–500 ms after the onset of the erroneous
response (Falkenstein et al., 1991; Overbeek, Nieuwenhuis,
& Ridderinkhof, 2005). The Pe has been predominantly
linked to conscious error evaluation (Nieuwenhuis et al.,
2001).

The exact underlying processes of the Ne are still
debated; nevertheless, several theories have emerged so
far. According to the error detection/mismatch theory, the
magnitude of the Ne reflects the discrepancy between the
actual and the intended response (Bernstein, Scheffers, &
Coles, 1995; Falkenstein et al., 1991; Gehring et al., 1993).
The reinforcement learning theory (Holroyd & Coles, 2002)
claims that the Ne serves as a reinforcement learning signal
when the outcome of the behavior is worse than expected.
The conflict theory (Botvinick, Braver, Barch, Carter, &
Cohen, 2001; Carter et al., 1998; Yeung, Botvinick, &
Cohen, 2004) postulates that the Ne is a result of a process
that continuously evaluates coactive and competing
response representations. Finally, the motivational signifi-
cance theory states that the magnitude of the Ne reflects
the emotional significance of an error (Gehring et al.,
1993; Hajcak, Moser, Yeung, & Simons, 2005): The larger
the significance of the error, the larger the Ne.

The functional significance of thePe is still argued, aswell.
This component is most often linked to error awareness
(Endrass, Reuter, & Kathmann, 2007; Nieuwenhuis et al.,
2001). In turn, another approach claims that the Pe is a
P3b-like component reflecting error relevance (Falkenstein
et al., 1991; Overbeek et al., 2005; Ridderinkhof, Ramautar,
& Wijnen, 2009). A more recent line of research states that
the Pe reflects the accumulated decision evidence that an
error has occurred (Boldt & Yeung, 2015; Steinhauser &
Yeung, 2012).

Previous studies investigating error processing during
sequence knowledge formation mostly focused on the initial
acquisition processes (Beaulieu, Bourassa, Brisson, Jolicoeur,
& De Beaumont, 2014; Ferdinand, Mecklinger, & Kray,
2008; Rüsseler, Kuhlicke, & Münte, 2003; Rüsseler et al.,
2018) andusually investigatedonly theNe (but seeFerdinand
et al.,2008). Further, the retrieval of sequenceknowledgehas
been approached by the investigation of stimulus- or correct
response-relatedERPcomponents so far (Ferdinand,Rünger,
Frensch, & Mecklinger, 2010; Miyawaki, Sato, Yasuda,
Kumano, & Kuboki, 2005; Rüsseler & Rösler, 2000;
Steinemann, Moisello, Ghilardi, & Kelly, 2016). Thus, the
question remains how error processing takes place during
the retrieval of the acquired sequence knowledge.

To fulfill this gap, we introduce a probabilistic sequence
learning task that involves the fast initial acquisition of a

repeating sequence followed by the continuous retrieval of
this sequence (Kóbor et al., 2018; Nemeth, Janacsek, & Fiser,
2013; Simor et al., 2019; Song, Howard, & Howard, 2007a,
2007b). Namely, participants perform a rapid forced-choice
RT task, in which stimulus presentation follows a repeating
probabilistic sequence that can be learned and retrieved
during task solving to achieve a better performance. The
probabilistic nature of the sequence enables us to measure
a retrieval-free baseline process, as well, that refers to the
incidental RT improvement on the embedded random ele-
ments in parallel with the retrieval of the repeating
sequence. Participants are asked to react to the direction
of the stimuli according to a simple stimulus – response
mapping rule. Over the course of continuous task perfor-
mance, we investigate the possible change of the Ne and
the Pe components synchronized to the onset of the
responses.

Although theories approach the Ne from different
aspects, a converging conclusion can be drawn: For the
acquired sequence knowledge, all theories predict an
increasing Ne over the task, since it is presumable that
any hypothesized underlying process of the Ne would be
facilitated by learning and retrieval processes. In contrast,
the Ne for the embedded baseline is predicted to remain
similar throughout the task. Accordingly, we expect an
increase in the amplitude of the Ne selectively for the
repeating sequence, as the retrieved knowledge strength-
ens. Similarly, it is presumable that learning and retrieval
processes can facilitate the processes underlying the Pe,
therefore, the above-detailed approaches predict an
increasing Pe for the repeating sequence and an unvarying
Pe for the embedded baseline. Thus, we also expect an
increasing Pe for the repeating sequence opposing random
events in the task, as the acquired representations become
more consciously available.

Methods

Participants

Data were collected in the study reported by Kóbor et al.
(2018), where stimulus-locked ERPs were analyzed for cor-
rectly responded trials. Forty-one healthy young adults par-
ticipated in the experiment. One of them was excluded
because of technical reasons. For the purpose of the present
study, the inclusion criterion was set to a minimum of eight
erroneously responded, artifact-free EEG segments for both
the sequence and random trial types (see details below)
in each time period of the task (Meyer, Riesel, &
Proudfit, 2013; Olvet & Hajcak, 2009). Therefore, further
16 participants were left out from the original sample due
to the low number of erroneous responses or excessive
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artifacts. Hence, 24 participants (age range: 19–24 years,
M = 20.9 years, SD = 1.4 years; Meducation: M = 14.4 years,
SD = 1.4 years; male/female ratio: 9:15) remained in this
final sub-sample.

Handedness was measured by the Edinburgh Handed-
ness Inventory (Oldfield, 1971); the laterality quotient
varied between 0 and 100 (M = 71.09, SD = 21.27), where
�100 means complete left-handedness and 100 means
complete right-handedness. Participants had normal or cor-
rected-to-normal vision, none of them reported histories of
any psychiatric and/or neurologic conditions, and none of
them were taking any psychoactive medications. All partic-
ipants provided written informed consent before enrolment
and received payment (ca. 10 €) or course credit for taking
part in the experiment. The study was approved by the
United Ethical Review Committee for Research in
Psychology (EPKEB) in Hungary and was conducted in
accordance with the Declaration of Helsinki.

Task and Procedure

Probabilistic sequence knowledge formation was measured
by a modified cued version of the Alternating Serial Reac-
tion Time (ASRT) task (Kóbor et al., 2018; Nemeth,
Janacsek, & Fiser, 2013). In this task, an arrow stimulus
appears at the center of the screen. Participants are
instructed to press the response key corresponding to the
spatial direction of the arrow (left, up, down, or right) on
a response box (Cedrus RB-530, Cedrus Corporation, San
Pedro, CA) as fast and as accurately as possible using their
left or right index finger or thumb, respectively.

The presentation of the arrow stimuli follows an eight-
digit sequence within which predefined pattern and random
(r) trials alternate. One example of the sequence is 1–r–2–r–
4–r–3–r, where numbers represent the four possible spatial
directions (1 = left, 2 = up, 3 = down, 4 = right) and “r”s
denote randomly chosen spatial directions out of them.
The sequence structure is cued by different colors: Prede-
fined pattern trials appear as black arrows, while random
trials appear as red ones (Figure 1A). Participants are
informed that the presentation of black arrows follows a
predefined sequence, while red arrows point to randomly
chosen spatial directions. They are instructed to learn the
exact order of the black arrows.

In the present study, we examine error processing during
probabilistic sequence retrieval, hence, we focus on the dif-
ferences between pattern trials and the embedded random
trials. However, due to the alternating nature of the
sequence, a hidden predictability structure emerges in the
task based on the frequency of chunks of trials – referred to
as triplets – instead of single trials. Some of these triplets
occur more frequently than others. Each trial is categorized
as either the third element of a high- or a low-frequency

triplet; therefore, the terms “trial” and “triplet” are used
interchangeably for the remainder of the paper. Frequency
also defines the predictability of a triplet’s third element.
This structure results in two different types of random tri-
als, which are differently related to learning and retrieval
processes. While the pattern trials always appear with high
frequency, random trials appear either with high- or low-
frequency. Therefore, while frequent random trials become
as predictable as the pattern ones, infrequent random trials
remain less predictable. Overall, the combination of the
sequential and the frequency properties results in three pos-
sible trial types: pattern trials, high-frequency random trials,
and infrequent random trials (Figure 1B; for more details,
see Kóbor et al., 2018; Nemeth et al., 2013; Simor et al.,
2019). In the present study, all high-frequency random tri-
als were excluded from the analyses to avoid possible
retrieval-related confounds. Previous ASRT studies showed
that the acquisition of sequence knowledge takes place
early in the cued version of the task (Kóbor et al., 2018;
Nemeth et al., 2013; Simor et al., 2019). It is, therefore,
presumable that further RT improvement is based on the
online retrieval of this knowledge. Generally, RTs to the
infrequent random trials also improve along with decreas-
ing accuracy, which is not explained by speed-accuracy
trade-off (Tóth et al., 2017). From now on, random trials
are referred to as infrequent random trials.

Thirty blocks of the ASRT task added up the experiment
and the whole procedure lasted about 2.5 hr including the
application of the electrode cap. One block contained 85 tri-
als: The eight-digit alternating sequence repeated 10 times
in each block after 5 warm-up trials consisting only of ran-
dom trials. To ascertain that conscious sequence knowledge
emerges, a sequence report was administered after each
block. Participants were asked to type the order of pattern
trials using the same response keys as in the ASRT task.
This method allowed us to determine the duration (in terms
of the number of blocks) participants needed to learn the
sequence correctly as defined by consistently reporting
the same sequence from that point on in the remaining
blocks.

The structure of the task was the following. An experi-
mental trial started with the presentation of the stimulus
(arrow) for 200 ms. Then, a blank screen occurred until
the participant gave a behavioral response but no longer
than 500 ms. After the response, a blank screen was pre-
sented for a fixed delay of 700 ms before the next trial
started. This is called as response-to-stimulus interval
(RSI). Participants could also provide a response during
the 200-ms time window of stimulus presentation; in that
case, the stimulus disappeared after the response onset,
followed immediately by the RSI. A blank screen was pre-
sented for 500ms after every erroneous response, followed
by a black “X” at the center of the screen for another
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500 ms (Figure 1C). For the lack of response, a black “!”
was displayed for 500 ms. These warning stimuli served
as visual feedback for error commission or missing
response, respectively. RSIs were presented after both
warning stimuli. If the participant provided a further
response to correct the erroneous or missed trial, it influ-
enced neither the presentation nor the timing of the next
trial; thus, the task proceeded without providing the correct
response. After each block, the participant received feed-
back about the mean reaction time and accuracy on the
predefined pattern trials (black arrows) in the given block.
The ASRT task was written in and run by the Presentation
software (v. 18.1, Neurobehavioral Systems, Inc., Berkeley,
CA, USA), and stimuli were presented on a 1900 CTR screen
with a viewing distance of 125 cm.

EEG Recording and Analysis

The EEG measurement was conducted in an acoustically
attenuated, electrically shielded, dimly lit room. The EEG
was recorded with 64 Ag/AgCl electrodes, placed accord-
ing to the international 10-20 system, using Synamps
amplifiers and Neuroscan software 4.5. (Compumedics
Neuroscan, Charlotte, NC, USA). The tip of the nose served
as reference and the electrode AFz served as ground.
Vertical and horizontal eye-movements were measured by
electrodes attached above and below the left eye, and in
the left and right outer canthi. The sampling rate was
1000 Hz, electrode impedance levels were kept below
10 kΩ, and a 70-Hz low-pass filter (24 dB/oct) was applied
online.

Data analysis was conducted in the Brain Vision Analyzer
software (Brain Products GmbH, Gilching, Germany). First,
a 0.5 to 30-Hz band-pass filter (48 dB/oct) and a 50-Hz
notch filter were applied offline. Then, independent compo-
nent analysis (ICA) was used to correct vertical and hori-
zontal eye-movements and heartbeats (Delorme,
Sejnowski, & Makeig, 2007). After, the EEG data were
re-referenced to the average activity of all electrodes. The
continuous EEG data were segmented in two steps. First,
the data were cut into three equal time periods, each con-
taining ten ASRT blocks, to measure the temporal changes
in error processing. Second, within each time period,
response-locked ERPs were calculated, based on the cor-
rectness of the response (erroneous or correct) and the type
of the given trial (pattern or random). Thus, altogether 3 �
2 � 2 segment types were created according to the periods,
response correctness, and the trial types.

Following segmentation, an automatic artifact rejection
method was applied (segments with activity above or below
± 100 μV were rejected), then, the artifact-free segments
were baseline corrected based on the averaged pre-stimulus
activity in the �200 to 0-ms time window. For erroneous
pattern trials, the average number of artifact-free
response-locked segments was 19.5 (SD = 7.3; MPeriod 1 =
16.9, SDPeriod 1 = 5.2,MPeriod 2 = 21.1, SDPeriod 2 = 9.5,MPeriod

3 = 20.4, SDPeriod 3 = 10.0). For erroneous random
trials, this average was 19.5, as well (SD = 8.6; MPeriod 1 =
20.3, SDPeriod 1 = 7.8, MPeriod 2 = 20.3, SDPeriod 2 = 7.1,
MPeriod 3 = 18.1, SDPeriod 3 = 6.8). The overall number of
erroneous response-locked segments did not differ across
trial types, t(23) = �0.03, p = .975. For correct pattern
trials, the average number of artifact-free response-locked

Figure 1. Schematic of the task. (A) In the cued Alternating Serial Reaction Time (ASRT) task, the presentation of the stimuli follows an eight-digit
alternating sequence, within which predefined pattern (P) trials alternate with random (r) ones. Pattern trials are marked by black and random
trials are marked by red (shown by gray on this figure). (B) In the sequence structure, numbers denote the four spatial directions (1 = left, 2 = up,
3 = down, 4 = right) of the arrows. High-frequency triplets are denoted with dark gray shading and low-frequency triplets are denoted with light
gray shading. We determined for each pattern and random stimulus whether it was the last trial of a high- or a low-frequency triplet, thus, three
different trials could occur: pattern (P–r–P structure, always high-frequency), random-high (high-frequency with r–P–r structure) and random-low
(low-frequency with r–P–r structure). (C) Timing and strucutre of an erroneous trial.
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segments was 366.1 (SD = 9.8; MPeriod 1 = 367.1, SDPeriod 1 =
9.9, MPeriod 2 = 363.7, SDPeriod 2 = 12.0, MPeriod 3 = 367.5,
SDPeriod 3 = 6.7). For correct random trials, this average
was 176.1 (SD = 12.3;MPeriod 1 = 179.2, SDPeriod 1 = 9.9,MPer-

iod 2 = 171.7, SDPeriod 2 = 13.6, MPeriod 3 = 177.3, SDPeriod 3 =
14.3). The overall number of correct response-locked seg-
ments was higher for pattern trials than for random trials,
t(23) = �88.48, p < .001. Note that this difference partly
originates from the fact that frequent random trials were
excluded at the beginning of the analysis (see above), which
decreased the number of artifact-free random segments.
Segments were averaged for correct and erroneous
responses, separately for pattern and random trials in each
period.

Commonly, error commission is scarce and decreases
over time in learning situations. However, it has been shown
that as few as three to six EEG segments can yield reliable
Ne and Pe effects (Meyer et al., 2013; Olvet & Hajcak,
2009; Pontifex et al., 2010). Therefore, it is plausible to
calculate these components as markers of error processing
in learning tasks, such as the present one. Consequently,
the grand average ERPs calculated for the conditions
detailed above were visually inspected, then, the observed
and previously reported topographical distributions of the
Ne and Pe components (Gehring et al., 1993) were consid-
ered. Accordingly, the Ne was quantified as themean ampli-
tude of the 0 to 100-ms time range relative to the erroneous
response onset at electrode Cz, where this ERP component
showed maximum amplitude. The Ne for correct responses
was quantified in the same way as for erroneous responses.
The Pe appeared earlier for correctly responded trials than
for erroneous trials, therefore, its time window was chosen
to match both response conditions. Accordingly, the Pe
was quantified as the mean amplitude of the 100 to
300-ms time range relative to the erroneous as well as the
correct response onset at electrode Cz. Erroneous minus
correct difference waveforms were calculated for each
ERP component, as well.

Data Analysis

In order to measure error processing during the online
retrieval of probabilistic sequence knowledge, we focused
on the trajectory of the responses to pattern trials. There-
fore, behavioral and ERP data from pattern trials were
analyzed in smaller time bins, each containing ten task
blocks (i.e., periods, see also above). Data from the random
trials were analyzed separately and according to the pattern
trials; and, these data were used to indicate a retrieval-free
baseline process, where incidental practice could happen.
In terms of the behavioral data, for each participant, trial
type, and period, median RTs for correct and erroneous
responses as well as error ratios were calculated.

Behavioral measures (error ratios and RTs for correct
and erroneous responses) for each trial types (pattern, ran-
dom), respectively, were analyzed in repeated-measure
analyses of variance (ANOVAs) with the factors Period
(Period 1, 2, 3) and Trial type (pattern vs. random). ERP
mean amplitudes for both components (Ne, Pe) were
analyzed in repeated measures ANOVAs with the factors
Response (erroneous vs. correct), Period (Period 1, 2, 3),
and Trial type (pattern vs. random). Greenhouse-Geisser
epsilon (ɛ) correction was used when necessary. Original
df values and corrected p values (if applicable) are reported
together with partial eta squared (ηp

2) as the measure of
effect size. Bonferroni correction was used for pair-wise
comparisons to correct for Type I error.

Results

Behavioral Results

Behavioral measures in the three periods are presented in
Figure 2 separately for pattern and random trials.

Error ratio slightly varied across the time bins (main
effect of Period: F(2, 46) = 3.07, p = .056, ηp

2 = .12;
Period 1: 6.8%, Period 2: 7.9%, Period 3: 7.3%). Participants
committed less errors on pattern trials than on random
ones (significant main effect of Trial type: F(1, 23) = 40.75,
p < .001, ηp

2 = .64; pattern trials: 4.9%, random trials:
9.8%). The significant Period � Trial type interaction,
F(2, 46) = 4.33, ɛ = .79, p = .028, ηp

2 = .16, revealed that
while error ratio on pattern trials did not change over time
(Period 1: 5.2%, Period 2: 5.1%, Period 3: 4.5%; all
ps � .179), it increased on random trials (Period 1: 8.5%,
Period 2: 10.8%, Period 3: 10.1%; Period 1 vs. Period 2:
p = .040; Period 2 vs. Period 3: p = .904; Period 1 vs.
Period 3: p = .279). The pattern – random difference did
not change over the task (all ps � .070), and participants
were more accurate on pattern trials than on random
ones in all periods (all ps < .001). Altogether, these results
suggest that the online retrieval of the sequence knowledge
could have helped participants to maintain accurate
performance on pattern trials throughout the task, while
performance was less consistent on the embedded baseline
trials.

Correct RTs became faster with practice (significant main
effect of Period: F(2, 46) = 24.29, ɛ = .72, p < .001, ηp

2 = .51;
Period 1: 337 ms, Period 2: 316 ms, Period 3: 309 ms;
Period 1 vs. Period 2: p < .001; Period 2 vs. Period 3:
p = .088; Period 1 vs. Period 3: p < .001), and participants
responded faster for pattern trials than for random ones
(significant main effect of Trial type: F(2, 46) = 63.43,
p < .001, ηp

2 = .73; pattern trials: 288 ms, random trials:
354 ms). These main effects were qualified by the
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significant Period � Trial type interaction, F(2, 46) = 12.65,
ɛ = .73, p < .001, ηp

2 = .36. Pair-wise comparisons showed
that the pattern – random difference increased as the task
progressed (all ps < .001), and participants responded faster
for pattern than for random trials in all periods (all ps <
.001). Performance gradually improved on pattern trials
(Period 1: 313 ms, Period 2: 284 ms, Period 3: 266 ms;
all ps � .022), while on random trials, this improvement
was present only in the beginning of the task (Period 1:
360 ms, Period 2: 349 ms, Period 3: 351 ms; Period 1 vs.
Period 2: p = .001; Period 2 vs. Period 3: p = .719; Period 1
vs. Period 3: p = .015). These results also reflect that
sequence knowledge was acquired and retrieved online.
Slight speed-up was observed on the embedded baseline
trials, which, together with the increasing error ratio,
suggests a moderate performance improvement, achieved
incidentally throughout practice.

The analysis of erroneous RTs also revealed that
erroneous responding became faster over time (significant
main effect of Period: F(2, 46) = 10.13, p < .001,
ηp

2 = .31; Period 1: 297 ms, Period 2: 284 ms, Period 3:
275 ms; Period 1 vs. Period 2: p = .024; Period 2 vs.
Period 3: p = .208; Period 1 vs. Period 3: p = .002) and were
overall faster for pattern trials than for random ones
(significant main effect of Trial type: F(1, 23) = 13.23,
p = .001, ηp

2 = .36; pattern trials: 275 ms, random trials:
296ms). The Period � Trial type interaction was not signif-
icant, F(2, 46) = 0.91, p = .410, ηp

2 = .04, hence, the trajec-
tory of erroneous RTs did not differ across trial types. In
sum, participants committed errors faster on pattern trials,
thus, this measure further reflects the effect of online
sequence retrieval, opposing the moderate practice effect
observed on the embedded baseline trials.

According to the sequence report, the discovery of the
order of pattern trials emerged early in the task. Here, we
excluded two participants who failed to provide at least
10 correct responses even after the final block of the task
or reached this threshold during earlier blocks but failed
to do so consistently in the remaining blocks. Participants
consistently reported the repeating sequence from around
the 5th block (M = 5.0, SD = 7.1, Figure 3).

Figure 2. Group-average learning performance at the behavioral level. Black lines indicate perfromance on pattern trials and gray lines indicate
performance on random trials. (A) Error ratio as a function of period (1–3, represented on the X axis). (B) Correct RTs as a function of period.
(C) Erroneous RTs as a function of period. Error bars represent the standard error of mean.

Figure 3. Boxplot indicating the discovery of the sequence based on
the sequence report task. The Y axis represents the number of blocks
(1–30). The box marks the interquartile range (i.e., the 50% of all
values), the horizontal line marks the median value, the upper whisker
marks the 25% of values above the interquartile range, and the dots
mark individual values. Note that two participants are excluded here
as indicated in the main text.
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Post-Error Behavioral Performance

To investigate whether adaptation is present and changes
over time in the current experiment, post-error perfor-
mance was tested, as well. The most common behavioral
correlate of adaptation processes is the post-error slowing
effect: Usually, RTs increase on the error-subsequent trials
as a compensation (Simons, 2010). Thus, we compared RTs
before and after an error have occurred (Dutilh, Van
Ravenzwaaij, et al., 2012). First, we excluded errors that
were immediately followed by another error, that is, only
correct RTs were compared. Second, we calculated the
median RTs for error-preceding and error-subsequent trials
separately for pattern and random trials in each period.
Third, these data were submitted to a 2 � 3 � 2
repeated-measure ANOVA with the factors Order (error-
preceding vs. error-subsequent), Period (1, 2, 3), and Trial
type (pattern vs. random). It is important to note that due
to the sequence – random alteration in the task, an inevita-
ble confound is present in the dataset: If an error occurs on
a pattern trial, two random trials are compared in the pre-
sent analysis and vice versa.

The significant main effect of Order confirmed the pres-
ence of the post-error slowing effect, F(1, 23) = 40.30,
e = .74, p < .001, ηp

2 = .64: Participants responded 40 ms
(SD = 54 ms) slower after than before error commission.
The main effect of Period, F(2, 46) = 6.80, p = .007,
ηp

2 = .23, and the main effect of Trial type, F(1, 23)
= 9.12, p = .006, ηp

2 = .28, were also significant, reflecting
the above-described general speed-up and pattern vs.
random difference, respectively. The significant Order �
Period interaction, F(2, 46) = 4.76, p = .013, ηp

2 = .17, qual-
ified the main effects. Pair-wise comparisons showed that
the difference between error-preceding and error-subsequent
RTs decreased over time (Period 1 = 51 ms; Period 2 = 47
ms; Period 3 = 23ms; Period 1 vs. Period 2: p = .749, Period
2 vs. Period 3: p = .006, Period 1 vs. Period 3: p =
.011). Error-subsequent RTs were slower than error-
preceding RTs in all periods (all ps � .003). Moreover,
while error-preceding RTs decreased from Period 1 to
Period 2 (p = .013; Period 1 = 324 ms, Period 2 = 293 ms,
Period 3 = 290 ms; all other ps � .107), error-subsequent
RTs decreased throughout the task (Period 1 = 374 ms;
Period 2 = 340 ms; Period 3 = 312 ms; Period 1 vs. Period
2: p = .015; Period 2 vs. Period 3: p = .341; Period 1 vs. Per-
iod 3: p = .001). The Order � Trial type, the Period � Trial
type, and the Order � Period � Trial type interactions
were not significant, F(2, 46) = 2.75, p = .111, ηp

2 = .11,
F(2, 46) = 0.34, p = .714, ηp

2 = .02, F(2, 46) = 0.92
p = .406, ηp

2 = .04, respectively. Overall, the post-error
slowing effect decreased over time similarly for pattern
and random trials.

ERP Results

Grand average ERP waveforms for erroneous and correct
responses as well as for their difference are presented in
Figures 4 and 5, separately for pattern and random trials
in each period at electrode Cz. For erroneous responses,
the Ne appeared as a sharp negative wave followed by
the Pe as a broad positive wave. For the correct responses,
the corresponding ERP waveforms were attenuated. In
addition, while the Ne for correct responses appeared as
a relative negativity with similar latency (with a peak
around ca. 40 ms) as for the erroneous responses, the Pe
for correct responses occurred earlier (with a peak around
ca. 120 ms) than for the erroneous ones and returned to
baseline around 200ms (cf. Ferdinand et al., 2008). Means
and standard deviations of each ERP component in each
period split by trial type are presented in Table 1. The
ERP data were analyzed in 2 � 3 � 2 repeated-measure
ANOVAs with the factors Response (erroneous vs. correct),
Period (1, 2, 3), and Trial type (pattern vs. random). Only
the significant effects are reported here; the summary of
all effects is presented in Table 2.

The analysis of the Ne yielded a significant main effect of
Response, F(1, 23) = 49.71, p < .001, ηp

2 = .68: Erroneous
responses elicited a larger (more negative) Ne than correct
responses. The main effect of Period also appeared to be
significant, F(2, 46) = 19.16, ɛ = .73, p < .001, ηp

2 = .45,
revealing a gradually decreasing Ne regardless of response
type and trial type (all ps � .013). These main effects were
qualified by the Response � Period interaction, F(2, 46) =
5.87, p = .005, ηp

2 = .20. Pairwise comparisons showed that
although the Ne for erroneous responses was larger than
the Ne for correct responses in every period (all ps <
.001), the erroneous – correct difference of the trial-
unspecific Ne (i.e., Ne irrespective of trial type) decreased
from Period 1 to Period 3 (p = .004; Period 1 vs. Period 2:
p = .130; Period 2 vs. Period 3: p = .065). The Ne for erro-
neous responses significantly decreased throughout the
task (all ps� .022). In contrast, the Ne for correct responses
decreased only from Period 1 to Period 2 (p = .042), while it
did not change for the remainder of the task (Period 2 vs.
Period 3: p = .999; Period 1 vs. Period 3: p = .079).
We did not find any significant effects involving the factor
Trial type (Tables 1 and 2). In sum, the Ne decreased for
erroneous and correct responses over time, regardless of
trial type (Figures 4 and 5).

The analysis of the Pe yielded a significant main effect of
Response, F(1, 23) = 12.60, p = .002, ηp

2 = .35, reflecting a
larger Pe for erroneous responses than for correct
responses. The main effect of Period also appeared to be
significant, F(2, 46) = 22.04, ɛ = .75, p < .001, ηp

2 = .49,
revealing a gradually increasing Pe, regardless of response
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type and trial type (all ps � .010). These main effects were
further qualified by the significant Response� Period inter-
action, F(2, 46) = 5.81, p = .006, ηp

2 = .20. Pairwise compar-
isons showed that although the Pe was larger for erroneous
responses than for correct responses in all periods (all
ps � .016), the erroneous – correct difference of the trial-
unspecific Pe increased from Period 1 to Period 2 (p =
.036; Period 2 vs. Period 3: p = .122; Period 1 vs. Period 3:
p = .009). In addition, the Pe for erroneous responses sig-
nificantly increased throughout the task (all ps � .018). In
contrast, the Pe for correct responses increased only from
Period 1 to Period 2 (p = .047), while it did not show further
changes (Period 2 vs. Period 3: p = .429; Period 1 vs. Period
3: p = .013). Opposing the Ne, the Period � Trial type inter-
action reached significance, as well, F(2, 46) = 3.67, p =
.033, ηp

2 = .14. Pair-wise comparisons showed that the dif-
ference of the response-unspecific Pe (i.e., Pe irrespective
of response correctness) between pattern and random trials
increased by the end of the task (Period 1 vs. Period 2: p =
.368; Period 2 vs. Period 3: p = .039; Period 1 vs. Period 3:
p = .062). Particularly, the Pe was larger for pattern trials
than for random ones in Period 3 (p = .045, all other
ps � .506). The Pe for pattern trials gradually increased
as the task progressed (all ps � .029), while the Pe for

random trials increased only from Period 1 to Period 2
(p < .001; Period 2 vs. Period 3: p = .999; Period 1 to Period
3: p = .005). Altogether, regardless of trial type, the Pe for
erroneous responses gradually increased, while this
increase was modest for the correct responses. Regardless
of response correctness, a larger Pe was observed for
pattern trials than for random ones in the end of the task
(Figures 4 and 5).

Possible Distortion Effects in the Ne:
Stimulus-Locked ERPs

It has been previously raised that overlapping ERPs may
lead to different distortion effects in experiments where
RTs vary across conditions, as in the present one (Coles,
Scheffers, & Holroyd, 2001). Therefore, we investigated
the stimulus-locked P3 component, as well. To this end,
EEG segments were extracted from �200 ms to 600 ms
relative to stimulus onset; then, these were averaged for
each period and trial type (see also the analyses of Kóbor
et al., 2018). For the sake of completeness and to match
the main analyses, besides correctly responded stimuli,
erroneously responded stimuli were also investigated.

Figure 4. Grand average ERP waveforms synchronized to the response onset at electrode Cz displaying Ne and Pe components separately for the
three periods, two response types, and two trial types. Note that negativity is plotted upwards here and in the following figures. Solid lines denote
erroneous response-locked waveforms and dashed lines denote correct response-locked waveforms. Light gray shading indicates the time
window where the Ne was measured, while dark gray shading indicates the time window of the Pe. Rows mark the two trials types and columns
mark the three periods.
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The P3 was quantified as the mean amplitude between
250 ms and 350 ms at electrode Pz, where this compo-
nent appeared with maximum amplitude. Grand average

stimulus-locked ERP waveforms displaying the P3 compo-
nent are presented in Figure 6. Please, note that the
P3 for erroneously responded stimuli were calculated from

Figure 5. (A) Erroneous minus correct difference waveforms at electrode Cz, separately for pattern and random trials. Solid lines denote Period 1,
dashed lines denote Period 2, and dotted lines denote Period 3. Light gray shading indicates the time window of Ne, while dark gray shading
indicates the time window of Pe. (B) The scalp topography (amplitude distribution) of the erroneous – correct difference in the time windows of the
Ne (0–100 ms) and the Pe (100–300 ms), respectively, separately for pattern and random trials.

Table 1. Sample means (M) and standard deviations (SD) of Ne and Pe components, separately for each response type (erroneous or correct),
period, and trial type (pattern or random)

Ne for erroneous responses Ne for correct responses Pe for erroneous responses Pe for correct responses

M (SD) μV M (SD) μV M (SD) μV M (SD) μV

Pattern trials

Period 1 �4.3 (3.22) 1.2 (1.74) 2.4 (2.76) 0.8 (2.27)

Period 2 �3.3 (2.86) 1.6 (1.82) 3.1 (2.84) 1.3 (2.81)

Period 3 �2.7 (2.83) 1.7 (1.96) 4.3 (2.74) 1.8 (2.51)

Random trials

Period 1 �4.1 (3.25) 0.9 (2.15) 2.4 (2.89) 0.7 (2.36)

Period 2 �3.5 (3.68) 1.4 (2.30) 3.8 (2.57) 0.9 (2.77)

Period 3 �2.7 (3.24) 1.4 (2.24) 4.1 (2.73) 1.0 (2.72)
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less than the adequate number of segments, thus, the
resulting waveform was noisy. The mean amplitude of the
P3 was analyzed in a 2 � 3 � 2 repeated measures ANOVA
with the factors Response (erroneous vs. correct), Period
(1, 2, 3), and Trial type (pattern vs. random).

The P3 for erroneously responded stimuli was reduced
compared with the correctly responded ones (significant
main effect of Response: F(1, 23) = 81.41, p < .001, ηp

2 =
.78). The main effect of Period, F(2, 46) = 1.66, p = .201,

ηp
2 = .07, and the main effect of Trial Type, F(1, 23) =

0.42, p = .523, ηp
2 = .02, did not reach significance. The sig-

nificant Response � Period interaction, F(2, 46) = 4.99, p =
.011, ηp

2 = .18, revealed that although the P3 for erroneously
responded stimuli was lower than the P3 for correctly
responded stimuli in all periods (all ps < .001), the erro-
neous – correct difference of the trial-unspecific P3
decreased from Period 1 to Period 3 (p = .033, all other
ps � .206). The P3 for correctly responded stimuli

Table 2. Summary of results from ANOVAs performed on the ERP data

Effect

ERP
component Statistics Response Period

Trial
Type

Response
� Period

Response �
Trial Type

Period �
Trial Type

Response �
Period �
Trial Type

Ne F 49.71 19.16 0.51 5.87 0.54 0.09 0.47

p < .001 < .001 .484 .005 .471 .914 .628

ηp
2 .684 .454 .022 .203 .023 .004 .020

Pe F 12.60 22.04 0.68 5.81 2.48 3.67 1.10

p .002 < .001 .417 .006 .129 .033 .341

ηp
2 .354 .489 .029 .202 .097 .138 .046

Note. p-values below .050 are boldfaced.

Figure 6. Grand average ERP waveforms synchronized to stimulus onset at electrode Pz displaying the P3 component time-locked to the correctly
responded trials (upper panel) and time-locked to the erroneously responded trials (lower panel) separately for the two trial types (pattern vs.
random, left and right panels, respectively). Black lines indicate the first period, dark gray lines indicate the second period, and light gray lines
indicate the third period. Dashed vertical lines show the average RT observed for the given trial and response type in the given period. Colors are
used according to the ERP waveforms. Note that the P3 for erroneously responded trials is noisy due to the low number of segments available.
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decreased (Period 1 vs. Period 2: p = .602, Period 2 vs. Per-
iod 3: p = .003, Period 1 vs. Period 3: p < .001), while the P3
for erroneously responded stimuli did not change over time
(all ps = .999). The Period� Trial type interaction appeared
as significant, as well, F(2, 46) = 6.06, p = .010, ηp

2 = .18,
revealing that while the response-unspecific P3 did not dif-
fer across trial types in any of the periods (all ps� .057), the
pattern – random difference decreased from Period 1 to
Period 3 (p = .028, all other ps � .107), particularly, the
P3 for pattern stimuli decreased in the late phase of the task
(Period 1 vs. Period 3: p = .045, Period 1 vs. 2: p = .880, Per-
iod 2 vs. Period 3: p = .147), while the P3 for random stimuli
did not change (all ps = .999, see Figure 6). The Response
� Trial type interaction and the Response � Period � Trial
type interaction were not significant, F(2, 46) = 0.73, p =
.401, ηp

2 = .03; F(2, 46) = 0.38, p = .684, ηp
2 = .16, respec-

tively. That is, the temporal change of the P3 component
differed according to the correct – error contrast and the
pattern – random contrast, respectively.

We visually inspected the temporal relationship of the P3
component and the average RTs across response types and
trial types. The average RT fell into the peak of the P3 in
most cases, except for correctly responded random stimuli
(Figure 6). Meanwhile, we did not find any trial type-related
effect in the Ne data (Table 2, Figures 4 and 5). Therefore,
although the P3 component and correct RTs vary across
trial types as a function of task period, the response-locked
activity does not seem to be contaminated with or distorted
by the stimulus-locked ERP activity.

Discussion

In the present study, we investigated error processing
during the intentional retrieval of probabilistic sequence
knowledge. To seize the temporal characteristics of error
processing, we divided the task into three equal time peri-
ods. By using stimuli with different physical characteristics
and providing different instructions, the initial acquisition
and online retrieval of the repeating events of a probabilis-
tic sequence has been detached from an embedded
baseline process provided by practice on the infrequent ran-
dom events. The sequence reports proved that knowledge
of the repeating sequence was explicitly available early in
the task. Further performance improvement was observed
on the repeating events throughout the task, opposing the
random ones. It is presumable that the former process
has been grounded by the already existing sequence knowl-
edge and reflected retrieval processes as participants aimed
to achieve better performance on the task. While accuracy
decreased for random trials, RTs became slightly faster,

supporting our expectations of a retrieval-free baseline
process where incidental RT improvement can happen.
The post-error slowing effect decreased over time compara-
bly for the sequence retrieval and the baseline process,
reflecting a sequence-independent reduction in behavioral
adjustments.

Automatic detection and conscious evaluation of the
committed errors were indicated by the presence of Ne
and Pe ERP components, respectively. Correct response-
related components were considered to control for
correct-response related processes. The stimulus-locked
P3 was investigated, as well, to exclude the possibility of
distortion effects in the Ne caused by the varying stimu-
lus-locked ERPs and RTs across conditions. Surprisingly,
the Ne for erroneous responses as well as the response-
unspecific Ne decreased over time, comparably for the
sequence retrieval and the embedded baseline process.
The trial-unspecific Pe for erroneous responses gradually
increased over time, while the trial-unspecific Pe for correct
responses showed a moderate increase only, similarly
across the retrieved sequence and the random trials. The
response-unspecific Pe appeared to be larger for pattern
than for random trials by the end of the task. Altogether,
we show evidence that both automatic error detection
and conscious error evaluation are sensitive to general
performance improvement in the task, while neither the
Ne nor the Pe is selectively sensitive to sequence retrieval.

The analyses of the Ne yielded two main results: First,
the Ne continuously decreased over time, as opposed to
our hypothesis based on the main theoretical accounts of
the Ne. We propose that instead of the effect of sequence
learning and retrieval, the Ne amplitude modulation
reflects a general adaptation to the task. It is presumable
that as participants practiced the task, the mapping of the
stimuli and the corresponding responses (S–R mappings)
became automatized. The automatization of S–R mappings
was also reflected by the stimulus-locked P3 data (cf. Kóbor
et al., 2019; Verleger, 1997; Verleger, Jaśkowski, &
Wascher, 2005; Verleger, Metzner, Ouyang, Śmigasiewicz,
& Zhou, 2014): The trial-unspecific P3 amplitude for cor-
rectly responded stimuli decreased over time, whereas the
trial-unspecific P3 amplitude for the erroneously responded
stimuli did not change. Moreover, post-error slowing also
decreased throughout the task, suggesting that less adjust-
ment was needed after an error occurred as participants
proceeded with the task (Danielmeier & Ullsperger, 2011;
Dutilh, Vandekerckhove, et al., 2012). Altogether, the
automatization of S–R mappings could have supported the
automatic detection of errors, resulting in a decreasing
Ne. Second, the Ne did not show sensitivity to the pre-
dictability of the sequence. Likewise, post-error adjustment
took place comparably for the retrieved sequence and the
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embedded baseline process. These results support the
notion that the Ne as well as the S–R mappings created
throughout the task are independent of sequence learning
and retrieval processes.

These observations are in line with the error detection/
mismatch theory (Bernstein et al., 1995; Falkenstein et al.,
1991; Gehring et al., 1993): The comparison of erroneous
and correct response representations could have required
less resources as S–R mappings became automatized, which
was reflected in the Ne decrease. The motivational signifi-
cance theory (Gehring et al., 1993; Hajcak et al., 2005) can
also explain the observedNe decrease. It has been previously
shown that errors violating task goals (e.g., flanker-related
errors in the Eriksen flanker task) elicit a greater Ne than
errors originating from mere response confusion (e.g.,
non-flanker errors), suggesting that performance-related
significance modulates the magnitude of the Ne (Maier, Di
Pellegrino, & Steinhauser, 2012; Maier & Steinhauser,
2016). Furthermore, adjustments in post-error adaptation
also reflect the changes in error significance (Maier, Yeung,
& Steinhauser, 2011). Particularly, errors should imply the
possibility of learning to adaptively use them, meaning that
post-error adaptation might not occur (or might decrease
in amount) if the significance of errors becomes low. In the
present study, we, indeed, observed a decreasing post-error
slowing effect that might have indicated a decrease in error
significance as the task progressed. This explanation could
be in line with the study of Holroyd, Krigolson, Baker, Lee,
and Gibson (2009) showing that the amplitude of the feed-
back-related negativity is modulated by adaptation pro-
cesses. Similarly, we assume that the significance of errors
could have reduced as responding became automatized.
Additionally, the rapid acquisition of sequence knowledge,
that is, the completion of participants’ main task goal, could
have also led to a drop of error significance, finally resulting
in an Ne decrease. Nevertheless, as error significance was
not directly manipulated or measured in the present experi-
ment, this explanation has to be treated with caution.

To this date, studies investigating the neurophysiological
aspect of error processing in the intentional acquisition of
repeating regularities focused on the initial learning pro-
cesses. Here, we go beyond these studies by describing
the Ne as well as the Pe during the continuous use of
sequence knowledge to improve task performance. Prior
studies revealed no sequence-specific modulations of the
Ne (Ferdinand et al., 2008; Rüsseler et al., 2003), except
when the development of knowledge was examined across
smaller time bins, where the Ne increased with sequence
learning compared with the random stimulus stream
(Rüsseler et al., 2018). Yet, these studies used deterministic
sequences, as opposed to the probabilistic nature of the pre-
sent stimulus stream. In our experiment, the Ne amplitude

modulation appeared similarly for the repeating sequence
and the random elements. This result is contradictory to
those found in the study of Rüsseler et al. (2018); however,
it is presumable that while erring has a high cost during the
development of representations, especially for deterministic
regularities, it has less impact once the representations and
S–R mappings are strengthened.

The Pe for erroneous responses, on the one hand,
increased throughout the task, irrespective of the pre-
dictability of the sequence. Although we expected an
increase selectively for pattern trials, the obtained results
can be still explained by the theoretical approaches of the
Pe. The error awareness approach claims that the magnitude
of the Pe reflects the level of awareness regarding the com-
mitted error (Endrass et al., 2007; Nieuwenhuis et al.,
2001): The higher the level of error awareness, the larger
the Pe. The account of P3b states that the Pe is a P3- or
P3b-like component and reflects the salience of an error
(Falkenstein et al., 1991; Overbeek et al., 2005;
Ridderinkhof et al., 2009), that is, a higher relevance or sal-
iency of an error yields a larger Pe. Finally, the account of
decision evidence accumulation hypothesizes that the Pe
reflects the level of confidence in or the amount of evidence
available for the omitted error (Boldt & Yeung, 2015;
Steinhauser & Yeung, 2012). Although these frameworks
assume different functional significance of the Pe, all can
explain the observed increase: As participants practiced
the task and the S–R mappings strengthened, awareness
regarding the representation of errors could have increased,
errors could have become more salient for conscious eval-
uation, and error confidence could have increased, as well.

On the other hand, the response-unspecific Pe was larger
for the retrieved sequence compared with the embedded
random events by the end of the task. The above described
theories can explain this effect, as well: As pattern trials are
more salient in the present task, it is presumable that errors
on these trials are characterized with higher error aware-
ness and more evidence for error commission. Previously,
only one study investigated the Pe as the correlate of error
awareness in the acquisition of repeating regularities, to our
knowledge: Ferdinand et al. (2008) did not observe any
sequence-specific modulation of the component. This result
is opposing the present study. We assume that while the
sequence knowledge had been explicitly acquired already
by the first period in the present experiment, Ferdinand
et al. (2008) measured developing representations, leading
to different results. We suggest that the Pe for erroneous
responses is not sensitive to the predictability of the
sequence in the present study. Meanwhile, when the com-
bined processing of correct and erroneous responses is
measured, sensitivity to the sequence can be observed in
terms of conscious evaluation, at least by the end of the
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task, suggesting that conscious response evaluation could
be supported by the retrieval processes.

In conclusion, the present study adds further relevant
results to the field, as, to the best of our knowledge, this
is the first study investigating the neurophysiological corre-
lates of error processing during the online retrieval of
sequence knowledge in a probabilistic environment. The
observed Ne effects indicate that adaptation to the environ-
ment based on the development of S–R mappings results in
a rapid amplitude drop. Likewise, the observed Pe effects
indicate that error awareness is also supported by adapta-
tion processes. As neither the Ne nor the Pe is modulated
differently as a function of sequence predictability, we sug-
gest that automatic error detection and conscious error
evaluation are independent of sequence learning and retrie-
val. Finally, we propose that the investigation of the Ne and
the Pe in the case of automatic behaviors should be further
extended.
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VI. Study 2: When and to what degree can we adjust automatic behaviours when 

the environment becomes unpredictable without any noticeable change at the 

surface level? 
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A R T I C L E I N F O

Keywords:
Implicit statistical learning
Persistence
Prior knowledge
Randomness
Transitional probabilities

A B S T R A C T

It is unclear how implicit prior knowledge is involved and remains persistent in the extraction of the statistical
structure underlying sensory input. Therefore, this study investigated whether the implicit knowledge of second-
order transitional probabilities characterizing a stream of visual stimuli impacts the processing of unpredictable
transitional probabilities embedded in a similar input stream. Young adults (N=50) performed a four-choice
reaction time (RT) task that consisted of structured and unstructured blocks. In the structured blocks, more
probable and less probable short-range nonadjacent transitional probabilities were present. In the unstructured
blocks, the unique combinations of the short-range transitional probabilities occurred with equal probability;
therefore, they were unpredictable. All task blocks were visually identical at the surface level. While one-half of
the participants completed the structured blocks first followed by the unstructured blocks, this was reversed in
the other half of them. The change in the structure was not explicitly denoted, and no feedback was provided on
the correctness of each response. Participants completing the structured blocks first showed faster RTs to more
probable than to less probable short-range transitional probabilities in both the structured and unstructured
blocks, indicating the persistent effect of prior knowledge. However, after extended exposure to the unstructured
blocks, they updated this prior knowledge. Participants completing the unstructured blocks first showed the RT
difference only in the structured blocks, which was not constrained by the preceding exposure to unpredictable
stimuli. The results altogether suggest that implicitly acquired prior knowledge of predictable stimuli influences
the processing of subsequent unpredictable stimuli. Updating this prior knowledge seems to require a longer
stretch of time than its initial acquisition.

1. Introduction

Acquiring implicit knowledge of the statistical structure organizing
environmental events is crucial for many cognitive functions and con-
tributes to the automatization of behaviors (Armstrong, Frost, &
Christiansen, 2017; Aslin, 2017; Kaufman et al., 2010; Maheu,

Dehaene, & Meyniel, 2019). This ability involves not only the mere
extraction of various statistical structures but also the efficient use of
the acquired implicit knowledge across situations that differ in specific
features at the surface level but share common features at the structural
level. In everyday life, if conditions are substantially similar, we usually
learn fast how to use the updated versions of applications or operating
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systems without checking manuals, running online searches, or even
consciously accessing the course of our actions by using previous ex-
periences. However, the potential stability of the already acquired im-
plicit knowledge when applied in similar situations has not been com-
pletely elucidated (Bulgarelli & Weiss, 2016; Conway, 2020; R. Frost,
Armstrong, & Christiansen, 2019). Therefore, we investigate the stabi-
lity of implicit knowledge of a statistical structure underlying a stream
of visual stimuli that remains the same at the surface level but, in time,
becomes unpredictable at the structural level.

According to the broad frameworks of cognitive processing,
learning, and decision making, the processing of new information and
the formation of expectations about future events are guided by in-
ferences based on prior experiences (e.g., Daw, Gershman, Seymour,
Dayan, & Dolan, 2011; Friston, 2005; Friston, 2010; Friston, Stephan,
Montague, & Dolan, 2014; Griffiths, Kemp, & Tenenbaum, 2008;
Shohamy & Daw, 2015). This also pertains to randomness perception
(Hahn & Warren, 2009; Sun et al., 2015; Sun & Wang, 2010; Teigen &
Keren, 2020; Warren, Gostoli, Farmer, El-Deredy, & Hahn, 2018),
binary choice behavior (Feher da Silva & Baldo, 2012; Gaissmaier &
Schooler, 2008; James & Koehler, 2011) as well as implicit statistical
learning (Conway, 2020; Qian, Jaeger, & Aslin, 2012). The persistence
of the primarily learned statistical structure and its influence on further
processing have been evidenced by behavioral (e.g., Bulgarelli & Weiss,
2016; Gebhart, Aslin, & Newport, 2009; Lany, Gómez, & Gerken, 2007)
as well as neurocognitive measures (e.g., Honbolygó & Csépe, 2013;
Karuza et al., 2016; Mullens et al., 2014; Todd, Frost, Fitzgerald, &
Winkler, 2020; Todd, Provost, & Cooper, 2011). However, statistical
structures can differ in characteristics and complexity (Conway, 2020),
and multiple statistical structures can be acquired even from the same
stimulus sequence (Conway & Christiansen, 2001; Daltrozzo & Conway,
2014; Frost et al., 2019; Kóbor et al., 2018; Simor et al., 2019).

According to the model proposed by Meyniel, Maheu, and Dehaene
(2016), instead of simpler statistics such as frequencies and alternations
of events, the computation of time-varying, non-stationary, local tran-
sitional probabilities between consecutive events could be considered
as the “building block” of implicit statistical learning and knowledge
(see also Maheu et al., 2019; Orbán, Fiser, Aslin, & Lengyel, 2008).
Humans have been found to be highly proficient in extracting even the
nonadjacent transitional probabilities, referring to predictive relations
between elements of a sequence that includes ordered stimuli inter-
spersed with random ones (Conway, 2020; Frost & Monaghan, 2016;
Malassis, Rey, & Fagot, 2018; Mueller, Milne, & Männel, 2018; Rey,
Minier, Malassis, Bogaerts, & Fagot, 2018).

Using transitional probabilities in a series of experiments, Gebhart
et al. (2009) changed the underlying statistical structure of stimuli in
the middle of an auditory statistical learning task. They successively
presented two different but overlapping artificial speech streams com-
posed of trisyllabic nonsense words characterized by transitional
probabilities. In this way, the surface of the stimuli remained similar
throughout the task while their structure changed. If the change was
not explicitly signaled or the second structure was not presented for a
tripled duration, participants only learned the first structure. This in-
dicated that the primarily experienced structure limited the capacity to
acquire the successive structure. However, in this study, a certain sta-
tistical structure determined by transitional probabilities was always
present during the task (see also Bulgarelli & Weiss, 2016; Weiss,
Gerfen, & Mitchel, 2009; Zinszer & Weiss, 2013). Therefore, it is unclear
whether the results would have been the same if the statistical structure
per se had been eliminated. For instance, it could be clarified whether
changing only the predictability of the same nonadjacent transitional
probabilities over the course of learning influences their later extrac-
tion.

Furthermore, in the study by Gebhart et al. (2009), after exposure to
the speech stream, knowledge of the statistical structures was measured
with two-alternative forced-choice test trials in which familiarity
judgments were provided. Meanwhile, processing-based or “online”

tasks should be favored, since these tasks more likely reflect implicitly
acquired statistical knowledge about which no consciously accessible
representations are available. These tasks could also capture the tra-
jectory of acquisition and provide information about the stability of the
underlying processes when these processes actually operate
(Christiansen, 2018; Frost et al., 2019). Therefore, it remains to be
tested with an online, unsupervised statistical learning task (Fiser &
Aslin, 2001; Qian et al., 2012) how changing the predictability of
nonadjacent transitional probabilities impacts further acquisition.

Consequently, in the present study, we used a four-choice reaction
time (RT) task to online measure the implicit processing and acquisition
of a sequence composed of second-order nonadjacent transitional
probabilities. In this sequence, elements in position n – 2 predicted
elements in position n with high or low probability. Unknown to par-
ticipants, half of the task blocks included an alternating regularity be-
tween nonadjacent trials, yielding more probable and less probable
short-range transitional probabilities (see Fig. 1). The short-range
transitional probabilities were three successive trials, hereafter referred
to as triplets. In the other half of the task blocks, the alternating reg-
ularity was absent, and unique triplets appeared with equal probability.
The task blocks were labeled as structured and unstructured blocks,
according to the presence or absence of the alternating regularity. By
creating either biased (high or low) or equal probabilities of triplets,
stimuli were predictable in the structured blocks and unpredictable in
the unstructured blocks. With this design, it could be tested how prior
knowledge of the predictability of triplets influences their processing
when predictability changes from the first to the second half of the task.
To this end, while one-half of the fifty participants completed the
structured blocks first followed by the unstructured blocks, the other
half of the participants completed the unstructured blocks first followed
by the structured blocks. Participants of both groups received neither
explicit information on the midstream change in structure nor feedback
on the correctness of each response throughout the task.

If the influence of the biased probabilities acquired over the struc-
tured blocks persisted throughout the task, the RT difference between
the more probable and less probable triplets would be similar across the
structured and unstructured blocks for participants completing the
structured blocks first. Moreover, it could also be explored how long the
influence of this already acquired knowledge would last. Meanwhile,
prior knowledge of equal probabilities emerging over the unstructured
blocks could also persist and influence the further acquisition of biased
probabilities. Accordingly, for participants completing the unstructured
blocks first, no RT difference between the triplets is expected over the
unstructured blocks. The RT difference over the structured blocks
would emerge only in a slower, more gradual manner (cf. Zhao et al.,
2019). However, as the lack of RT difference could persist throughout
the task, it is also conceivable that these participants would not acquire
the biased probabilities over the structured blocks.

2. Material and methods

2.1. Participants

Fifty healthy young adults took part in the experiment.2 They were
undergraduate students from Budapest, Hungary. Participants had
normal or corrected-to-normal vision, and according to the predefined

2 Studies using the Alternating Serial Reaction Time (ASRT) task with effect
size measures for the prior knowledge effect were not available. Therefore,
when determining the sample size per group, we followed the guidelines set by
some of the previous behavioral ASRT-studies (Hallgató, Győri-Dani, Pekár,
Janacsek, & Nemeth, 2013; Horváth, Török, Pesthy, Nemeth, & Janacsek, 2019;
Nemeth, Hallgato, Janacsek, Sandor, & Londe, 2009; Nemeth & Janacsek, 2011;
Nemeth, Janacsek, & Fiser, 2013; Szegedi-Hallgató et al., 2017; Vékony et al.,
2020). On average, the sample size in these studies was approximately 23 per
group (SD=10.6).
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Fig. 1. Design of the experiment. (A) The presentation of stimuli in the structured sequence followed an eight-element regularity, within which pattern (P) and
random (r) elements alternated with one another. Numbers denote the four different stimulus positions on the screen. The alternating regularity made some runs of
three consecutive trials (triplets) more probable than others. High-probability triplets are denoted with gold shading and low-probability triplets are denoted with
coral shading. (B) From the unstructured (pseudorandom) sequence, the alternating regularity was omitted, but the same unique triplets as in the structured sequence
appeared with equal probability. Note that the probability of triplets only differs in the structured sequence and their probability is equal in the unstructured
sequence. However, triplets in the unstructured sequence are still labeled as either high- or low-probability according to their actual probability in the structured
sequence. Gold shading (upper row) and capital letter “H” (lower row) denote the third element of high-probability triplets, coral shading and “L” denote the third
element of low-probability triplets, while white shading and “T” as “trill” denote the third element of some of those low-probability triplets that were eliminated from
the analyses (see Statistical analysis section). Numbers denote the four different stimulus positions on the screen. Note that each stimulus (trial) is categorized as
either the third element of a high- or a low-probability triplet in both sequences. For a given participant, at the level of unique triplets, the high- and low-probability
triplets are the same in the structured and unstructured sequences. (C) In this version of the task, a stimulus appeared in one of four horizontally arranged empty
circles on the screen in every 700ms. Participants had to respond with one of the four response keys that corresponded to the position of the stimulus. They
completed altogether 96 blocks, and eight-block-long units of the task were collapsed into larger time bins labeled as epochs. (D) While the Structured-first group
(n=25) completed 48 structured blocks followed by 48 unstructured blocks, the Unstructured-first group (n=25) completed 48 unstructured blocks followed by 48
structured blocks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Descriptive data and performance on neuropsychological tests in the two groups.

Structured-first group
n=25
M(SD)

Unstructured-first group
n=25
M(SD)

Between-groups
Difference
t/U/χ2

Gender [male/female] 8/17 8/17 1.00
Age [years] 21.5 (2.6) 20.8 (1.5) 274.50a

Education [years] 14.6 (2.1) 14.3 (1.6) 0.69
Handedness [LQ] 53.5 (49.3) 65.8 (28.7) 330.50a

Wisconsin Card Sorting Task [perseverative error percentage] 11.67 (3.81) 10.41 (2.02) 1.46b

Corsi blocks task [visuospatial short-term memory span; range: 3–9] 5.13 (0.54) 5.04 (0.68) 0.49
Counting span task [working memory span; range: 2–6] 3.80 (0.86) 4.08 (0.85) −1.16
Go/No-Go task [discriminability index: hit rate minus false alarm rate] 0.72 (0.14) 0.71 (0.15) 0.40

Note. The two groups did not differ in any of the dependent variables and all participants performed in the normal range on the neuropsychological tests. Handedness
was assessed with the Edinburgh Handedness Inventory revised version (Dragovic, 2004a, 2004b; Oldfield, 1971); LQ= Laterality Quotient, −100 means complete
left-handedness, 100 means complete right-handedness.

a In the case of violating the assumption of normality, the Mann-Whitney U test was performed, and the U statistic is provided.
b In case of violating the assumption of homogeneity of variances, the robust Welch test of equality of means was performed, and the t statistic is provided.
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inclusion criteria, none of them reported a history of any neurological
and/or psychiatric condition, and none of them was taking any psy-
choactive medication. Half of the participants were randomly assigned
to the Structured-first group (n=25), while the other half was assigned
to the Unstructured-first group (n=25). The groups were differ-
entiated by which half of the experimental task they started with; this is
explained in the Procedure section below. Descriptive characteristics of
participants in the two groups and their performance on standard
neuropsychological tests are presented in Table 1. All participants
provided written informed consent before enrollment and received
payment (ca. 12 Euros) or course credit for taking part in the experi-
ment. The study was approved by the United Ethical Review Committee
for Research in Psychology (EPKEB) in Hungary and was conducted in
accordance with the Declaration of Helsinki.

2.2. Experimental task

2.2.1. The Alternating Serial Reaction Time (ASRT) task
Implicit acquisition of second-order transitional probabilities was

measured by a modified version of the ASRT task (Howard & Howard,
1997; Nemeth et al., 2010; Takács et al., 2018), which was optimized
for a future fMRI study using a block design. In this task, a stimulus (a
dog's head) appeared in one of four horizontally arranged empty circles
on the screen (see Fig. 1C). Participants were instructed to press as
quickly and accurately as possible one of the four response keys (Q, Y,
M, or, O on a QWERTZ keyboard) that corresponded to the position of
the stimulus (Q= leftmost position [left index finger], Y= second
position from left to right [left thumb], M= third position from left to
right [right thumb], O= rightmost position [right index finger]). In
this task version, participants were clearly informed about the unusual
mapping between spatial positions and response keys in the task in-
struction. During a practice phase with at least two mini-blocks of fif-
teen random trials each, participants had the chance to practice these
stimulus-response mappings until they felt confident in proceeding to
the main task. (The experimenters also required them to achieve 98%
accuracy at least in the final mini-block).

In the ASRT task, unbeknownst to participants, the stimuli are
presented according to an eight-element sequence, within which pre-
determined/pattern (P) and random (r) elements alternate with one
another (Howard & Howard, 1997). For instance, 2 – r – 1 – r – 3 – r – 4
– r is one of the sequences, where numbers denote the four pre-
determined positions on the screen from left to right, and rs denote the
randomly chosen positions out of the four possible ones (see Fig. 1A).
There are 24 permutations of the four positions that could determine
the applied sequence; however, because of the continuous presentation
of the stimuli, there are only six unique permutations: 1 – r – 2 – r – 3 – r –
4 – r, 1 – r – 2 – r – 4 – r – 3 – r, 1 – r – 3 – r – 2 – r – 4 – r, 1 – r – 3 – r – 4
– r – 2 – r, 1 – r – 4 – r – 2 – r – 3 – r, and 1 – r – 4 – r – 3 – r – 2 – r (see
also Figs. S1–S2). Note that each of these six permutations can start at
any position; e.g., 1 – r – 3 – r – 4 – r – 2 – r and 2 – r – 1 – r – 3 – r – 4 – r
are identical sequence permutations.

The alternating regularity yields a probability structure in which
some chunks of three successive trials (triplets) occur more frequently
than others. This characteristic of the task ensures that sensitivity to a
biased distribution of triplets can be quantified. In the case of the 2 – r –
1 – r – 3 – r – 4 – r sequence, 2 – X – 1, 1 – X – 3, 3 – X – 4, and 4 – X – 2
triplets (X denotes the middle trial of the triplet) occur frequently since
these triplets could have P – r – P or r – P – r structure. Meanwhile, for
instance, 1 – X – 2 and 4 – X – 3 triplets occur less frequently since they
could only have a r – P – r structure (see Fig. 1A). The former triplets are
referred to as high-probability triplets, while the latter ones are referred
to as low-probability triplets (e.g., Nemeth & Janacsek, 2011; Nemeth,
Janacsek, Polner, & Kovacs, 2013). The construction of triplets could be
considered as a method for identifying the hidden probability structure
of the ASRT task. Namely, the final trial of a high-probability triplet is a
probable (predictable) continuation for the first trial of the triplet,

while the final trial of a low-probability triplet is a less probable con-
tinuation. For instance, in the case of the above-mentioned sequence, if
the first trial of a triplet is position 3, it is more likely (with 62.5%
probability) to be followed by position 4 as the third trial than either
position 1, 2, or 3 (with 12.5% probability each). Each trial (stimulus) is
categorized as either the third trial of a high- or a low-probability tri-
plet. Accordingly, the construction of triplets is applied as a moving
window throughout the entire stimulus set: The third trial of a triplet is
also the second trial of the following triplet, and so on; thus, all stimuli
are categorized this way (Kóbor et al., 2018; Kóbor, Janacsek, Takács, &
Nemeth, 2017; Szegedi-Hallgató et al., 2017). There are 64 possible
triplets in the task: 16 of them are high-probability triplets, and 48 are
low-probability ones. With respect to the unique triplets, the third trials
of high-probability triplets are five times more predictable based on the
first trials than those of the low-probability triplets (see Figs. S1–S2).

2.2.2. Generation and selection of the unstructured sequences
Besides the structured ASRT sequences that included the alternating

regularity, unstructured sequences were used, in which the alternating
regularity was absent. The unstructured sequences had to meet two
requirements. First, unstructured sequences had to contain the same 64
triplets as the structured sequences; however, the probability of oc-
currence of each unique triplet type had to be equal. Therefore, each of
the 64 triplets had to occur 30 times in any of the unstructured se-
quences but without the presence and repetition of the alternating
regularity (1920 triplets in total, see the second requirement). In this
way, unstructured sequences could also be considered as pseudor-
andom sequences with the constraint that all triplets occurred with
equal probability (25%). Second, unstructured sequences had to contain
the same number of trials as structured sequences because they de-
termined stimulus presentation in an equal number of blocks. This
meant the presentation of altogether 1920 triplets distributed over 48
blocks with 40 triplets in each, respectively (see below). For this pur-
pose, without the use of the alternating regularity, several trial sets were
generated in MATLAB 2015a (The MathWorks Inc., Natick, 224 MA,
USA). Particularly, by randomly changing one trial of the trial sets at a
time, the trial set minimizing the deviation from the optimal 30 times of
occurrence was selected (the maximal error was set to two). Using this
algorithm, a dozen trial sets satisfying this criterion were kept.

These trial sets were then subjected to three further constraints: (1)
the maximal repetition of a unique triplet in any of the blocks could be
no more than four; (2) the maximal immediate repetition of a trial
[position] could be no more than five across the entire trial set; (3) in
larger time bins (16 blocks) of the unstructured trial set, the overall
occurrence probability of triplets that can be categorized as high- vs.
low-probability in the structured ASRT sequences should approximate
25% and 75%, respectively, since there are 16 unique high-probability
and 48 unique low-probability triplets for a given ASRT sequence (see
above the ASRT task description). This third constraint ensured that at
the level of unique triplets, the transitional probabilities were equal. Six
of the trial sets were appropriate regarding constraints (1) and (2).
Stimuli of these six trial sets were categorized into triplets following
either of the six unique structured ASRT sequences (see Fig. 1B); and,
constraint (3), i.e., the ratio of the high- and low-probability triplets,
was checked on these categorized trial sets. Finally, altogether 19 trial
sets satisfied all three constraints and were kept using as unstructured
sequences.

When assigning the structured ASRT and unstructured sequences to
participants, we ensured that the distribution of the six unique ASRT
sequence types was even across the two groups. The 1 – r – 2 – r – 3 – r –
4 – r sequence was used five times, and all the other sequences were
used four times in each of the groups (i.e., for 25 participants per
group). For each participant, the selection of a sequence from the six
unique types was pseudorandom. The applied files containing the
structured ASRT and unstructured sequences were matched one-to-one
across the two groups. Note that for each respective participant, at the
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level of unique triplets, the identified high- and low-probability triplets
were the same in the unstructured sequences as in the structured ASRT
sequences (see Fig. 1A–B). Indeed, the probability of triplets differed
only in the structured sequences and their probability was equal in the
unstructured sequences (see Figs. S1–S2). Meanwhile, in the remainder
of the paper, triplets in the unstructured sequences are still referred to
as either high- or low-probability according to their actual probability
in the structured sequences.

As a result of the procedure used for generating, selecting, and
matching the sequences, in the present sample, the distribution of high-
and low-probability triplets did not differ across the four stimulus po-
sitions either in the structured ASRT (χ2(3)= 4.86, p= .183) or in the
unstructured sequences (χ2(3)= 0.02, p= .999); in addition, these
associations between triplet distribution and stimulus position did not
differ across the sequence types (Wald χ2(3)= 2.34, p= .504). When
the high- and low-probability triplet categories were collapsed, the
distribution of stimulus positions across sequence types also did not
differ (χ2(3)= 1.56, p= .670). In this way, lower-level characteristics
of the sequences would not account for the assumed between-sequence
RT variations related to acquiring the second-order transitional prob-
ability structure (cf. Reed & Johnson, 1994).

2.3. Procedure

An experimental trial started with the presentation of the stimulus
at one of the four positions for 500ms. After stimulus offset, the image
of the four positions was displayed for 200ms. Then, the next trial
started, yielding a 700-ms-long inter-trial interval. The behavioral re-
sponse (keypress) was expected during the whole trial from stimulus
onset until the end of the trial (i.e., for altogether 700ms, see Fig. 1C).
These trial events were always the same with fixed durations, irre-
spective of whether participants provided correct, incorrect, or missing
response(s). In this task version, no feedback was presented as a func-
tion of the quality of the response. The lack of feedback presentation
and the fact that participants could proceed with the trial without
providing the correct response ensured that each trial and each block
had the same lengths, respectively. Importantly, only correctly re-
sponded trials were analyzed in the present study.

One block of the task contained 42 trials. There were 48 blocks with
the structured ASRT sequence and 48 blocks with the unstructured
sequence. In each of the structured blocks, the eight-element-long al-
ternating regularity repeated five times after two starter trials that were
not categorized as triplet elements (since also the foremost triplet
technically required three successive trials). The alternating regularity
was missing from the unstructured blocks, but, as in the structured
blocks, 40 triplets followed the two starter trials that were not cate-
gorized as triplet elements. After each block, participants received
feedback about their mean reaction time and accuracy in the given
block. The length of this between-blocks “rest period” with feedback
was jittered to be methodologically optimal for a future fMRI experi-
ment (it lasted for 10, 12, or 14 s [mean=12 s]). Altogether 96 blocks
were completed (4032 trials in total).

The Structured-first group completed 48 structured blocks followed
by 48 unstructured blocks. The Unstructured-first group completed 48
unstructured blocks followed by 48 structured blocks. All participants
proceeded with the task from its structured/unstructured to un-
structured/structured half without receiving information about any
change in the task (see Fig. 1D). Two breaks (1.5 mins each) were in-
serted after the 32nd and 64th blocks, in which participants could have
had a short rest. The experimental procedure lasted about 1.5 h in-
cluding the administration of a short post-task questionnaire. This as-
sessed participants' task-solving strategies and their consciously acces-
sible knowledge about the structure of the task and the transitional
probabilities (Kóbor et al., 2017; Nemeth, Janacsek, & Fiser, 2013;
Song, Howard, & Howard, 2007). Namely, participants were asked
whether (1) they followed any task-solving strategies to improve their

performance, (2) if yes, to what extent they found it efficient; (3)
whether they noticed anything special regarding the task; (4) whether
they noticed any regularity in the sequence of stimuli; and (5) whether
they noticed any substantial change in the sequence of stimuli. The first
author (AK) qualitatively rated participants' answers to questions (1)
and (2), and rated the answers to questions (3), (4), and (5) on a 5-item
scale (1= “Nothing noticed”, 5= “Total awareness”). None of the
participants reliably reported noticing the alternating regularity, the
presence and repetitions of the triplets, or any change in the stimulus
sequence between the task halves (the mean score for the three ques-
tions was 1.006, SD=0.082). Although participants reported several
strategies they found somewhat facilitating (e.g., counting the stimuli,
fixating to the center of the screen, catching the rhythm of trials by
silently singing, bouncing their legs, or moving their fingers), these
were unrelated to the hidden structure of the task. Only one participant
reported trying to search for some “logic” in the sequence but as a
subjectively inefficient strategy.

The current ASRT task version was written in and controlled by
MATLAB 2015a using the Psychophysics Toolbox Version 3 (PTB-3)
extensions (Brainard, 1997; Pelli, 1997). Stimuli were displayed on a
15″ LCD screen at a viewing distance of 100 cm. Neuropsychological
tests (see Participants section) were administered a few days before the
main experiment during a one-hour-long session.

2.4. Statistical analysis

Following the standard data analysis protocol established in pre-
vious studies using the ASRT task (e.g., Howard & Howard, 1997; Kóbor
et al., 2017; Nemeth, Janacsek, Polner, & Kovacs, 2013; Song et al.,
2007; Virag et al., 2015), two types of low-probability triplets – re-
petitions (e.g., 1 – 1 – 1, 4 – 4 – 4) and trills (e.g., 1 – 2 – 1, 2 – 4 – 2, see
Fig. 1B) – were eliminated from the analyses because preexisting re-
sponse tendencies have often been shown to them (Howard et al.,
2004). In addition, eight-block-long units of the task were collapsed
into larger time bins labeled as epochs, yielding altogether six structured
epochs (containing the ASRT sequence) and six unstructured epochs
(containing the unstructured sequence). From this point of view, while
the Structured-first group performed six structured epochs followed by
six unstructured epochs, the Unstructured-first group performed six
unstructured epochs followed by six structured epochs. Epochs are la-
beled consecutively in this paper (1, 2, etc.) within each sequence type.
For each participant and epoch, separately for high- and low-prob-
ability triplets, median RT was calculated only for correct responses.

Triplet learning on the RTs, i.e., faster RTs to high-probability than
to low-probability triplets, was first quantified with a four-way mixed
design analysis of variance (ANOVA) with Sequence (structured vs.
unstructured), Triplet (high- vs. low-probability), and Epoch (1–6) as
within-subjects factors and Group (Structured-first group vs.
Unstructured-first group) as a between-subjects factor. Second, to more
directly test the change in triplet learning as a function of the different
sequence types, three-way mixed ANOVAs with Triplet and Epoch as
within-subjects factors and Group as a between-subjects factor were
performed on the RTs related separately to the structured and un-
structured epochs. In all ANOVAs, the Greenhouse-Geisser epsilon (ε)
correction (Greenhouse & Geisser, 1959) was used when necessary.
Original df values and corrected (if applicable) p values are reported
together with partial eta-squared (ηp2) as the measure of effect size. LSD
(Least Significant Difference) tests for pairwise comparisons were used
to control for Type I error.

Regarding the possible experimental effects and their interpretation,
the Triplet main effect implies triplet learning (faster RTs to high- than to
low-probability triplets) and the Triplet ∗ Epoch interaction implies
changes in triplet learning as the task progresses, usually an increase
across epochs (e.g., Janacsek, Ambrus, Paulus, Antal, & Nemeth, 2015;
Kóbor et al., 2017; Nemeth et al., 2010; Nemeth, Janacsek, Polner, &
Kovacs, 2013; Takács et al., 2017; Tóth et al., 2017). The Epoch main

A. Kóbor, et al. Cognition 205 (2020) 104413

5



effect implies general skill (RT) improvements reflecting more efficient
visuomotor and motor-motor coordination due to practice (Hallgató
et al., 2013; Juhasz, Nemeth, & Janacsek, 2019). The prior knowledge
effect is indicated by the Sequence ∗ Triplet ∗ Group and/or the Se-
quence ∗ Triplet ∗ Epoch ∗Group interactions: Namely, if prior knowl-
edge of the transitional probabilities influences later stimulus proces-
sing, triplet learning per se or its change over time should differ
between structured and unstructured epochs and across the two groups
experiencing the structured and unstructured epochs in the opposite
order. In the Results section below, we use these terms when describing
the observed statistical effects.

To follow up the prior knowledge effect, triplet learning scores in
the structured and unstructured epochs were calculated as the RT dif-
ference between the triplet types (RTs to low-probability triplets minus
RTs to high-probability triplets). Overall triplet learning scores were
considered for the structured and unstructured epochs, respectively, as
the mean of the scores calculated for each of the six epochs. The overall
triplet learning scores for the structured and unstructured epochs were
first compared within each group. Then, these scores were compared
between the groups. Finally, the change in mean RTs across the struc-
tured and unstructured epochs separately for the high- and low-prob-
ability triplets was compared within each group.

To test the persistence of the prior knowledge effect, triplet learning
scores were further analyzed in the Structured-first group. To find a
balance between increased power and capturing the time course of
persistence, triplet learning scores were averaged over two consecutive
epochs (i.e., “thirds”) of the structured and unstructured sequences,
respectively. Then, these scores were compared against zero in each
sequence type. Finally, these scores were compared between the cor-
responding thirds of the structured and unstructured sequences.

3. Results

3.1. Overall analysis

The Sequence (structured vs. unstructured) by Triplet (high- vs. low-
probability) by Epoch (1–6) by Group (Structured-first group vs.
Unstructured-first group) overall ANOVA on the RTs revealed the sig-
nificant main effects of Sequence, F(1, 48)= 6.77, p= .012,
ηp2= .124, Triplet, F(1, 48)= 45.90, p < .001, ηp2= .489, and Epoch,
F(5, 240)= 35.91, ε = .612, p < .001, ηp2= .428. As these main ef-
fects were qualified by significant higher-order interactions, only the
latter effects are detailed below.

3.1.1. Triplet learning
The Sequence ∗ Triplet, F(1, 48)= 22.92, p < .001, ηp2= .323,

and the Triplet ∗ Epoch, F(5, 240)= 2.42, p= .036, ηp2= .048, inter-
actions were significant, while the Sequence ∗ Triplet ∗ Epoch, F(5,
240)= 2.18, ε = .814, p= .072, ηp2= .043, interaction was a trend
level. These effects indicated that the change in triplet learning over the
course of the task differed between the structured and unstructured
epochs.

3.1.2. General skill improvements
The significant Sequence ∗Group, F(1, 48)= 69.87, p < .001,

ηp2= .593, and the Sequence ∗ Epoch ∗Group, F(5, 240)= 33.59,
ε = .706, p < .001, ηp2= .412, interactions showed that between-
groups differences emerged as a function of first experiencing the
structured or the unstructured half (i.e., six epochs) of the task.
Particularly, while the Structured-first group became increasingly faster
over the structured epochs due to practice and showed similar RTs over
the unstructured epochs, this was reversed in the Unstructured-first
group, where increasingly faster RTs were observed over the un-
structured epochs and similar RTs over the structured epochs (see
Fig. 2). This effect suggests that general skill improvements were found
in the first half of the task, irrespective of whether this half was

structured or unstructured and the distribution of triplets. Relatedly,
the following nonsignificantmain effects and interactions emerged: main
effect of Group, F(1, 48)= 1.96, p= .168, ηp2= .039, Epoch ∗ Group
interaction, F(5, 240)= 0.47, ε= .612, p= .706, ηp2= .010, and Se-
quence ∗ Epoch interaction, F(5, 240)= 1.20, ε = .706, p= .313,
ηp2= .024.

3.1.3. Prior knowledge effect
The significant Triplet ∗Group interaction, F(1, 48)= 4.92,

p= .031, ηp2= .093, was qualified by the significant
Sequence ∗ Triplet ∗ Group interaction, F(1, 48)= 7.96, p= .007,
ηp2= .142. Importantly, the latter indicated that the difference in tri-
plet learning between the structured and unstructured epochs varied
across the groups, which is regarded as the prior knowledge effect (see
Fig. 2). This effect did not reliably vary as a function of practice with
the task, as shown by the nonsignificant Se-
quence ∗ Triplet ∗ Epoch ∗Group interaction, F(5, 240)= 0.61,
ε = .814, p= .661, ηp2= .012. Relatedly, the modulating effect of
structured vs. unstructured epochs on triplet learning was also sup-
ported by the significant Triplet ∗ Epoch ∗ Group interaction, F(5,
240)= 2.31, p= .045, ηp2= .046, showing that if both task halves
with structured and unstructured epochs were collapsed, the trajectory
of triplet learning would differ across the groups.

3.2. Follow-up of the prior knowledge effect

To follow up the prior knowledge effect, pairwise comparisons
contrasting the overall triplet learning scores were performed (see
Fig. 3). In the Structured-first group, the triplet learning score was si-
milar between the structured and unstructured epochs (6.3ms vs.
4.6 ms, p= .171). Thus, the behavioral effect of biased triplet prob-
abilities (i.e., high- and low-probability triplets in the structured
epochs) persisted even after this bias was eliminated (i.e., the unique
triplets occurred with equal probability in the unstructured epochs).
Meanwhile, in the Unstructured-first group, the triplet learning score
was significantly higher over the structured epochs than over the un-
structured epochs; in the latter, it was virtually zero (5.9ms vs.
−0.4ms, p < .001). In addition, the triplet learning score did not
differ between the groups over the structured epochs (6.3ms vs. 5.9 ms,
p= .840), but it was significantly higher in the Structured-first group
than in the Unstructured-first group over the unstructured epochs
(4.6ms vs. −0.4ms, p < .001).

In the Structured-first group, mean RTs on the high- and low-
probability triplets decreased from the structured to the unstructured
epochs to a similar extent (high-probability triplets: 392ms to 383ms
[Diff= 9ms], p= .003; low-probability triplets: 399ms to 388ms
[Diff= 11ms], p < .001; the difference in RT decrease between high-
and low-probability triplets was not significant, p= .226), indicating
only general skill improvements from the structured to the unstructured
epochs. In contrast, in the Unstructured-first group, a larger RT de-
crease was found on the high-probability triplets (388ms to 366ms
[Diff= 22ms], p < .001) than on the low-probability ones (388ms to
372ms [Diff= 16ms], p < .001; the difference in RT decrease be-
tween high- and low-probability triplets was significant, p < .001)
from the unstructured to the structured epochs, indicating triplet
learning over the structured epochs.

3.3. Persistence of the prior knowledge effect

To test the persistence of the prior knowledge effect in the
Structured-first group, triplet learning scores were averaged over
epoch1 and epoch2 (Me1e2), epoch3 and epoch4 (Me3e4), epoch5 and
epoch6 (Me5e6), respectively. These new scores were compared against
zero and between the structured and unstructured sequences. The ob-
tained results are presented in Fig. 4A and detailed below.

The extent of triplet knowledge differed significantly from zero over
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all thirds of the structured and unstructured sequences (all ts≥ 2.11,
ps≤ .045), except for the very first one at the beginning of the task (t
(24)= 1.26, p= .221). This indicated the presence of triplet knowl-
edge from the second third of the structured sequence throughout the
task. Triplet knowledge did not differ between the unstructured and
structured sequences during the first (Me1e2: 6.0 ms vs. 3.2ms, respec-
tively, t(24)=−0.96, p= .349) and second thirds of the task (Me3e4:
5.1 ms vs. 7.9ms, respectively, t(24)= 1.35, p= .190). In contrast,

triplet knowledge over the last third of the unstructured sequence was
significantly lower than over the last third of the structured sequence
(Me5e6: 2.8ms vs. 7.7 ms, respectively, t(24)= 2.46, p= .022). The
decreasing extent of triplet knowledge is also noticeable in Fig. 2B as
RTs to high- and low-probability triplets approaching one another in
the last third of the unstructured sequence. These results altogether
suggest that participants acquired the triplet knowledge in the second
third of the structured sequence; and, after biased probabilities had
been removed from the stimulus stream, the update of the triplet
knowledge was evident in behavior only in the final third of the un-
structured sequence.

3.4. Separate analysis of the structured and unstructured epochs

The Triplet by Epoch by Group ANOVA on the RTs related to the
structured epochs revealed the significant main effects of Triplet, F(1,
48)= 56.00, p < .001, ηp2= .538, Epoch, F(5, 240)= 27.54,
ε = .700, p < .001, ηp2= .365, and Group, F(1, 48)= 9.25, p= .004,
ηp2= .162. These effects were qualified by the significant
Triplet ∗ Epoch, F(5, 240)= 4.55, p= .001, ηp2= .087, and
Epoch ∗ Group, F(5, 240)= 15.77, ε = .700, p < .001, ηp2= .247, in-
teractions, indicating that triplet learning increased with practice and
general skill improvements differed between the groups (see Fig. 2A,
D). Triplet learning and its change over the structured epochs did not
differ between the groups, as shown by the nonsignificant Tri-
plet ∗Group, F(1, 48)= 0.04, p= .840, ηp2= .001, and Tri-
plet ∗ Epoch ∗ Group interactions, F(5, 240)= 1.54, p= .177,
ηp2= .031.

The same Triplet by Epoch by Group ANOVA on the RTs related to
the unstructured epochs revealed the significant main effects of Triplet, F
(1, 48)= 10.61, p= .002, ηp2= .181, and Epoch, F(5, 240)= 13.45,

Fig. 2. Temporal dynamics of triplet learning across groups and sequence types. Group-average RTs (A–B: Structured-first group; C–D: Unstructured-first group) for
correct responses as a function of time bin (epochs 1–6) and triplet type (currently/previously/upcoming high- vs. low-probability triplets, according to their actual
probability in the given sequence and the order of the sequence in the given group) are presented in the structured (A, D) and unstructured (B, C) epochs. Error bars
denote standard error of mean.

Fig. 3. Persistence of the acquired implicit knowledge. Group-average overall
(mean) triplet learning scores (RTs to low- minus RTs to high-probability tri-
plets) are presented in the Structured-first and Unstructured-first groups for the
structured and unstructured epochs, respectively. Error bars denote standard
error of mean.
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ε = .605, p < .001, ηp2= .219, while the Triplet ∗ Epoch interaction
was not significant, F(5, 240)= 0.24, p= .945, ηp2= .005.
Importantly, the significant Triplet ∗Group interaction, F(1,
48)= 15.23, p < .001, ηp2= .241, showed that triplet learning was
larger in the Structured-first group than in the Unstructured-first group
(4.6 ms vs. -0.4ms) over the unstructured epochs, but this did not
change with time (nonsignificant Triplet ∗ Epoch ∗Group interaction, F
(5, 240)= 1.33, p= .251, ηp2= .027). The trajectory of general skill
improvements differed between the groups (significant Epoch ∗Group
interaction, F(5, 240)= 16.12, ε = .605, p < .001, ηp2= .251, see
Fig. 2B, C), and the groups did not differ in overall RT (nonsignificant
Group main effect, F(1, 48)= 0.09, p= .764, ηp2= .002) over the
unstructured epochs.

3.5. Analysis of accuracy

Since only the RTs of the correctly responded trials were analyzed, it
should be ensured that the two groups did not differ in accuracy.
Therefore, the Sequence by Triplet by Epoch by Group ANOVA was also
conducted on accuracy data (calculated as the ratio of correct responses
for each participant and epoch, separately for high- and low-probability
triplets). As indicated by the nonsignificant main effect of Group, F(1,
48)= 1.53, p= .221, ηp2= .031, the two groups were comparable in
overall accuracy (Structured-first group: 86.4%; Unstructured-first
group: 88.1%).

Although the analysis of accuracy is not the focus of this study, for
the sake of completeness, we provide the other significant main effects
and interactions revealed in this ANOVA, but these are not detailed.
The main effects of Triplet, F(1, 48)= 25.25, p < .001, ηp2= .345,
and Epoch, F(5, 240)= 7.42, ε = .639, p < .001, ηp2= .134, were
significant. Relatedly, the Sequence ∗ Triplet, F(1, 48)= 4.91, p= .032,

ηp2= .093, and the Sequence ∗ Triplet ∗ Epoch, F(5, 240)= 3.49,
p= .005, ηp2= .068, interactions were also significant. In brief, re-
sponses to high-probability triplets were more accurate than those to
low-probability ones. However, while this difference in accuracy in-
creased over the structured epochs, it gradually decreased over the
unstructured epochs.

The Sequence ∗Group, F(1, 48)= 9.75, p= .003, ηp2= .169, and
the Sequence ∗ Epoch ∗ Group, F(5, 240)= 7.44, ε = .524, p < .001,
ηp2= .134, interactions were significant, as well. The
Sequence ∗ Triplet ∗ Epoch ∗Group interaction was a trend level, F(5,
240)= 1.92, p= .091, ηp2= .039. The latter effect indicated that the
above-described Sequence ∗ Triplet ∗ Epoch interaction was mostly
driven by the responding pattern of the Structured-first group.
Particularly, in the Structured-first group, while the difference in ac-
curacy between high- and low-probability triplets increased over the
structured epochs, it tended to decrease over the unstructured epochs.
In the Unstructured-first group, accuracy between high- and low-
probability triplets differed only over the structured epochs.

The results of comparing triplet knowledge measured by accuracy
calculated for each third of each sequence in the Structured-first group
were in line with these effects (see Fig. 4B). The extent of triplet
knowledge differed significantly from zero over the middle and last
thirds of the structured sequence and over the first third of the un-
structured sequence (all ts≥ 4.24, ps < .001). Accordingly, triplet
knowledge tended to be higher over the first third of the unstructured
sequence than over the first third of the structured sequence (Me1e2:
2.7% vs. 0.6%, respectively, t(24)=−1.77, p= .090). In contrast,
triplet knowledge was significantly lower over the last two thirds of the
unstructured sequence than over the corresponding thirds of the
structured sequence (Me3e4: 0.7% vs. 2.9%, respectively, t(24)= 2.55,
p= .018; Me5e6: 0.7% vs. 2.7%, respectively, t(24)= 2.91, p= .008).
These results suggest that updating the triplet knowledge after biased
probabilities had been removed was as fast as acquiring that knowledge
in the first place.

4. Discussion

4.1. Summary of results

This study investigated whether the implicitly acquired knowledge
of a second-order transitional probability structure influenced the
processing of unpredictable transitional probabilities across phases of a
learning task. To this end, the changes in RTs to more probable and less
probable short-range transitional probabilities (triplets) embedded in a
stimulus sequence were tracked. The stimulus sequence changed over
the experimental task because biased triplet probabilities were present
in one-half of the task blocks and absent in the other half, without
explicitly denoting this change at the surface level.

In line with our assumptions, while the participant group com-
pleting the structured half of the task first showed triplet learning
across both the structured and unstructured blocks, the participant
group completing the unstructured half first showed triplet learning
only over the structured blocks and not over the unstructured blocks.
Based on the performance of the group completing the structured half
of the task first, it seems that the already acquired implicit knowledge
of the short-range transitional probabilities persisted across the learning
phases, even after the bias in the transitional probabilities had been
removed. This persistence characterized two-thirds of the unstructured
blocks. Then, the update of prior knowledge became evident in RT
triplet learning over the last third of these blocks. The results also imply
that the updating process took longer than the primary acquisition,
which required only one-third of the structured blocks. Based on the
performance of the group completing the unstructured half of the task
first, it seems that the protracted exposure to unbiased transitional
probabilities did not negatively influence the acquisition of the biased
transitional probabilities later in the task. Therefore, any potential

Fig. 4. Temporal characteristics of persistency. In the Structured-first group,
group-average triplet knowledge scores measured by RTs (A) and accuracy (B)
averaged over two consecutive epochs (i.e., “thirds”) of the structured and
unstructured sequences, respectively, are presented. Error bars denote standard
error of mean. White asterisks denote that the given score significantly differs
from zero (p < .050).
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expectation or knowledge built upon the pseudorandom stimuli was
also updated to promote the acquisition of the newly experienced
biased transitional probabilities.

4.2. Persistent implicit statistical knowledge

Participants completing the structured blocks first similarly per-
ceived the relations of stimuli in both types of blocks. That is, their
perception could have been influenced by the primarily experienced
transitional probability structure. In other words, because of the task
environment, they might have worked up a tendency towards pattern
detection, which could have resulted in forming implicit expectations
about the upcoming stimuli. Then, these expectations remained per-
sistent throughout the task.

To explain the observed persistency, one should consider the char-
acteristics of the given learning environment. In the present task, ac-
quisition happened in an incidental and implicit manner: our partici-
pants did not know that they were in a learning situation, they did not
have information on whether the sequence of stimuli was random or
followed any underlying pattern, the critical change point between the
task halves remained unnoticed, and they were not required to actively
or explicitly predict the probability of the next stimulus. In addition,
they did not receive feedback (or any reward) on the correctness of
their responses. Meanwhile, participants were instructed to maintain a
certain level of speed and accuracy, but, for them, this was the only
explicit goal of the task. They successfully achieved this goal, as shown
by the behavioral results indicating general skill improvements due to
practice. This performance improvement was mostly independent of the
change in the underlying probability structure. Therefore, it seems that
as participants had gained confidence in task solving, they followed
their already established, automatized strategy on stimulus processing
and responding (cf. Karuza et al., 2016). As the surface of the task re-
mained consistent, they had no reason to doubt their current implicit
beliefs about the probability of the upcoming stimulus (cf. Zinszer &
Weiss, 2013). This might have promoted the persistently faster pro-
cessing of the stimuli that occurred with high probability only in the
previous task half.

From a broader perspective, it could be adaptive that the acquired
representations of the structured stimuli remain persistent over time
and robust to change. This way, the representations could remain
sensitive to the primary transitional probability structure later in time,
although other structures are simultaneously acquired (cf. Gebhart
et al., 2009; Qian et al., 2012; Todd et al., 2011; Todd et al., 2020). This
might be even more pronounced if no explicit cue or performance de-
terioration signals the need for an updating process. Supporting this
notion, during the acquisition of two different statistical structures, a
tendency towards neural efficiency coupled with diminished sampling
of the input underlying the second statistical structure has been shown
(Karuza et al., 2016). Accordingly, we assume that such a “processing
efficiency” might explain our results on the transition from structured
to pseudorandom stimuli.

4.3. Temporal characteristics of persistency

It has already been demonstrated that the primarily acquired im-
plicit knowledge of the biased distribution of transitional probabilities
remains stable over longer time periods, such as one week (Nemeth &
Janacsek, 2011) or even one year (Romano, Howard, & Howard, 2010).
Moreover, this knowledge is resistant to short periods of interfering
sequences (that partially overlap with the primarily practiced sequence)
not only after 24 h but also after one year (Kóbor et al., 2017). The
present study could extend these results on persistency as follows. If
there is an essential change in the stimulus probabilities characterizing
the given environment, the duration required for updating the existing
probabilistic representations seems to be longer than the duration re-
quired for acquiring these representations, at least at the behavioral

level.
In detail, for participants completing the structured blocks first,

acquiring the biased probability structure required one-third of the
structured sequence; then, this knowledge remained persistent until the
end of the task. However, participants were also sensitive to the lack of
bias or the altered probability of the unique triplets over the un-
structured sequence. Particularly, while triplet knowledge measured by
RTs was comparable over the first two-thirds of the structured vs. un-
structured sequences, triplet knowledge was decreased in the last third
of the unstructured sequence as compared with the structured se-
quence. Thus, participants needed to complete two-thirds of the un-
structured sequence to update their existing knowledge of the prob-
ability structure, which was acquired after the completion of only one-
third of the structured sequence. When triplet knowledge was defined
by differences in accuracy, updating was more pronounced and became
evident earlier: Triplet knowledge was lower over the middle and last
thirds of unstructured sequence than that of the structured sequence.
Indeed, after one-third of the task blocks, triplet knowledge abruptly
increased when the bias was present and dropped when the bias was
eliminated. Overall, the results of participants completing the struc-
tured blocks first might indicate an “implicit need” for updating the
prior representations of the probability structure. At the same time,
these results also highlight the constraining effect of the primarily ac-
quired, possibly overlearned statistical structure in the adaptation to a
new environment (cf. Bulgarelli & Weiss, 2016; Gebhart et al., 2009).

It has been suggested that successful adaptation to a range of similar
tasks requires the forgetting or weakening of some specific features of
the already acquired representations (Robertson, 2018). As described
above, in the present case, this would have been the forgetting of the
initial triplet probability information when starting the other task half.
It is plausible to assume that after having had performed even more
unstructured blocks, participants would have learned that the pre-
viously high-probability triplets no longer occurred with higher prob-
ability than the previously low-probability ones, and, therefore, the
initial triplet probability information would have been forgotten or
“unlearned”. However, in accordance with the findings of Szegedi-
Hallgató et al. (2017) indicating the coexistence of the previously and
the recently acquired implicit knowledge of the changed statistical
structure in the ASRT task, it is more likely that, at the level of triplet
representations, no “extinction” or “unlearning” happened. Evidence
from human and animal studies suggests that adaptation to different
contexts does not involve the complete removal of representations of
the previous context (Bulgarelli & Weiss, 2016; Gordon, Bilolikar,
Hodhod, & Thomas, 2020; Qian et al., 2012). Instead, the formation of
new representations, the reconsolidation or inhibition of the previously
created ones, and the switching between multiple representations seem
more likely (Chandler & Gass, 2013). Either of the latter processes
supports the interpretation that in the present experiment, stimulus
processing was determined by prior representations of the transitional
probability structure that changed slowly with accumulating experi-
ences about the ongoing stimulus context (cf. Daw et al., 2011; Griffiths
et al., 2008; Shohamy & Daw, 2015). The exact mechanisms by which
this slow change might have occurred has yet to be determined, and
formal models should be developed to investigate the temporal dy-
namics of these mechanisms (cf. R. Frost et al., 2019; Karuza et al.,
2016; Qian et al., 2012; Zhao et al., 2019).

4.4. Exposure to pseudorandom stimuli

Over the structured blocks, participants completing the un-
structured blocks first showed a triplet learning trajectory comparable
to that of the other group (nonsignificant Triplet ∗ Group and
Triplet ∗ Epoch ∗ Group interactions, see also Fig. 2A, D). With an un-
signaled change in the probability structure, the pervasive experience
with pseudorandom stimuli could have also caused an entrenchment
effect. In this case, these participants could have started the acquisition
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of the biased probability structure with some disadvantage or could
have showed the complete lack of triplet learning when exposed to the
structured blocks. Instead, according to the results, it seems that prior
experience with equal transitional probabilities did not negatively in-
fluence the further acquisition of the biased probability structure.

As an explanation for the triplet learning performance of these
participants, it is conceivable that they might have primarily estab-
lished a wider hypothesis space about the properties of the stimuli,
since they could not extract complex transitional probabilities over the
unstructured blocks. Such representations could be useful if the stimuli
considered as random in the given environment with limited observa-
tions in fact followed some structure. With a wider hypothesis space,
stimulus processing and acquisition might have proceeded flexibly,
enabling the acquisition of the statistical structure when it was indeed
present. In support of this idea, similar results were found in a binary
choice task testing probability-matching behavior (i.e., matching choice
probabilities to outcome probabilities instead of the optimal max-
imizing strategy). In that task, the transition between the no pattern (no
serial dependence in the sequence) and pattern half (repeating de-
terministic sequence) was clearly indicated. Results showed that par-
ticipants who were more prone to search for patterns in the no pattern
half of the task showed higher accuracy in the pattern half as compared
with those participants who were less prone to follow any complex
search strategy (Gaissmaier & Schooler, 2008).

4.5. Perception and acquisition of changing statistical structures

Earlier studies using different paradigms showed mixed results on
how individuals updated their already acquired knowledge of the un-
derlying probabilities when these probabilities changed. It was found
previously that individuals accurately estimated the hidden probability
parameter of a nonstationary stochastic environment as well as quickly
updated their estimates (Gallistel, Krishan, Liu, Miller, & Latham,
2014). In this task, participants assessed the proportion of one stimulus
category and had the opportunity to update their estimates on a trial-
by-trial basis. Importantly, at the beginning of the task, they were told
that probabilities could unexpectedly change. Similarly, in another
experiment where subsequent numerical values had to be predicted,
participants updated each prediction as a function of their explicitly
denoted prediction errors. By tracking the prediction errors, after an
unsignaled change in the distribution of the values during the task,
participants could adjust their predictions (Nassar, Wilson, Heasly, &
Gold, 2010). The quick adaptation to changing probabilities was also
observed when choosing between two options associated with different
probabilities and reward magnitudes, i.e., with clear feedback signals
(Behrens, Woolrich, Walton, & Rushworth, 2007).

These studies altogether suggest that effective decision making ne-
cessitates the continuous tracking of the environmental probabilities
and the evaluation of each signal that possibly implies a change in these
probabilities. However, these observations have been derived from si-
tuations in which active agents were required to make explicit decisions
that pertained directly to the probabilistic features of the ongoing task
modeling volatile environments. The latter characteristics possibly ex-
plain why the present results contrast with earlier findings. The ASRT
task used in this study should not be considered as a(n) (explicit) de-
cision-making or probabilistic reinforcement-learning paradigm in
which quick updating of beliefs could happen (Bulgarelli & Weiss,
2016). Instead, the type of learning that this task measures more likely
fits into the category of unsupervised statistical learning (Fiser & Aslin,
2001). It intends to model a stable stimulus environment with low
volatility where hidden probabilistic regularities occur interspersed
with noise in the form of nonadjacent transitional probabilities. These
features could contribute to the persistence of the acquired regularities
rather than to the abrupt change of the related representations.

A paradigm more similar to the ASRT task is the classical serial
reaction time (SRT) task (e.g., Nissen & Bullemer, 1987), where a

repeating deterministic sequence guides stimulus presentation in the
structured blocks. In the SRT, performance usually deteriorates on the
unstructured blocks with random or pseudorandom stimuli, meaning
that RTs suddenly increase compared to the level reached by the end of
the last structured block. Meanwhile, in the present study, participants
completing the structured blocks first showed persistent triplet learning
performance over several blocks of pseudorandom stimuli in terms of
RTs. It is possible that in the case of probabilistic sequences (used in the
ASRT task) as opposed to deterministic ones, the acquisition processes
are more sensitive to smooth transitions between stimuli or chunks of
stimuli. This specific sensitivity evolved in participants practicing the
structured blocks first might have led the extraction of triplets even
over the unstructured blocks of the task (see also the Transfer of prior
knowledge section). In addition, as opposed to deterministic and
pseudorandom sequences, the probabilistic sequence might have pro-
vided learnable but sufficiently novel information on a trial-by-trial
basis (Maheu, Meyniel, & Dehaene, 2020), promoting the relatively fast
acquisition of the statistical structure as well as its persistence.

Other studies using linguistic stimuli with transitional probabilities
have started to investigate how to attenuate the persistent effect of the
already acquired statistical representations (Weiss, Schwob, &
Lebkuecher, 2019). By presenting two artificial speech streams in
smaller alternating blocks, individuals were able to learn both statis-
tical structures underlying the input streams, without using explicit
contextual cues (e.g., change in speaker) denoting the transitions across
streams (Zinszer & Weiss, 2013). However, if statistically incongruent,
interfering statistical structures determined the stimuli, the formation
of multiple representations was limited (Weiss et al., 2009). Im-
portantly, if individuals were exposed to the second statistical structure
immediately after learning had occurred on the first structure presented
for a restricted time, both structures were learned. In addition, the
different contextual cues did not further enhance performance
(Bulgarelli & Weiss, 2016). Altogether, it seems that overlearning the
first statistical structure and low variability in how the statistical
structures are presented could decrease the attention paid to the input
stream, thereby deteriorating the acquisition of the new structure
(Bulgarelli & Weiss, 2016). This explanation might be feasible in the
case of our findings; however, it should be noted that these studies
tested the transition(s) between different statistical structures in the
linguistic domain, while our study investigated the unsignaled transi-
tion from the presence to the absence of a structure in the visuomotor
domain. Furthermore, the second-order nonadjacent transitional prob-
abilities applied in the present task differed in structure and complexity
from those transitional probabilities applied earlier. Nevertheless, we
can contribute to this research field by confirming the presence of the
primacy effect in a unique multi-context unsupervised learning en-
vironment and, this way, by extending the validity of this effect to
unlearnable pseudorandom stimuli.

4.6. Transfer of prior knowledge

Considering the underlying processes, the present findings raise the
question of whether learning transfer has occurred across the task
halves. Studies testing the transfer (generalization) of perceptual and
motor knowledge usually compare performance observed during a
training task with performance observed during a similar testing con-
dition, such as in a familiar task with new parameters or in a related but
novel task. Successful transfer occurs if the experience gathered on the
training task appears as a performance gain on the novel task (e.g.,
Dorfberger, Adi-Japha, & Karni, 2012; Karni, 1996; Karni & Bertini,
1997; Korman, Raz, Flash, & Karni, 2003).

In the statistical-sequence learning literature, the implicit transfer of
both the perceptual and the motor sequence was shown in a version of
the ASRT task that, in the testing phase, included a novel, previously
unpracticed alternating motor or perceptual sequence with the same
type of stimuli (Hallgató et al., 2013; Nemeth et al., 2009). In a
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deterministic SRT task, the second-order transitional probability
structure was implicitly transferred from the training to the testing
phase, where the perceptual features of the stimuli differed (i.e., first-
order structure: locations arranged horizontally or according to a
square, Huang et al., 2017). Likewise, experiments using the artificial
grammar learning task found the implicit transfer of sequential de-
pendencies to novel vocabularies (Tunney & Altmann, 2001). Relatedly,
unconscious within- and between-modalities transfer of artificial
grammars was shown between training and test strings that changed at
the surface level (letters in different vocabularies, notes, symbols) but
remained structurally the same (Scott & Dienes, 2010). Another line of
research found learning transfer in both directions between different
types of memory tasks (motor skill task and word list task) via the ex-
traction of high-level relations between the elements (Mosha &
Robertson, 2016).

In contrast to these studies, the present experiment followed a dif-
ferent design: The surface of the stimuli remained the same across the
two task phases, but their overall underlying structure changed. In this
sense, the observed effect might not be considered as a classical per-
ceptual-motor transfer effect. Indeed, it more likely captures a cognitive
transfer effect: After a short experience with the unstructured sequence,
participants completing the structured blocks first might have implicitly
identified the features common (i.e., triplets) across the two task halves,
which might have supported the generalization of the acquired transi-
tional probability structure (cf., Qian et al., 2012; Robertson, 2018;
Winkler & Cowan, 2005). Thus, the triplets as the critical building
blocks of the structure might have been implicitly recalled in a later
phase of task solving, even if their frequencies had changed. On the
contrary, participants completing the unstructured blocks first only
perceived the relations of stimuli primarily as triplets when they com-
pleted the ASRT sequence with biased probabilities. This would be in
line with our recent findings that sensitivity to multiple regularities in
the ASRT task seems to be grounded in the implicit extraction of the
triplet-level probability structure (e.g., Kóbor et al., 2019; Szegedi-
Hallgató, Janacsek, & Nemeth, 2019). Together with the previously
described various transfer effects, the implicitly acquired prior knowl-
edge seems to be robust to changes in both the surface and the un-
derlying structure of the stimuli.

Related to the present task, an alternative experimental design with
biased triplet probabilities would unequivocally test the transfer of the
acquired implicit knowledge. For instance, one might use the ASRT
sequence as the “structured sequence” and create another “less struc-
tured” sequence by keeping the biased distribution of high- (62.5%)
and low-probability (37.5%) triplets but omitting the alternating reg-
ularity. In a similar between-subjects design, by presenting either the
structured or the less structured sequence in the first half of the task and
the other sequence in the second half, a future study might compare
triplet learning between these two sequences. To follow previous ex-
periments testing the transfer effect, the stimuli in the second half of the
task might be different at the surface level (e.g., arrows or colors in-
stead of horizontally arranged positions), but this is not necessary (cf.
Gebhart et al., 2009). In another version of this experiment, the less
structured sequence could be presented in both task halves for one of
the groups, while the structured sequence followed by the less struc-
tured sequence could be presented for the other group. In this version,
stimuli should differ at the surface level in the second half of the task.

If triplet learning occurs in both sequences, but only after partici-
pants completed the structured sequence first followed by the less
structured one, it will indicate that knowledge of the transitional
probability structure has been transferred across the task halves.
However, for participants completing the less structured sequence first
or completing only less structured sequences in both halves, we assume
that a modest degree of triplet learning would also occur on these less
structured sequences because of the initial sensitivity to the triplet-level
probability structure (see above). This needs to be tested in additional
experiments.

4.7. Methodological considerations

From a methodological point of view, it is not obvious how one
investigates what has been learned about the statistical structure un-
derlying a given sequence. The study of Reed and Johnson (1994)
suggests that to appropriately test whether the complex statistical
structure per se has been learned, instead of a random testing sequence,
one should use training and testing sequences that differ only in second-
order transitional probabilities but are identical in terms of first-order
transitional probabilities and other simpler statistics (e.g., location
frequency, transition frequency, reversal frequency, coverage, and
transition usage). By controlling for the latter characteristics of both
sequences, it can be ensured that the RT disruption across the sequences
is due to acquiring the second-order transitional probability structure
that changed from the first to the second sequence. It has also been
shown that participants would less likely search for underlying struc-
tures if a sequence, compared with another, was subjectively perceived
as more random, but, according to objective measures, was more
structured (Wolford, Newman, Miller, & Wig, 2004). Considering these
issues, in the present experiment, we deliberately avoided the use of
fully random sequences; and, instead, we applied “equal probability”
unstructured sequences, which were more controlled than the former
ones. In addition, low-probability triplets being the major constituents
of the unstructured sequences might have contributed to regarding
these sequences as more random (Teigen & Keren, 2020).

4.8. Conclusions

The present experiment provides evidence that under implicit and
incidental learning conditions, perceptual and cognitive processing
continues to be influenced by a previously acquired predictable tran-
sitional probability structure even after that structure is removed. This
implies that, due to the persistency of the acquired representations,
unpredictable transitional probabilities are automatically processed
according to these prior representations. However, after significant
exposure to the unpredictable structure, the updating of prior re-
presentations becomes evident: Importantly, this process seems to re-
quire a longer stretch of time than that of the acquisition. Although the
acquired representations are relatively persistent if the predictable
structure is experienced first, protracted exposure to the unpredictable
structure preceding the predictable one does not constrain the sub-
sequent acquisition. Finally, the study also highlights the importance of
carefully constructing the underlying structure of training and testing
sequences in the investigation of statistical-sequence learning.
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Divided attention does not affect 
the acquisition and consolidation 
of transitional probabilities
Kata Horváth1,2,3, Csenge Török2, Orsolya Pesthy1,2, Dezso Nemeth2,3,4* & 
Karolina Janacsek2,3,5

Statistical learning facilitates the efficient processing and prediction of environmental events and 
contributes to the acquisition of automatic behaviors. Whereas a minimal level of attention seems 
to be required for learning to occur, it is still unclear how acquisition and consolidation of statistical 
knowledge are affected when attention is divided during learning. To test the effect of divided 
attention on statistical learning and consolidation, ninety-six healthy young adults performed the 
Alternating Serial Reaction Time task in which they incidentally acquired second-order transitional 
probabilities. Half of the participants completed the task with a concurrent secondary intentional 
sequence learning task that was applied to the same stimulus stream. The other half of the 
participants performed the task without any attention manipulation. Performance was retested 
after a 12-h post-learning offline period. Half of each group slept during the delay, while the other 
half had normal daily activity, enabling us to test the effect of delay activity (sleep vs. wake) on the 
consolidation of statistical knowledge. Divided attention had no effect on statistical learning: The 
acquisition of second-order transitional probabilities was comparable with and without the secondary 
task. Consolidation was neither affected by divided attention: Statistical knowledge was similarly 
retained over the 12-h delay, irrespective of the delay activity. Our findings can contribute to a better 
understanding of the role of attentional processes in and the robustness of visuomotor statistical 
learning and consolidation.

Statistical learning refers to the recognition and acquisition of probability-based associations among stimuli1–5. 
This learning process facilitates the efficient processing and prediction of environmental events and contributes 
to the acquisition of automatic behaviors and skills, such as language, dance, or typing. It can operate on visual or 
auditory input and with its help, we can process and acquire temporally or spatially distributed associations5–12. 
Statistical learning typically occurs incidentally and the acquired knowledge remains mostly implicit13–15. 
Although it is well-established that statistical learning can occur without intention, i.e., automatically, one of 
the main challenges in this field is to characterize how statistical learning and attention interact and how previous 
results concerning these two fundamental cognitive processes could be integrated [see5,12]. Whereas a minimal 
level of attention (to process the relevant stimuli) seems to be required for learning to take place14,16, the effect 
of divided attention on statistical learning is still unclear and understudied5. Moreover, it remains unexplored 
how statistical knowledge acquired under divided attention is consolidated in the post-learning offline period. 
Therefore, here we aimed to test how divided attention affects statistical learning and the consolidation of the 
acquired statistical knowledge.

Divided attention is most often investigated by dual-task designs, that is, by testing whether performance is 
affected in the primary task of interest while participants simultaneously perform a secondary task17,18. Previous 
studies testing the effect of divided attention on statistical learning with dual-task designs led to mixed findings, 
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although the following pattern seems to be emerging overall. When the secondary task is applied to the same 
stimulus stream and the processing of stimuli is intact (e.g., when participants are instructed to search for a given 
type of visual shape, while visual statistical learning takes place within the same stream of stimuli), statistical 
learning appears to be unaffected14,18, cf. 19,20. In contrast, when the secondary task operates on different stimuli 
than the primary task or some stimuli become unattended (e.g. completing a secondary working memory task 
at the same time as the visual statistical learning task), statistical learning appears to be hindered16, cf. 19,21–24. It is 
important to note, however, that the latter results might reflect the effect of selective instead of divided attention 
(i.e., when participants have to switch attention between attended and ignored stimuli17).

One of the most prominent task paradigms to investigate statistical learning are probabilistic sequence learn-
ing tasks12,25–30. In the present study, we employed a widely used visuomotor probabilistic sequence learning 
task, the Alternating Serial Reaction Time (ASRT) task25–27 to assess visuomotor statistical learning. In this task, 
participants are asked to respond to a series of visually presented stimuli. The odd trials in the series follow a 
repeating serial order (a sequence), while the even trials are randomly selected, resulting in some runs of consecu-
tive stimuli (second-order transitional probabilities) being more predictable than others. By cuing the sequence 
trials with different visual stimuli and instructing participants to learn their serial order while they simultane-
ously attend to and incidentally acquire the transitional probabilities in the same stimulus stream, the effect of 
divided attention on learning can be tested (see Figs. 1 and 2). That is, in this task design, cuing is assumed to 
divide attention between memorizing the repeating serial order of sequence trials and maintaining general task 
performance at the same time, while all stimuli remain attended. Although the effect of attention on statistical 
learning was not in the focus, so far, two studies investigated statistical learning in the cued version of the ASRT 
task comparing it to the uncued version. Whereas Nemeth et al.26 showed enhanced statistical learning by cuing 
the sequence, Szegedi-Hallgató et al.31 did not report such effect. Therefore, the question of whether sequence 
cuing, and thus divided attention, affects visuomotor statistical learning remains unclear.

Importantly, Nemeth et al.26 and Szegedi-Hallgató et al.31 used a self-paced task design, which enabled partici-
pants to spend as much time on the processing of and response to a given stimulus as they want. Such self-paced 
task designs can easily result in additional group differences and potential confounds as the acquisition process 

Figure 1.   Stimulus structure and learning processes in the ASRT task (S—sequence, r—random). (A) As 
the ASRT task contains an alternating sequence structure (e.g., 2-r-3-r-1-r-4-r, where numbers correspond 
to the four locations on the screen and the ‘r’ represents randomly chosen locations out of the four possible 
ones), some associations of three consecutive trials (triplets) occur with greater probability (green) than others 
(purple). Within these triplets, due to the probabilistic structure, the third trial can be predicted by the first 
one with a certain probability, while the middle trial has no predictive value (i.e., second-order non-adjacent 
transitional probabilities). In the example above, the triplets 2-x-3, 3-x-1, 1-x-4, and 4-x-2 (where ‘x’ indicates 
the middle trial) are more probable. In contrast, e.g., 2-x-1, 1-x-3 or 3-x-2 would occur less probably. (B) We 
determined for each sequence and random trial whether it was the last trial of a high- or a low-probability triplet 
and, therefore, three different trials could occur: sequence (dark green, always high-probability), random high-
probability (light green) and random low-probability (purple). Statistical learning is computed as the difference 
in responses to random high- vs. random low-probability trials. All sequence trials were excluded from the 
present analyses (for details see Methods).
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itself may become longer in the group completing the cued task version (spending more time on processing the 
cued stimuli) compared with the group that performs the task without cues. Therefore, in the present study, we 
modified the task design to better serve our aims. Specifically, we used a fixed time window, in which participants 
could process and respond to the stimuli, so that the maximum amount of time participants could spend on 
each trial was equal in the conditions with vs. without the attentional manipulation. Additionally, the employed 
fixed paced timing was relatively fast compared to the self-paced or other fixed paced versions of task32–34 to 
keep the attentional demand high in the Cued group. Due to these changes that were needed for the purpose 
of the present study, we refer to this task version as ‘cued’ instead of ‘explicit’ to differentiate it from the version 
used in previous studies.

As outlined above, previous studies have focused on how divided attention affects the acquisition of statistical 
knowledge, while how this knowledge is consolidated in the post-learning offline period that may contain sleep 
or daytime activities has been largely neglected. Typically—that is, without attentional manipulation—, statistical 
knowledge appears to be resistant to forgetting and interference, and the acquired knowledge is retained over 
an offline delay period15,35–41. Albeit a great body of research showed that sleep does not affect the consolidation 
of statistical knowledge, at least on the behavioral level27,42–44, other studies argued for a beneficial effect of sleep 
in this process45,46. So far, to the best of our knowledge, only one study tested the consolidation of statistical 
knowledge that was acquired under a cuing manipulation. They showed retained statistical knowledge tested 
after a relatively short (1.5-h) delay period, irrespective of the delay activity (napping, quiet rest or active rest35). 
Nevertheless, these results were not directly contrasted with performance in an uncued condition, and attention 
was not manipulated systematically. Our study contributes to this body of research by contrasting statistical 
knowledge that was acquired with vs. without attentional manipulation (cuing of the sequence) and testing the 
consolidation of this knowledge after a 12-h offline period of sleep vs. daytime wakefulness.

Overall, we aimed to investigate the effect of divided attention on the acquisition and consolidation of second-
order transitional probabilities. Attention was manipulated by cuing: half of the participants received the cued 
version of the ASRT task (Cued group) and were instructed to discover and learn the order of the cued sequence 
trials, while the other half completed the uncued version (Uncued group) without any additional task (see Figs. 1 
and 2). Importantly, we employed a fixed time window for stimulus presentation and response in both groups to 
control the maximum amount of time they spend on each trial. The fixed paced timing also helped ensure that 
the attentional demand remained high in the Cued group. To examine how the delay activity during the post-
learning offline period affects the consolidation of statistical knowledge, we divided the two main groups (Cued 
and Uncued) into further subgroups: half of each (Cued/Uncued) group slept during the 12-h delay period (Sleep 
subgroups), and the other half had normal daily activities (No-sleep subgroups). In addition, to provide a fuller 
picture of the acquired statistical knowledge, the Inclusion–Exclusion task47,48 was administered: participants were 
asked to generate series of responses that followed the same regularities as the ASRT task (Inclusion condition) 
or one that was different from that (Exclusion condition). Based on Jacoby’s process dissociation procedure49, 

Figure 2.   Design and procedure of the experiment. The ASRT task was administered in the experiment. In the 
cued version of the task (Cued group, orange panel), the regularity was marked by using different stimuli for 
the sequence trials (a dog’s head) and the random ones (penguin). In the uncued version of the task (Uncued 
group, blue panel), sequence and random trials were not marked differently (all stimuli were presented by the 
dog’s head). The Learning Phase (left column) consisted of 25 blocks, while the Testing Phase (right column) 
contained five blocks. The two sessions were separated by a 12-h delay. Based on the activity during the post-
learning delay period, both main groups were divided into a Sleep (PM-AM design) and a No-sleep subgroup 
(AM-PM design). All participants performed the same ASRT task in the Testing Phase as in the Learning Phase.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22450  | https://doi.org/10.1038/s41598-020-79232-y

www.nature.com/scientificreports/

this task can help determine whether the acquired statistical knowledge remained implicit or participants could 
intentionally access and control this knowledge (for more details see the task description in the Methods section).

The effectiveness of the cuing manipulation was assessed by the RTs on the repeating sequence trials as well 
as with sequence reports obtained during the short breaks in the ASRT task. The acquisition of second-order 
transitional probabilities (that is, statistical learning) was measured on the random trials, for which no specific 
learning instructions were given in either group. We expected that statistical learning is not affected by divided 
attention, as achieved by the cuing manipulation, and statistical knowledge is retained during the post-learning 
delay period, irrespective of cuing (cued vs. uncued) and the delay activity (sleep vs. wake). We also expected 
that statistical knowledge remains implicit in both groups.

Methods
Participants.  Ninety-eight healthy young adults participated in the experiment. One participant was 
excluded due to technical errors and another participant due to outlier performance on the ASRT task [raw 
reaction times (RTs) fell outside three SDs consequently for the random trial types in both experimental ses-
sions, for more details see the Statistical Analysis section as well]. Thus, the final sample consisted of 96 adults, 
48 in each group. To measure the effect of delay activity on consolidation, both groups were divided into two 
subgroups (for more details, see the Procedure section): Twenty-four participants were assigned to the Uncued 
Sleep subgroup, 24 participants to the Uncued No-sleep subgroup, 23 participants to the Cued Sleep subgroup 
and 25 participants to the Cued No-sleep subgroup.

All participants had normal or corrected-to-normal vision, none of them reported a history of any neuro-
logical and/or psychiatric condition and drug-use. Prior to their inclusion in the study, participants provided 
informed consent to the procedure as approved by the research ethics committee of Eötvös Loránd University, 
Budapest, Hungary. The study was conducted in accordance with the Declaration of Helsinki and participants 
received course credits for taking part in the experiment.

Handedness was measured by the Edinburgh Handedness Inventory50. In this test, the laterality quotient 
(LQ) is assessed, which can vary between −100 and 100 where −100 indicates complete left-handedness and 
100 indicates complete right-handedness. Dichotomic handedness (left or right) was defined based on the LQ 
(values above zero were coded as right-handedness, and values below zero as left-handedness). General cogni-
tive performance was measured by three widely used neuropsychological tests: participants completed the Digit 
Span task51,52, the Counting Span task53–56, and the Attentional Network Test57. The four subgroups did not differ 
in either of these measures (Table 1, all ps > 0.088).

Tasks.  Alternating serial reaction time (ASRT) task.  The ASRT task was used to measure the acquisition and 
consolidation of second-order transitional probabilities in the visuomotor domain. In this task, the target stimu-
lus appeared in one of four horizontally arranged circles on the screen. Participants were instructed to respond 
with the corresponding key (Z, C, B or M on a QWERTY keyboard) when the stimulus occurred using their left 
and right middle and index finger. The presentation of the stimuli was determined by an eight-element sequence, 
within which sequence (S) and random (r) trials were alternating (Fig. 1A). One example of the sequence is 2-r-
3-r-1-r-4-r, where numbers represent predetermined locations (1 denotes the leftmost position and 4 denotes 
the rightmost position) on the screen and r indicates randomly chosen locations out of the four possible ones. 
There are altogether six unique permutations of sequence order (1-r-2-r-3-r-4-r, 1-r-2-r-4-r-3-r, 1-r-3-r-4-r-2-r, 
1-r-3-r-2-r-4-r, 1-r-4-r-3-r-2-r, 1-r-4-r-2-r-3-r). Please note that, for example, the sequences 1-r-2-r-4-r-3-r, 2-r-
4-r-3-r-1-r, 4-r-3-r-1-r-2-r and 3-r-1-r-2-r-4-r consist of the same second-order transitional probabilities and 

Table 1.   Demographic data of the four subgroups. Mean (SD) shown for age, education and standard 
neuropsychology tests assessing general cognitive performance. Ratio is presented for handedness and gender. 
ANT—Attention Network Test. Gender of one participant and handedness data from another participant are 
missing.

Variable

Uncued group (N = 48) Cued group (N = 48)

Sleep subgroup
N = 24

No-sleep subgroup
N = 24

Sleep subgroup
N = 23

No-sleep subgroup
N = 25

Age (year) 22.59 (4.52) 21.6 (2.57) 20.8 (1.15) 20.7 (1.62)

Education (year) 14.7 (2.43) 14.3 (2.18) 14.1 (1.09) 13.7 (2.16)

Handedness 19 right/4 left 19 right/5 left 19 right/4 left 19 right / 6 left

Gender 8 male/15 female 6 male/18 female 7 male/16 female 4 male / 21 female

Digit span task (short-term memory span, possible 
range: 3–9) 6.3 (1.26) 6.3 (0.87) 6.2 (0.97) 6.2 (0.93)

Counting span task (working memory span, pos-
sible range: 2–6) 3.5 (0.88) 3.6 (1.25) 3.9 (1.24) 3.3 (0.82)

ANT alerting attention (ms) 40.9 (23.0) 44.6 (27.96) 34.1 (18.80) 45.0 (29.45)

ANT orienting attention (ms) 31.4 (22.58) 26.4 (21.31) 38.8 (21.10) 41.1 (20.58)

ANT executive attention (ms) 88.4 (36.52) 77.5 (25.61) 84.83 (25.78) 89.1 (28.64)
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are therefore treated as identical. Participants received one of the six unique sequences in a pseudo-random and 
counterbalanced manner.

The alternating structure resulted in a probability structure within which some chunks of three consecutive 
trials (triplets) occurred with greater probability than others (Fig. 1A). Triplets formed the second-order transi-
tional probability information of the task: The last trial (N) of a triplet could be predicted by the first one (N-2) 
with a certain probability, while the interleaving trial (N-1) did not have a predictive value. For example, in the 
example sequence above, when 1 (N) appeared in a sequence position, it always followed 3 in the N-2 position, 
and the interleaving trial (N-1) was randomly selected. However, if 1 appeared in a random position, the N-2 
trial could be any of the four trials by chance. Triplets were considered high-probability if the third trial was 
predicted by the first trial with a greater probability (62.5% probability, Fig. 1B), whereas triplets were consid-
ered low-probability if the third trial was predicted by the first trial with a lower probability (12.5% probability). 
Accordingly, participants could extract and acquire the highly probable associations. Importantly, triplets were 
identified as a moving window throughout the entire stimulus set, that is, each trial was categorized as the last 
element of either a high- or a low-probability triplet, and it was also the first or the second trial of the following 
triplets. There were 64 possible triplets in the task: 16 of them were high-probability triplets and 48 were low-
probability ones.

Trials could also be defined based on their sequence property according to the sequence structure: the last 
trial of a triplet could occur in a sequence position (S-r-S structure; e.g., 3-x-1 in the example above) or in a 
random one (r-S-r structure; e.g., 2-x-1 in the example above). All triplets with S-r-S structure occurred with 
high-probability due to the repetition of the sequence and these took up 50% percent of all triplets (Fig. 1B). In 
contrast, triplets with the r-S-r structure could occur with either high- (12.5% of all triplets) or low-probability 
(37.5% of all triplets). Therefore, each trial had a probability and a sequence property, and the last trial of each 
triplet could be divided into the following three trial types: sequence (always high-probability), random-high 
and random-low trials. The repeating sequence trials were used to create the additional learning task in the Cued 
group: these trials could be visually differentiated from the random ones (i.e., they were cued), and participants 
were instructed to learn their serial order (for more details, see Procedure). Consequently, triplets with S-r-S 
structure were contaminated by the intentionally acquired sequence knowledge in the Cued group where the last 
element of these triplets could be predicted based on the sequence order rule instead of the probability-based rule. 
Therefore, we focused only on the random high- and random low-probability trials because the sole difference 
between these was probability-based, that is, purely statistical in nature31. Statistical learning (the acquisition of 
second-order transitional probabilities) was measured as the difference between the responses to random high- vs. 
random-low probability trials (Fig. 1B26,31,33–35). Previously, studies investigating this measure have shown that 
learning already occurs after a short period of practice and the acquired knowledge is well-preserved26,31,36. The 
underlying learning process can be tracked on the level of electrophysiological signals as well33–35.

Please note that previous studies mainly focused on the so-called triplet learning score calculated as the 
difference between the responses to high-probability versus low-probability trials without considering their 
sequence property. Thus, triplet learning score is not a pure measure of statistical learning because the probability 
information is contaminated by the serial order information. Despite this difference of whether or not sequence 
trials are included in the calculation of learning scores, the acquisition of second-order transitional probabilities 
(e.g., that ‘3-x-1′ is more probable than ‘2-x-1′ in the example sequence, Fig. 1) still contributes to both the triplet 
learning, and statistical learning scores. Importantly, statistical learning, triplet learning, and the acquisition of 
the sequence can be all separated from the so-called general skill learning that refers to general performance 
improvement as the task progresses (mainly due to improved visuomotor coordination) and affects the differ-
ent trial types similarly58. In this study, we do not focus on these general changes in performance but only on 
statistical learning, that is, on the difference in responses to random high- vs. random low-probability trials.

Inclusion–exclusion task.  The Inclusion–Exclusion task47,48,59,60 is based on the well-established ‘Process Disso-
ciation Procedure’ (PDP49) and it is typically used to separate incidental and intentional use of memory. Accord-
ingly, this task was administered to reveal whether or to what extent the acquired probability-based associations 
became intentionally available in both the Uncued and Cued groups. To this end, first, participants were asked to 
generate a series of responses that followed the same regularities (that is, including both sequence and random 
trials) as the ASRT task (Inclusion condition). Second, they were asked to generate a new series of responses that 
followed different regularities (again, including both sequence and random trials) than the learned one (Exclu-
sion condition). Both conditions contained four runs and participants used the same response buttons as in the 
ASRT task. Each run finished after 24 button presses, which was equal to three rounds of the eight-element alter-
nating sequence. To measure performance, we computed the percentage of high-probability triplets generated 
in the Inclusion and Exclusion conditions separately. We then tested whether participants produced more high-
probability triplets than it would have been expected by chance (which was 25%, see Procedure), and whether 
the percentage of high-probability triplets differed across (Inclusion/Exclusion) conditions or across groups.

Following the standard analysis and interpretation of the task outlined in previous studies34,36,61, incidental 
use of knowledge (i.e., without intentional access to their knowledge) is sufficient to achieve good performance 
(that is, producing high-probability triplets above chance level) in the Inclusion condition. In contrast, good 
performance in the Exclusion condition (that is, producing high-probability triplets at or below chance level) 
requires intentionally accessible knowledge to exert control over their responses and generate a series of responses 
that is indeed different from what they practiced (i.e., intentionally exclude the acquired knowledge). Thus, if 
the acquired knowledge remained inaccessible to intentional control, we would expect high-probability triplets 
generated above chance level both in the Inclusion and Exclusion conditions. In contrast, intentional access to 
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the acquired knowledge would result in generating high-probability triplets above chance level in the Inclusion 
condition and at or below chance level in the Exclusion condition.

Procedure.  The experiment consisted of two sessions to assess both learning and consolidation of the 
acquired knowledge. One block of the ASRT task contained 85 trials (stimuli). In each block, the eight-element 
alternating sequence repeated 10 times after five warm-up trials consisting only of random stimuli. The Learn-
ing Phase contained 25 blocks. Half of the participants received the uncued version of the ASRT task (Uncued 
group), while the other half performed a cued version of the task (Cued group) to induce divided attention. The 
Uncued group was informed that the aim of the experiment was to measure the effect of extended practice on 
motor performance, thus they were unaware of the sequence embedded in the task. In contrast, participants in 
the Cued group received information about the presence of a repeating sequence on the cued trials but not its 
length and were instructed to discover and intentionally memorize it as a secondary task. Nevertheless, partici-
pants were also instructed to pay attention to all stimuli and try to be equally fast and accurate on the pattern 
and random trials. In this version of the task, sequence and random stimuli were marked with different target 
pictures [dogs for sequence and penguins for random stimuli;26,36]. Consequently, the Uncued and Cued groups 
were named after the lack or presence of cues regarding the sequence. Please note that neither of the groups 
received any information regarding the second-order transitional probabilities of the task, therefore statistical 
learning is regarded as incidental in both groups.

To assess whether the learning situation remained incidental in the Uncued group, a short questionnaire was 
administered after the Testing Phase, similar to previous studies27,62,63. Participants were asked whether they 
observed any regularity in the task, and none of them reported anything regarding the embedded sequence or 
the learning situation. To ensure that the cuing manipulation was effective and the Cued group followed the 
instruction and learned the sequence order, a post-block sequence report task was administered after each block33. 
Participants were instructed to recall the order of the sequence trials (that was cued by the picture of a dog’s 
head) and report the order three times (12 button presses).

We used a fixed inter-stimulus interval (ISI) to control for the maximum amount of time that the Cued and 
Uncued groups can spend on a given trial and therefore on the whole task. The timing of an experimental trial 
was the following: The duration of stimulus presentation was 500 ms (when participants were required to respond 
to the stimulus), then the four empty circles were presented for 120 m before the next stimulus appeared, thus, 
the total ISI was 620 ms. These values are defined based on previous studies investigating healthy young adults, 
where participants had an average response time under 450 ms at the beginning of the task and 430 ms by the 
end of the Learning Phase27,63–65. Moreover, by using a fast-paced fix ISI, we also aimed to keep the attentional 
demand high in the Cued group throughout the task, as compared with a slow-paced ISI or self-paced timing 
where participants typically learn the repeating sequence already within the first three-six blocks26,32,33,35,62.

The Learning Phase was followed by a 12-h delay, thereafter the Testing Phase was administered, which 
contained five blocks of the ASRT task. In order to measure the effect of sleep on consolidation, a PM-AM vs. 
AM-PM design was used: during the delay, half of both Uncued and Cued groups slept (Sleep subgroups, PM-AM 
design) and the other half had normal daily activity (No-sleep subgroups, AM-PM design27,66). All PM sessions 
took place between 7 and 10 PM, and all AM sessions took place between 7 and 10 AM. Participants in the sleep 
subgroups slept on average 6 h (Uncued group: M = 5.8, SD = 0.84; Cued group: M = 6.0, SD = 0.84; p = 0.511). 
All participants were aware that they would perform the same task in the second experimental session (Fig. 2). 
Following the Testing Phase, both the Uncued and the Cued group performed the Inclusion–Exclusion Task.

Statistical analysis.  Statistical analyses were based on previous studies25,26,33,35,36,67 and were carried out 
using SPSS version 22.0 (SPSS, IBM).

Post‑block sequence report task.  This task was administered in the Cued group only. Performance on this task 
was used to test whether participants followed the instruction to learn the serial order of the cued sequence 
trials. Due to technical reasons, data from one participant in the Sleep subgroup was not recorded. First, the 
percentage of correct button presses (out of 12) was calculated after each block, then these were averaged across 
epochs (i.e., blocks of five, see below). These averaged values were submitted to mixed design ANOVAs sepa-
rately for the Learning Phase and the 12-h post-learning offline delay to reveal whether participants followed the 
instruction and ascertain that the cuing manipulation was effective.

ASRT task.  Epochs of five blocks were analyzed instead of single blocks: The Learning Phase consisted of 
five epochs, while the Testing Phase consisted of one epoch. On average, the Cued group showed slower RTs 
compared with the Uncued group, possibly as a result of the cuing manipulation (for more details see the Sup-
plementary Materials). Hence, to ensure that potential between-group differences in statistical learning are not 
due to this group difference, we standardized the original RT values. To this end, first we transformed the data 
by dividing each participants’ raw RT values for the random trials with their own average performance of the 
first epoch of the Learning Phase [for a similar approach see68]. In the next step, we multiplied all data by 100 
for easier interpretability and presentation. This way, results could be interpreted in terms of percentages, where 
each participants’ performance at the beginning of the Learning Phase was around 100% and changed as the 
task progressed. Following the transformation, the Uncued and Cued groups showed similar RTs (main effect of 
INSTRUCTION: F(1, 92) = 0.011, p = 0.916, ηp

2 < 0.001). Note that the results concerning raw RTs and accuracy 
can be found in the Supplementary Materials (Table S1 and Table S3, respectively, and Table S4 for the Bayesian 
analyses).
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We calculated median RTs for correct responses only, for each participant and each epoch, separately for the 
random high- and random low-probability trial types. Then we calculated statistical learning scores as the dif-
ference between these two trial types, by extracting random high-probability trials from random low-probability 
ones. Larger scores indicated better learning performance. Due to the transformation procedure, these learn-
ing scores can be interpreted as percentages showing how much faster participants responded to the random 
high-probability trials compared with the random low-probability ones. These learning scores were submit-
ted to mixed design ANOVAs to evaluate learning and consolidation of the acquired knowledge, respectively. 
Greenhouse–Geisser epsilon (ε) correction was used when necessary. Original df values and corrected p values 
(if applicable) are reported together with partial eta-squared (ηp

2) as the measure of effect size. LSD correction 
was used for pairwise comparisons and Cohen’s d is reported as an effect size.

As we expected no change in performance as a function of cuing and/or the delay activity either during the 
Learning Phase or over the post-learning offline period, we conducted Bayesian ANOVAs to overcome the limi-
tations of the frequentist approach (i.e., null-hypothesis significance testing69,70) and gain statistical evidence for 
the possible null-results. Bayes Factors (BF01) were calculated using JASP (version 0.8.1.1, JASP Team, 2017). In 
these Bayesian ANOVAs, BF01 values reflect how well a model fits the data against the null model. The smaller 
the BF01 value is, the better the model predicts the data. BF01 value of the null model, which contains the grand 
mean only, is always 1 as it is compared to itself71,72. Additionally, we also present the evidence in the data for 
including a factor or an interaction of factors in a model quantified by BFExclusion values (inverse of BFInclusion 
values). BFExclusion values reflect the change from prior inclusion odds to posterior inclusion odds and can be 
interpreted in the same ways as BF01 values (i.e., the smaller the value, the stronger the evidence for including 
the given factor). Bayesian analyses conducted on the standardized RTs as well as on the Inclusion–Exclusion 
task are presented after the standard null-hypothesis testing effects in the Results section below. For the sake 
of completeness, we also present the Bayesian analyses conducted on the raw RTs and the accuracy data in the 
Supplementary Materials (Discussion section and Table S4).

Inclusion–exclusion task.  Twelve participants (two in the Uncued No-sleep subgroup, two in the Uncued Sleep 
subgroup, five in the Cued No-Sleep subgroup, and three in the Cued No-sleep subgroup) were excluded from 
these analyses as they did not follow the instructions in either the Inclusion or the Exclusion condition (e.g., not 
using every response buttons). Data from one participant in the Uncued Sleep subgroup is missing due to techni-
cal problems. To contrast performance against chance level, we calculated the percentage of high-probability tri-
plets participants generated and subtracted the value of chance level (25%, percentage of the 16 high-probability 
triplets out of the 64 possible triplets). These scores were then submitted to a mixed design ANOVA. Since we 
did not expect any difference across the groups and the sample size was reduced here, a Bayesian mixed design 
ANOVA was also conducted and reported similarly as described above.

Results
Did the cuing manipulation successfully induce divided attention in the Cued group?  To test 
whether the applied cuing manipulation was effective to induce divided attention in the Cued group, we con-
ducted two different comparisons. First, we assessed responses for the sequence trials. Specifically, we compared 
performance on sequence trials with the average performance on random trials regardless of probability (i.e., 
averaged across random high- and random low-probability trials) across the four subgroups during the Learning 
Phase as well as over the 12-h post-learning offline period. Standardized RTs were analyzed here instead of raw 
RTs since general performance on the random trials was slowed down in the Cued group as reported above. Here 
we highlight the main result of interest only; all effects can be found in Table S2 of the Supplementary Materials. 
Importantly, in the Uncued group, we did not find any significant difference in RTs to sequence vs. random trials, 
whereas the Cued group showed faster responses to sequence trials compared with the random ones (Learning 
Phase: p = 0.001; over the 12-h delay: p = 0.002). This result demonstrates that the Cued group followed the cuing 
instruction and learned the repeating sequence trials, whereas this learning process was not apparent in the 
Uncued group. For more details, see also the  Methods section and Figure S2 of the Supplementary Materials.

Second, we assessed the Cued group’s performance on the post-block sequence report task to ensure that they 
indeed acquired the sequence order. A mixed design ANOVA was conducted on the percentage of correct button-
presses in the Learning Phase with EPOCH as a within-subject factor (1–5) and SLEEP (Sleep vs. No-sleep) as a 
between-subject factor. The analysis revealed significant sequence knowledge (INTERCEPT: F(1, 45) = 250.334, 
p < 0.001, ηp

2 = 0.848). Furthermore, knowledge of the sequence order gradually increased over practice (signifi-
cant main effect of EPOCH: F(4, 180) = 19.078, p < 0.001, ε = 0.593, ηp

2 = 0.298), while performance was similar 
between the Sleep and the No-sleep subgroups (main effect of SLEEP: F(1, 45) = 0.02, p = 0.890, ηp

2 < 0.001; 
EPOCH × SLEEP interaction: F(4, 180) = 0.043, p = 0.974, ε = 0.593, ηp

2 = 0.001; Fig. 3). To assess performance 
over the 12-h delay period, a similar ANOVA was conducted with EPOCH (the last epoch of the Learning Phase 
and the first epoch of the Testing Phase; thus, Epoch 5 vs. Epoch 6) as a within-subject factor and SLEEP (Sleep 
vs. No-sleep) as a between-subject factor. Again, significant sequence order knowledge was found (INTERCEPT: 
F(1, 45) = 249.559, p < 0.001, ηp

2 = 0.847), while performance did not differ either as a function of epoch (main 
effect of EPOCH: F(1, 45) = 0.381, p = 0.540, ηp

2 = 0.008) or delay activity (main effect of SLEEP: F(1, 45) < 0.001, 
p < 0.995, ηp

2 < 0.001; EPOCH × SLEEP interaction: F(1, 45) = 0.068, p = 0.796, ηp
2 = 0.001; Fig. 3). Overall, the 

post-block sequence report task provided further evidence that participants followed the cuing manipulation.

Do the uncued and cued groups show different statistical learning performance in the learning 
phase?  We tested potential group differences in statistical learning by conducting a mixed design ANOVA 
on standardized RT data of the statistical learning scores (i.e., difference between random high- vs. random 
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low-probability trial types) with EPOCH (1–5) as a within-subject factor and INSTRUCTION (Uncued vs. 
Cued) and SLEEP (Sleep vs. No-sleep) as between-subject factors. Note that, for the Learning phase, the Sleep 
vs. No-sleep subgroup comparison can reflect time of day effects rather than the effect of sleep per se as the 
Sleep subgroup was first tested in the evening and the No-sleep subgroup was first tested in the morning. The 
ANOVA revealed significant statistical learning (INTERCEPT: F(1, 92) = 214.971, p < 0.001, ηp

2 = 0.700), that 
is, participants responded faster to random-high probability trials compared with the random-low probability 
ones. The Uncued and Cued group did not differ significantly in the degree of statistical learning (main effect 
of INSTRUCTION: F(1, 92) = 0.802, p = 0.374, ηp

2 = 0.011), indicating that the cuing manipulation did not affect 
this type of learning. Irrespective of the group instruction, statistical knowledge increased as the task progressed 
(significant main effect of EPOCH: F(4, 368) = 5.356, p < 0.001, ηp

2 = 0.055). The EPOCH × INSTRUCTION 
interaction was not significant (F(4, 368) = 0.671, p = 0.612, ηp

2 = 0.007), suggesting that the trajectory of statisti-
cal learning was also independent of the cuing manipulation (see Fig. 4).

The Sleep and No-sleep subgroups, irrespective of the cuing, showed similar overall degree of statistical learn-
ing (main effect of SLEEP: F(1, 92) = 0.288, p = 0.593, ηp

2 = 0.003) and did not differ in their learning trajectory 
(EPOCH × SLEEP interaction: F(4, 386) = 0.391, p = 0.815, ηp

2 = 0.004). The INSTRUCTION × SLEEP interaction 
neither reached significance (F(1, 92) = 2.800, p = 0.098, ηp

2 = 0.030), indicating that the time of day, irrespective of 
the cuing manipulation, did not affect statistical learning performance. The EPOCH x INSTRUCTION × SLEEP 
interaction was not significant either (F(4, 368) = 0.232, p = 0.920, ηp

2 = 0.003), indicating that the trajectory of 
statistical learning was comparable in the four subgroups.

To confirm our interpretations, a Bayesian mixed design ANOVA and BF01 values were calculated for 
the Learning Phase. Our data favored the model containing only the factor of EPOCH (BF01 = 0.0017; 
BFExclusion = 0.051), providing further support to a similar statistical learning process regardless of whether or not 
the sequence was cued as well as of the time of day when learning occurred. All other BF01 values were higher than 
1 (INSTRUCTION: BF01 = 7.061, BFExclusion = 17.502; EPOCH × INSTRUCTION: BF01 = 3.860, BFExclusion = 103.581; 
SLEEP: BF01 = 6.507, BFExclusion = 16.079; EPOCH × SLEEP: BF01 = 5.640, BFExclusion = 159.104; INSTRUC-
TION × SLEEP: BF01 = 84.505, BFExclusion = 32.779; EPOCH × INSTRUCTION × SLEEP: BF01 = 479,224.597, 
BFExclusion = 187,945.864).

Do the uncued and cued groups show different statistical performance over the 12‑h offline 
period?  A similar mixed design ANOVA on statistical learning scores was conducted to assess consolida-
tion after the offline period with EPOCH (the last epoch of the Learning Phase and the first epoch of the Test-

Figure 3.   Performance of the Cued group in the post-block sequence report task over the Learning and Testing 
Phases. Participants were asked to provide 12 button presses, i.e., the four-element sequence three times, after 
each block of the ASRT task. Performance was defined as the percentage of correct button presses. The Sleep and 
No-sleep subgroups showed similar performance in the Learning Phase as well as after the post-learning offline 
period. While at the beginning of the Learning Phase participants performed around 40%, by the end of this 
session and during the Testing Phase they performed around 75% (i.e., they reported the sequence flawlessly 
two times out of three). We did not find any significant time of day or sleep-related effects during the Learning 
or Testing Phases, respectively. Error bars represent the standard error of the mean (SEM).
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ing Phase; thus, Epoch 5 vs. Epoch 6) as a within-subject factor and INSTRUCTION (Uncued vs. Cued) and 
SLEEP (Sleep vs. No-sleep) as between-subject factors. Overall, participants showed knowledge of the statistical 
regularities (significant INTERCEPT: F(1, 92) = 196.852, p < 0.001, ηp

2 = 0.681). Similarly to the Learning Phase, 
the Uncued and Cued groups did not differ significantly in the amount of statistical knowledge (main effect 
of INSTRUCTION: F(1, 92) = 0.083, p = 0.773, ηp

2 = 0.001; Fig. 4). Statistical knowledge was retained over the 
offline period (main effect of EPOCH: F(1, 92) = 2.704, p = 0.103, ηp

2 = 0.029), irrespective of the cuing manipula-
tion (EPOCH × INSTRUCTION interaction: F(1, 92) = 0.055, p = 0.815, ηp

2 = 0.001).
There were no significant differences in overall learning scores between the Sleep and No-sleep sub-

groups (main effect of SLEEP: F(1, 92) = 0.002, p = 0.961, ηp
2 < 0.001), irrespective of the cuing manipulation 

(INSTRUCTION × SLEEP interaction: F(1, 92) = 0.620, p = 0.433, ηp
2 = 0.007). Both the Sleep and No-sleep sub-

groups retained the acquired knowledge over the delay period (EPOCH × SLEEP interaction: F(1, 92) = 0.002, 
p = 0.969, ηp

2 < 0.001), similarly in the Uncued and Cued groups (EPOCH × INSTRUCTION × SLEEP interaction: 
F(1,920) = 0.224, p = 0.637, ηp

2 = 0.002, Fig. 4).
A Bayesian mixed design ANOVA and BF01 values were calculated for the learning scores in Epoch 5 and 

6. This analysis provided further support for our results: our data favored the null model (BF01 = 1), suggesting 
the retention of statistical knowledge over the offline period regardless of the delay activity (Sleep vs. No-sleep) 
and of the cuing manipulation (Uncued vs. Cued; see Fig. 4). All other BF01 values as well as BFExclusion values 
were higher than 1 (EPOCH: BF01 = 1.551, BFExclusion = 3.957; INSTRUCTION: BF01 = 5.109, BFExclusion = 12.780; 
EPOCH × INSTRUCTION: BF01 = 37.411, BFExclusion = 28.492; SLEEP: BF01 = 5.438, BFExclusion = 12.909; 
EPOCH × SLEEP: BF01 = 23.999, BFExclusion = 33.257; INSTRUCTION × SLEEP: BF01 = 88.567, BFExclusion = 48.228; 
EPOCH × INSTRUCTION × SLEEP: BF01 = 8951.745, BFExclusion = 1262.395).

Was the acquired knowledge intentionally accessible?  To test whether the acquired probability-
based information remained implicit or became intentionally accessible, the Inclusion–Exclusion task was 
administered in both groups (see Methods) after the ASRT task of the Testing Phase. Data were analyzed in a 
mixed design ANOVA with CONDITION (Inclusion vs. Exclusion) as a within-subject factor and INSTRUC-
TION (Uncued vs. Cued) and SLEEP (Sleep vs. No-sleep) as between-subject factors. The significant main effect 
of INTERCEPT (F(1, 79) = 76.104, p < 0.001, ηp

2 = 0.491) revealed that, overall, participants generated high-
probability triplets above chance level, which was 25%. The main effect of CONDITION revealed a slight trend 
towards more high-probability triplets being generated in the Inclusion than in the Exclusion condition (F(1, 
79) = 3.205, p = 0.077, ηp

2 = 0.039). The main effect of INSTRUCTION (F(1, 79) = 0.254, p = 0.616, ηp
2 = 0.003) 

and the CONDITION × INSTRUCTION interaction (F(1, 79) = 0.901, p = 0.345, ηp
2 = 0.011) were not significant, 

suggesting that the cuing manipulation did not have an overall effect on the proportion of high-probability tri-
plets generated in the Inclusion and Exclusion conditions (see Fig. 5), even despite the fact that the Cued group 
gained explicit knowledge about the order of the cued repeating sequence as evidenced by the results of the post-
block sequence reports (see the first subsection of the Results).

The main effect of SLEEP was not significant (F(1, 79) = 0.254, p = 0.616, ηp
2 = 0.054). The CONDI-

TION × SLEEP interaction, however, revealed a significant group difference between the Inclusion and Exclu-
sion conditions (F(1, 79) = 4.687, p = 0.033, ηp

2 = 0.056). Pairwise comparisons showed that the Sleep subgroups 
altogether (i.e., combined across the Cued and Uncued groups) generated less high-probability triplets in the 
Exclusion condition compared with the Inclusion condition (p = 0.007, d = 0.09), while the No-sleep subgroups 
performed similarly in the two conditions (p = 0.791, d = 0.02). The INSTRUCTION × SLEEP interaction also 

Figure 4.   Statistical learning scores (i.e., the difference between RTs for random high- vs. random low-
probability trials) over the Learning and Testing Phases. Left panel: Sleep subgroups within the Uncued and the 
Cued groups shown separately. Right panel: No-sleep subgroups within the Uncued and the Cued groups shown 
separately. The Uncued and Cued groups showed similar learning performance in the Learning Phase. Over the 
12-h delay period, both the Uncued and Cued groups retained the acquired knowledge. We did not find any 
significant time of day or sleep-related effects during the Learning or Testing Phases, respectively. Error bars 
represent the SEM.
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revealed a significant effect (F(1, 79) = 4.419, p = 0.039, ηp
2 = 0.053). Pairwise comparisons on the combined per-

formance in the Inclusion and Exclusion conditions showed that while the Sleep and No-sleep subgroups within 
the Uncued group performed comparably (p = 0.253, d = 0.05), the Cued Sleep subgroup generated slightly more 
high-probability triplets compared with the Cued No-sleep subgroup (p = 0.074, d = 0.10) and the Uncued Sleep 
subgroup (p = 0.030, d = 0.12), as well. The No-Sleep subgroups also performed similarly (p = 0.455, d = 0.03). This 
pattern seems to be driven mainly by the Cued Sleep subgroup generating more high-probability triplets in the 
Inclusion condition than any other subgroups (see Fig. 5), although the CONDITION × INSTRUCTION × SLEEP 
interaction did not reach significance (F(1, 79) = 0.009, p = 0.926, ηp

2 < 0.001). Overall, these results point towards 
that the Sleep subgroups could intentionally access and control the acquired knowledge to a certain level, while 
the No-sleep subgroups could not. This pattern seemed to be slightly stronger for the Cued Sleep subgroup 
compared with the Uncued Sleep subgroup. Nonetheless, as the effect sizes for the pairwise comparisons are 
small, these results should be treated with caution. Finally, all subgroups still performed above chance-level in 
the Exclusion condition, suggesting that none of them could exert full control over the acquired knowledge as 
required by the task instructions.

A Bayesian mixed design ANOVA was also conducted for this data, revealing that the best fitting model 
contains only the grand mean (BF01 of the null model = 1.000; CONDITION BF01 = 1.353, BFExclusion = 2.165; 
INSTRUCTION BF01 = 3.500, BFExclusion = 5.416; CONDITION × INSTRUCTION BF01 = 12.604, BFExclusion = 6.345; 
SLEEP BF01 = 4.784, BFExclusion = 4.585; CONDITION × SLEEP BF01 = 1.353, BFExclusion = 1.838; INSTRUC-
TION × SLEEP BF01 = 12.454, BFExclusion = 3.735; CONDITION × INSTRUCTION × SLEEP BF01 = 28.641, 
BFExclusion = 5.918). Thus, the Bayesian analysis suggests that the delay activity related findings of the mixed-
design ANOVA reported above are not reliable, possibly due to the low sample size, and therefore should be 
treated with caution.

Discussion
The goal of the present study was twofold. First, we tested how divided attention affects the acquisition of second-
order transitional probabilities in the same stimulus stream. Second, we investigated how the post-learning offline 
period affects the acquired statistical knowledge with a particular focus on the role of the delay activity (sleep vs. 
wake). Performance was measured by a probabilistic sequence learning (namely, the ASRT) task within which 
the sequence was cued for one half of the participants (Cued group) and uncued for the other half (Uncued 
group). We controlled for the time on task with a fast-paced fixed inter-stimulus interval, which also served to 
maintain the attentional demand in the cued version. The learning phase was followed by a 12-h post-learning 
offline period, which contained sleep for half of the groups (Sleep subgroups) and normal daily activity for the 
other halves (No-sleep subgroups), to measure consolidation of the acquired statistical knowledge. Compared 
with the Uncued group, the Cued group responded faster on the cued sequence trials than on the random ones, 
independent of trial-probability. Furthermore, the post-block sequence report task, administered in the Cued 
group only, showed that participants acquired the sequence order. These results provide evidence that participants 

Figure 5.   Percentage of high-probability triplets generated in the Inclusion and the Exclusion conditions 
by the four subgroups. Dashed horizontal line at 25% marks chance-level performance. Overall, participants 
performed above chance level both in the Inclusion and Exclusion conditions. The Sleep subgroups altogether 
(combined across the Uncued and Cued groups) generated a slightly different percentage of high-probability 
triplets in the Exclusion and Inclusion conditions, while the No-sleep subgroups performed at similar levels in 
the two conditions. This pattern seemed somewhat stronger for the Cued Sleep subgroup compared with the 
Uncued Sleep group. These group differences, however, were not supported by the Bayesian ANOVA. Error bars 
represent the SEM.
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in the Cued group followed the instruction and the cuing manipulation was successful in inducing a divided 
attention condition.

Our results regarding statistical learning performance revealed that the learning process was not sensitive to 
the cuing manipulation: The Cued and Uncued groups showed similar learning performance. The comparison 
of the Sleep and No-sleep subgroups in the Learning Phase could have reflected time of day related effects rather 
than the effect of sleep per se due to the applied PM-AM/AM-PM design. Nevertheless, we did not find such a 
time of day related group difference. After the 12-h post-learning offline period, all subgroups showed similarly 
retained statistical knowledge, suggesting that the consolidation was also independent of the cuing manipula-
tion and was resistant to the delay, irrespective of the post-learning delay activity (sleep vs. wake). These results 
were further supported by the Bayesian analyses. Moreover, the analysis of raw (i.e., non-standardized) RTs as 
well as of the accuracy data also yielded the same patterns. The Inclusion–Exclusion task revealed that both the 
Cued and Uncued groups could comparably generate the knowledge on the structure of the task, while neither 
could intentionally access and control this knowledge. Sleep during the offline delay seemed to have a slightly 
beneficial effect on the latter process; nonetheless, this result should be treated with caution as the sample size 
was reduced here, and the Bayesian analysis did not support the finding.

In line with our hypothesis, the manipulation of attention had no effect on the acquisition of statistical knowl-
edge, either as measured by RT learning scores (the primary measures for our analyses, see also Table S1 and 
Table S4 of Supplementary Materials) or by accuracy learning scores (see Table S3 and Table S4). So far, studies 
investigating statistical learning in the ASRT task with and without a cued sequence revealed mixed results. 
Nemeth et al.26 showed enhanced statistical learning performance, while in the study of Szegedi-Hallgató et al.31 
performance was similar across the cued and uncued groups. The reason for these mixed results is unclear. One 
possible explanation is that the self-paced timing of the task enabled participants to spend different time on the 
task, potentially leading to enlarged individual differences within as well as across studies. Nevertheless, it is 
important to note that although these studies used a similar cued version of the ASRT task, they did not aim to 
systematically manipulate attention processes. We established changes in the experimental design so that it bet-
ter suits the goals of the present study. First, we aimed to control for the time on task by using a fixed timing, so 
that the maximum amount of time that participants could spend on a given trial (and consequently on the task 
as a whole) was the same for the Uncued and Cued groups. Second, we applied a fast paced timing to avoid the 
automatization of sequence knowledge32,33,35 and keep the attentional demand high in the Cued group. Overall, 
our findings suggest that the acquisition of second-order transitional probabilities is not affected by divided 
attention in the ASRT task even when we control for the timing of the task.

Previous studies investigating the effect of a secondary task on statistical learning yielded inconsistent find-
ings: Some conclude that statistical learning is resistant to a dual task manipulation14,18–20,73, while in other cases 
degraded performance is observed16,19,21–24. Importantly, statistical learning in the language domain seems to be 
more affected by a secondary task16,22, cf. 23, compared with statistical learning in the visuomotor domain14,18–20, in 
line with our results. However, as already mentioned in the Introduction, some of these studies used a secondary 
task related to a second stimulus stream resulting in a selective attention manipulation where good performance 
on both tasks can be achieved if attention is switched between the two tasks, potentially affecting the stimulus 
processing, as well17,74,75. In the present experiment, we chose the cuing of the repeating sequence embedded 
in the same stimulus stream as the probability-based associations, while all stimuli of that stream are similarly 
processed, and attention is divided between the cued and the uncued stimuli. Based on our and the previous 
results14,18,20, we conclude that visual statistical learning is not affected by divided attention.

Regarding the consolidation of statistical knowledge, on the one hand, we found that the acquired statistical 
information both with and without the cuing manipulation was comparably retained during the 12-h post-
learning offline period. The consolidation of (pure) statistical knowledge has received relatively little empiri-
cal attention so far15,46,76. Previous studies that used the uncued version of the ASRT task only focused on the 
so-called triplet learning measure (for more details see Task section36,37,41,42,66,77–79), which, although somewhat 
contaminated with sequence information, seemed to be stable during the offline delay such as statistical learn-
ing. Consolidation of pure statistical knowledge in the cued version of the ASRT task has been investigated in 
Simor et al.’s study35, showing no change in statistical knowledge over a 1.5-h long offline delay. Our findings 
are consistent with these studies and our hypothesis, revealing reliably retained statistical knowledge during a 
12-h offline period, irrespective of whether learning occurred with or without divided attention. These results 
were further confirmed by the Bayesian analysis, the raw (i.e., non-standardized) RT data and the accuracy data.

We also examined the role of delay activity (sleep vs. wake) in the consolidation of statistical knowledge, and 
found that sleep did not have a differential effect on performance, as expected based on previous studies27,35,42,80,81. 
The acquired knowledge was similarly retained, irrespective of the delay (sleep vs. wake) activity. Although the 
analysis of accuracies yielded improved consolidation during sleep as opposed to a wake offline period (see 
Results section and Table S3 of Supplementary Materials), this result was not confirmed by the Bayesian analysis 
(Discussion section and Table S3 in the Supplementary Materials). Furthermore, in line with our main results 
on standardized RTs, the analysis of raw RTs yielded evidence for a sleep-independent consolidation (for the 
frequentist analysis, see Introduction section, Figure S1 and Table S1; for the Bayesian analysis, see Discussion 
section and Table S4 in Supplementary Materials). Altogether, our results suggest that, at least in the visuomotor 
domain, statistical knowledge is retained over a 12-h delay period, irrespective of divided attention and delay 
activity (sleep vs. wake).

Finally, to investigate whether the cuing manipulation and the delay activity affected the intentional access to 
and control over the acquired statistical knowledge after the ASRT task in the Testing Phase, the Inclusion–Exclu-
sion task adapted from Jacoby’s Process Dissociation Procedure36,48,49 was used. This measure revealed that the 
delay activity had a greater effect on performance than the cuing manipulation (cf. SLEEP × CONDITION 
interaction vs. INSTRUCTION × SLEEP interaction). The Sleep subgroups (combined across the Cued and 
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Uncued groups) could intentionally access and control the acquired knowledge to a certain level, while the No-
sleep subgroups could not. This pattern seemed somewhat stronger for the Cued Sleep subgroup compared with 
the Uncued Sleep as well as the Cued No-Sleep subgroup. Importantly, as the Bayesian analysis did not confirm 
these results and sample size was reduced in this task (see the Inclusion–Exclusion task subsection of Statistical 
analysis), these conclusions should be treated with caution. The lack of a significant INSTRUCTION × CONDI-
TION interaction suggests that even though the Cued group intentionally learned the repeating sequence order 
(see the post-block sequence report task and the analysis of sequence trials), this did not improve the access to 
their statistical knowledge. Overall, results suggest that none of the groups could exert intentional control over 
the acquired probability-based knowledge.

The present study is not without limitations. First, opposing the established divided attention designs where 
the primary and secondary tasks can be tested both together and independently, the secondary task (i.e., the 
intentional acquisition of the sequence order) could not be tested separately in the present experiment. The 
main goal of the present study was to keep all stimuli attended and rule out that statistical learning performance 
is affected merely due to altered stimulus processing [cf. 17]. To this end, we chose an experimental design 
that, although did not allow us to measure the secondary task separately, bore the benefit that both tasks took 
place within the same stimulus stream. Second, the applied fixed paced timing could have resulted in biased 
RTs by disincentivizing participants to respond as fast as possible. Nevertheless, we still observed faster RTs for 
the sequence trials compared with the random ones in the Cued group (cf. Figure S2), suggesting that the task 
settings were still well-suited to assess the effect of cuing on performance. Third, the applied PM-AM/AM-PM 
design inevitably created group differences regarding the time of day when acquisition and testing took place. 
Although this difference could have confounded the present results, the lack of Sleep versus No-sleep subgroup 
differences in statistical learning or consolidation speaks against this scenario.

In summary, the present study showed that divided attention does not affect the acquisition and consolidation 
of second-order transitional probabilities in the visuomotor domain. Statistical learning successfully took place 
and the acquired knowledge was retained over the 12-h post-learning offline period, irrespective of whether 
or not participants paid attention to the cued sequence embedded in the same stimulus stream. Sleep seems to 
have no superiority compared with a wake delay activity in these processes. Overall, our findings provide deeper 
insights into the potential roles of divided attention and the post-learning delay activity (sleep vs. wake) in the 
acquisition and consolidation of statistical knowledge and highlight the robustness of these processes.

Data availability
All data are available on the following online repository: https​://osf.io/b68pg​/?view_only=c2267​8446d​0f47b​
faa78​d051f​00e0a​f9.
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Inhibitory control hinders habit 
change
Kata Horváth1,2,3,4, Dezso Nemeth2,3,5,7* & Karolina Janacsek2,6,7*

Our habits constantly influence the environment, often in negative ways that amplify global 
environmental and health risks. Hence, change is urgent. To facilitate habit change, inhibiting 
unwanted behaviors appears to be a natural human reaction. Here, we use a novel experimental 
design to test how inhibitory control affects two key components of changing (rewiring) habit-
like behaviors in healthy humans: the acquisition of new habit-like behavior and the simultaneous 
unlearning of an old one. We found that, while the new behavior was acquired, the old behavior 
persisted and coexisted with the new. Critically, inhibition hindered both overcoming the old behavior 
and establishing the new one. Our findings highlight that suppressing unwanted behaviors is not 
only ineffective but may even further strengthen them. Meanwhile, actively engaging in a preferred 
behavior appears indispensable for its successful acquisition. Our design could be used to uncover how 
new approaches affect the cognitive basis of changing habit-like behaviors.

Our automatic, habitual behaviors are constantly challenged. The ongoing threats from environmental and health 
disasters1,2 force us to alter dangerous and unsustainable behaviors, and to replace them with safer, sustainable 
ones. To achieve this, it is crucial to understand how habits form and change in the healthy human mind3.

Habits are traditionally defined as automatic stimulus–response links that are insensitive to the outcome value 
of the response (as opposed to goal-directed behaviors), by non-human animal studies4,5. Previous research aimed 
at directly translating this definition to measuring habits in humans has repeatedly failed (for recent successful 
attempts, see6,7). Alternatively, human habits can be defined as more complex behaviors that are characterized 
by a collection of behavioral attributes: they are acquired via associative learning processes gradually over an 
extended period of practice, often without conscious awareness, and once developed, they can be performed with 
little thought or attention (i.e., automatically; for more details see the “Behavioral and neural characteristics of 
habit learning across human and animal studies” section in the Supplementary Information)8–13. During habit 
change, new associations are learned to replace old ones, suggesting that overcoming old habits and developing 
new habits share the same learning process14,15. Aspects of habit change have been widely studied in clinical 
and health settings (e.g., addiction), in non-human animals, and in relation to reward-related behavior (e.g., 
extinction and counterconditioning)16,17. This research has extensively characterized the computational and 
neural underpinnings of how simple stimulus–response(–reward) associations contribute to habit formation 
and change. However, it remains poorly understood how habit change occurs in healthy humans when more 
complex associations (i.e., when not only the current stimulus influences the response but a sequence of preceding 
stimuli) are learned and modified without explicit rewards18. These features more closely resemble habit change 
in daily life; therefore, identifying the cognitive changes that occur during habit change in these contexts could 
significantly broaden our understanding in this field.

A recent study using self-reported measures in healthy individuals found that increasing the frequency of 
new, sustainable behaviors (i.e., forming sustainable habits) was perceived to be more feasible than reducing 
old, unsustainable ones19. When participants imagined reducing unsustainable behaviors, the right dorsolateral 
prefrontal cortex—a key brain region for inhibitory-control processes—was activated. This finding suggests that 
inhibiting old, unsustainable behaviors may be a natural reaction when attempting to change habits. Research on 
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habit change in everyday settings has also implicated the role of effortful inhibition and self-control in overcom-
ing unwanted behaviors18,20. Importantly, however, how inhibitory control—the ability to suppress prepotent 
but unwanted actions, thoughts, or emotions21,22—affects habit change when complex associations need to be 
modified has not yet been directly probed in a controlled experimental setting in healthy humans.

Here we created a novel experimental design to test how inhibitory control affects two key components of 
changing habit-like behaviors: the acquisition of new complex associations and the simultaneous unlearning 
of old ones, in a neutral environment (i.e., without explicit rewards). Learning processes were examined via 
rewiring, whereby structural changes in the experimental task promoted the acquisition of new associations 
in place of old ones23. To test the rewiring of the initially acquired knowledge (henceforth referred to as old 
knowledge), we first needed to ensure that this knowledge was indeed acquired. This was assessed during the 
Learning phase, where 33 healthy young adults underwent an extensive practice on a visuomotor, four-choice 
reaction time task24–26 (Fig. 1). Unbeknownst to them, location of the visual stimuli followed a predetermined 
sequential order that alternated with randomly chosen locations, resulting in some runs of three consecutive 
trials (referred to as triplets) being more probable than others. This enabled us to track the initial acquisition of 
complex associations continuously.

This old knowledge was then challenged in the Rewiring phase, in which a structural change was introduced 
to the task. Seventy-five percent of originally high-probability triplets became low-probability (denoted as HL 
trials) and were replaced by new high-probability triplets (that were originally low-probability, denoted as LH 
trials; see Fig. 2a and, for further details, the “Supplementary methods” section in the Supplementary Informa-
tion), prompting the rewiring of the old knowledge. Thus, participants needed to unlearn most of what they 
acquired in the Learning phase as it was no longer relevant, and simultaneously acquire new associations from 
the partially changed sequence (henceforth referred to as new knowledge). Additionally, participants were asked 
to actively inhibit responses on some trials to engage their inhibitory control processes in this phase27,28. Then, 
both the old and new knowledge was assessed in the Testing phase. Here, responses were allowed on all trials, 
including those in which participants inhibited their responses during rewiring, to probe how inhibition affected 
their (un)learning processes. Using this carefully controlled experimental setting, we were able to directly exam-
ine how inhibitory control affects the (un)learning of complex associations that underlie automatic habit-like 
behaviors in healthy adults.

Initial acquisition and subsequent unlearning of associations that were no longer relevant due 
to the structural change in the task.  Learning successfully occurred in the Learning phase (Fig. 3a, cir-
cled area): participants showed increasingly higher learning scores (‘LL minus HL’, underlined letters indicating 
the triplet probabilities of the current comparison), reflecting faster responses to trials that were high-probability 
in Sequence A compared to low-probability ones (for raw RTs see Fig. S1a). This old knowledge was then par-
tially unlearned during the Rewiring phase (Fig. 3a, non-circled area), in which originally high-probability tri-
als became less probable (‘LL minus HL’; thus, both trial types compared were low-probability in Sequence B). 
The different time course of (un)learning across the two phases is indicated by the significant Phase × Period 
interaction (F(2, 60) = 5.70, p = 0.005, ηp

2 = 0.160). Specifically, participants gradually acquired the associations of 
Sequence A (Period 1 vs. Period 3: p = 0.002, Cohen’s d = 0.60, BF01 = 0.059), with learning scores differing signifi-

Figure 1.   Design of the experiment. The experiment consisted of three phases, each separated by 24-h delays. 
During the Learning phase, participants extensively practiced a four-choice visuomotor reaction time task over 
3600 trials, divided into three periods. In this task, a stimulus appeared in one of four horizontally arranged 
circles on the screen, and participants were asked to respond as quickly and accurately as they could using 
a response box. The associations of Sequence A (referred to as old knowledge) were acquired in this phase. 
Then during the Rewiring phase, a structural change was introduced to the task with Sequence B to prompt 
the rewiring of the old knowledge by acquiring the associations of this new sequence (referred to as new 
knowledge). Additionally, to engage participants’ inhibitory control processes in this phase, they were asked to 
suppress their responses on some trials (stimuli underlined with a red line during the task, No-go trials), but 
could respond on other (Go) trials. This phase also consisted of 3600 trials, divided into three periods. In the 
Testing phase, using a shorter version of the task, knowledge of both sequences was probed in a counterbalanced 
order (ABAB or BABA on the figure, where A and B refer to the sequence used in the Learning and Rewiring 
phases, respectively). Here, responses were allowed on all trials, including previously suppressed No-go trials, to 
assess the effect of inhibitory control on rewiring. The stimulus was taken from the public domain (retrieved on 
26/09/2017 from: www.​pixab​ay.​com).

http://www.pixabay.com
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cantly from zero in Period 2 (p = 0.001, Cohen’s d = 0.70, BF01 = 0.020) and Period 3 (p < 0.001, Cohen’s d = 0.79, 
BF01 = 0.005) of the Learning phase. In the Rewiring phase, learning scores started to slightly decrease (Period 
1 vs. Period 2: p = 0.050, Cohen’s d = 0.37, BF01 = 0.840; all other ps ≥ 0.178, Cohen’s ds ≤ 0.25, BF01s ≥ 2.210), 
reaching zero in Period 2 (p = 0.726, Cohen’s d = 0.06, BF01 = 4.926), and then slightly bounced back in Period 3 
(p = 0.030, Cohen’s d = 0.41, BF01 = 0.564). The main effects were not significant (Phase: F(1, 30) = 1.46, p = 0.237, 
ηp

2 = 0.046; Period: F(2, 60) = 1.74, p = 0.184, ηp
2 = 0.055). Overall, participants successfully acquired the associa-

tions of Sequence A in the Learning phase and could at least partially unlearn this knowledge in the Rewiring 
phase.

Acquisition of new knowledge after structural change in the task.  Learning of the new sequence 
occurred in the Rewiring phase (Fig. 3b, circled area): participants showed increasingly higher learning scores 
(‘LL minus LH’), indicating faster responses to trials that were high-probability in Sequence B compared to low-
probability ones (for raw RTs see Fig. S1a). Note that these associations were all low-probability in Sequence A; 
therefore, no learning was expected for them in the Learning phase (‘LL minus LH’). The different time course 
of learning across the two phases was revealed by the significant Phase × Period interaction (F(2, 60) = 3.89, 
p = 0.026, ηp

2 = 0.115). Specifically, performance did not change significantly during the Learning phase (pair-
wise comparisons of periods: all ps ≥ 0.282, Cohen’s ds ≤ 0.20, BF01s ≥ 3.019) and did not differ significantly 
from zero (all ps > 0.339, Cohen’s ds ≤ 0.17, BF01s ≥ 3.390). In the Rewiring phase, learning scores increased 
from Period 1 to Period 3 (p = 0.019, Cohen’s d = 0.44, BF01 = 0.390) and became greater than zero by the end of 
the task (Period 3: p = 0.026, Cohen’s d = 0.42, BF01 = 0.503). The main effects were not significant (Phase: F(1, 
30) = 1.60, p = 0.216, ηp

2 = 0.051; Period: F(2, 60) = 0.20, p = 0.820, ηp
2 = 0.007). In summary, these results confirm 

that participants acquired the associations of the new sequence after the structural change in the task. For a 

Figure 2.   Task structure and measures of learning in the experiment. (a) Locations of the visual stimuli 
followed a predetermined sequential order (1 through 4 on the figure indicate the four horizontally arranged 
locations on the screen) that alternated with randomly chosen locations (indicated by r) out of the four 
possible ones. Example sequences are shown on the figure; overall, pairs of six unique sequences were used 
in a counterbalanced order. Due to the alternating sequence structure, some runs of three consecutive trials 
were more probable than others (referred to as high- vs. low-probability triplets, respectively)29. An example 
of the difference between Sequence A and Sequence B used in the Learning and Rewiring phases, respectively, 
is shown by the underlined numbers. Due to this structural change in the task, the probability of some triplets 
changed from the Learning phase to the Rewiring phase: 75% of the initially high-probability triplets became 
low-probability (HL trials; thus, the first letter refers to the triplet probability in Sequence A, while the second 
letter refers to the probability of the same triplet in Sequence B) and were replaced by new high-probability 
triplets that were initially low-probability (LH trials). Additionally, the occurrence probability of some triplets 
remained constant: either being low-probability (LL trials) or high-probability (HH trials) in both phases (for 
further details see “Methods” section). (b) Learning scores were calculated as differences in response times to 
trials with changed (LH or HL) versus unchanged occurrence probabilities (LL or HH). This enabled us to assess 
how participants initially acquired the associations of Sequence A, and then updated their knowledge when 
practicing Sequence B. For example, we expected similarly slow responses to LH and LL trials in the Learning 
phase (as both were low-probability) but then faster responses to LH than LL in the Rewiring phase, indicating 
the acquisition of the more probable associations of Sequence B in this phase. Please note that all HH trials were 
Go during the Rewiring phase (for further details, see the “Supplementary methods” section in Supplementary 
Information). Consequently, learning scores involving LL trials were the primary measures of interest as these 
could be used to assess the effect of inhibitory control on rewiring (by contrasting learning scores calculated on 
those trials that were Go vs. No-go in the Testing phase).
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further analysis on how the acquisition of new knowledge compares with the initial learning process, see the 
Supplementary Information.

How did the inhibition of responses during rewiring affect the old knowledge?  In the Testing 
phase, we probed whether the old knowledge (using the ‘LL minus HL’ learning score) was expressed both in the 
old testing context (when the order of stimulus presentation followed Sequence A) and the new one (when stim-
ulus presentation followed Sequence B; see also Fig. 1 for design). Knowledge on the previously Go and No-go 
trials was contrasted in both testing contexts. As expected, learning scores were significantly higher when tested 
on Sequence A than on Sequence B (main effect of Sequence: F(1, 30) = 10.11, p = 0.003, ηp

2 = 0.252), regardless 
of the Go/No-go manipulation. At the same time, they were significantly above zero in both contexts, indicat-
ing that the old knowledge was expressed not only in its original context (Sequence A; ‘LL minus HL’, p < 0.001, 
Cohen’s d = 1.22, BF01 = 1.845e−5) but also in the new one (Sequence B; ‘LL minus HL’, p < 0.001, Cohen’s d = 0.71, 
BF01 = 0.147), where it was no longer relevant.

Crucially, the magnitude of learning scores depended both on the testing context (Sequence A vs. B) and 
whether responses were inhibited during rewiring (Go vs. No-go trials), as indicated by the significant Sequence × 
Inhibition interaction (F(1, 30) = 11.81, p = 0.002, ηp

2 = 0.282). When tested on Sequence A (Fig. 4a, circled area), 
learning scores were significantly above zero on Go and No-go trials (p = 0.001, Cohen’s d = 0.63, BF01 = 0.042; 
p < 0.001, Cohen’s d = 1.25, BF01 = 6.508e−6, respectively) and somewhat greater for the latter (p = 0.018, Cohen’s 
d = 0.45, BF01 = 0.360). This suggests that, instead of facilitating the unlearning process, inhibition potentially 
strengthened the expression of old knowledge in the old context. When tested on Sequence B (Fig. 4a, non-
circled area), learning scores did not differ significantly on Go and No-go trials (p = 0.500, Cohen’s d = 0.12, 
BF01 = 4.210). Importantly, participants performed significantly above zero on both (Go trials: p = 0.004, Cohen’s 
d = 0.55, BF01 = 0.112; No-go trials: p = 0.025, Cohen’s d = 0.42, BF01 = 0.486), again indicating that old knowledge 
was expressed even when it was not relevant, irrespective of whether responses were inhibited during rewiring.

Figure 3.   Learning trajectories of old and new knowledge in the learning and rewiring phases. The circled 
panels indicate the experimental phase in which higher learning scores were expected based on the probability 
of the trial types of comparison. For example, for the old knowledge (‘LL minus HL’ learning score), higher 
learning scores were expected in the Learning phase as trials with high vs. low triplet occurrence probability 
were contrasted here (‘LL minus HL’, underlined letters indicating probabilities of the current comparison; 
see also Fig. 2). (a) Participants successfully acquired the old knowledge (associations of Sequence A) in the 
Learning phase, indicated by gradually increasing learning scores. Then they at least partially unlearned this old 
knowledge in the Rewiring phase. (b) The new knowledge (associations of Sequence B) was gradually acquired 
in the Rewiring phase. (Since these associations were all low-probability in Sequence A, no learning was 
expected for them in the Learning phase). Please note that learning scores used in these analyses were calculated 
for Go trials only because no reaction times were collected for No-go trials in the Rewiring phase. Error bars 
represent Standard Error of the Mean (SEM).
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From another perspective, learning scores on Go trials did not differ significantly across testing contexts 
(p = 0.735, Cohen’s d = 0.06, BF01 = 4.945). In contrast, learning scores on No-go trials were significantly higher 
when tested on Sequence A than Sequence B (p < 0.001, Cohen’s d = 0.83, BF01 = 0.003), suggesting that the det-
rimental effect of inhibition (boosting, instead of decreasing old knowledge) was greater in the old context than 
the new one. The main effect of Inhibition was not significant (F(1, 30) = 0.83, p = 0.37, ηp

2 = 0.027). Overall, these 
results highlight the persistence of old knowledge across testing contexts and suggest a detrimental effect of the 
inhibition of responses during rewiring.

How did the inhibition of responses during rewiring affect the new knowledge?  In the Test-
ing phase, new knowledge (‘LL minus LH’) was differentially expressed depending both on the testing context 
(Sequence A vs. B) and whether responses were inhibited during the Rewiring phase (Go vs. No-go trials), indi-
cated by the significant Sequence × Inhibition interaction (F(1, 30) = 4.20, p = 0.049, ηp

2 = 0.123). When tested on 
Sequence A, learning scores did not differ significantly from zero either on Go or No-go trials (p = 0.150, Cohen’s 
d = 0.27, BF01 = 1.956 and p = 0.478, Cohen’s d = 0.13, BF01 = 4.115 respectively; Go vs. No-go: p = 0.780, Cohen’s 
d = 0.05, BF01 = 5.030). This was expected because the contrasted trials were all low-probability in Sequence A 

Figure 4.   The effect of inhibitory control on old and new knowledge as revealed by performance in the Testing 
phase. The circled panels indicate the testing context (task version with Sequence A or B) in which higher 
learning scores were expected. For example, for the new knowledge (‘LL minus LH’ learning score), higher 
learning scores were expected in the new context (when stimulus presentation order followed Sequence B), since 
trials with high vs. low triplet occurrence probabilities were contrasted here (‘LL minus LH’, underlined letters 
indicating probabilities of the current comparison; see also Fig. 2). (a) Old knowledge. When tested on Sequence 
A (the original, old context), participants showed significant above-zero performance on Go and No-go trials, 
with significantly higher learning scores for the latter. This suggests that the old knowledge was present, and 
inhibiting responses during rewiring strengthened, instead of facilitated, its unlearning. When tested on 
Sequence B (the new context), participants exhibited similar, significantly above-zero learning scores on Go and 
No-go trials, suggesting that old knowledge was expressed even when it was not relevant, irrespective of whether 
responses were inhibited during rewiring. (b) New knowledge. When tested on Sequence B (the relevant, new 
context), participants showed significant above-zero learning scores only on Go trials and these learning scores 
differed significantly from those on No-go trials, indicating that new knowledge could be expressed only if 
responses were allowed to the relevant stimuli during rewiring. Thus, actively engaging in the new behavior-
to-be-learned seemed essential for acquiring (and subsequently accessing) the new knowledge. When tested 
on Sequence A, participants’ learning scores did not differ significantly from zero either on Go or No-go trials. 
This was expected since contrasted trials were all low-probability in Sequence A (‘LL minus LH’). Error bars 
represent SEM.
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(‘LL minus LH’; Fig. 4b, non-circled area). When tested on Sequence B (the context relevant to new knowl-
edge; ‘LL minus LH’, Fig. 4b, circled area), learning scores were significantly above zero on Go trials (p < 0.001, 
Cohen’s d = 0.95, BF01 = 5.084e−4) but not on No-go trials (p = 0.710, Cohen’s d = 0.07, BF01 = 4.889). The difference 
between learning scores on Go vs. No-Go trials was significant (p = 0.003, Cohen’s d = 0.58, BF01 = 0.078). This 
indicates that participants could successfully express new knowledge only if permitted to respond to the relevant 
stimuli during rewiring.

Conversely, although performance on No-go trials did not differ significantly across testing contexts (p = 0.694, 
Cohen’s d = 0.07, BF01 = 4.853), performance on Go trials did: learning scores were significantly higher when 
tested on Sequence B vs. on Sequence A (p = 0.009, Cohen’s d = 0.50, BF01 = 0.201). This suggests that newly 
acquired knowledge was successfully expressed only in its relevant context. The main effects were not significant 
(Sequence: F(1, 30) = 2.56, p = 0.120, ηp

2 = 0.078; Inhibition: F(1, 30) = 3.74, p = 0.063, ηp
2 = 0.111).

Overall, these findings indicate that participants successfully acquired the new knowledge on Go trials (for 
which responses were allowed during rewiring) and could express it in the appropriate context (i.e., when tested 
on Sequence B). At the same time, poorer performance on No-go trials suggests that actively engaging in the 
new behavior-to-be-learned may be essential for acquiring new associations and, consequently, for habit change.

Discussion
Changing habits is challenging3, but as threats of environmental and health disasters rapidly increase across 
the world1,2, it is more important than ever to find effective ways to succeed. To do so, it is vital that we gain 
a thorough understanding of how habits form and change. Previous research has extensively focused on non-
human animals, reward-related behaviors, and clinical populations in humans, and characterized how simple 
stimulus–response(-reward) associations contribute to habit formation and change16,17. However, it is poorly 
understood how habit change occurs in healthy humans when more complex associations (i.e., when not only 
the current stimulus influences the response but a sequence of preceding stimuli) are learned and modified 
without explicit rewards. These features more closely resemble how habits form and change in daily life. There-
fore, by probing how healthy human adults can form and rewire complex associations without explicit rewards, 
the present study can significantly contribute to our understanding of the key cognitive processes involved in 
habit change.

Using these features, we created a novel experimental design to test a widely held belief that inhibitory control 
could promote habit change19,20. In this design, we could test the acquisition of new habit-like behaviors and the 
simultaneous unlearning of old ones, and how inhibitory control affected both. Crucially, following the rewir-
ing process, we probed both the old and new knowledge across original (old) and new testing contexts, and on 
those trials in which responses were or were not allowed previously, to reveal how inhibitory control affected the 
entire process of rewiring. We found that inhibiting responses had a detrimental effect on overcoming the old 
knowledge and establishing the new: old knowledge was retained and expressed not only in its original context 
but also in the new one; moreover, components of knowledge that were previously inhibited appeared to be even 
strengthened in the old context (Fig. 4a). New knowledge was expressed only in the new context and for those 
components to which responses were allowed (Fig. 4b), suggesting that actively engaging in the behavior-to-be-
learned may be indispensable for successfully changing habit-like behaviors.

Our findings revealed the persistence of old knowledge in both the old and new contexts, irrespective of 
whether components were inhibited during rewiring. Recently, a new line of research on the competition between 
habitual and goal-directed responses following changes in stimulus–outcome6 or stimulus–response7 associa-
tions has revealed a similar persistence effect. Specifically, following extended training and under time pres-
sure—shown to favor the expression of habit-like behaviors—reaction times increased for the goal-directed 
(desired) responses and participants committed a large proportion of habitual (undesired) errors. These findings 
highlight that habitual (“old”) and goal-directed (“new”) associations are in conflict during response selection, 
and, together with the present study, suggest that undesirable habit-like behaviors may exert their influence 
even if the desired behavior is ultimately executed (see previously not inhibited components of new knowledge 
exhibited successfully in their corresponding [new] context).

Inhibiting responses during rewiring shows some similarities with extinction learning, whereby the well-
established, habit-like behavior (response) fades over time as the previously conditioned stimulus is repeatedly 
presented without any reinforcer14,27,30,31. Following extinction, relapse—reoccurrence of the extinct behavior/
response—is often observed17,32. Our findings in the Testing phase show that relapse can occur not only when 
human participants encounter the original context e.g.33,34 (akin to extinction learning studies) but also in the new 
context. This suggests that inhibiting unwanted behavior in everyday situations is ineffective in changing habits 
e.g.35. Importantly, as opposed to the typical settings in extinction studies, our results were observed without any 
explicit rewards being involved in either learning or rewiring, and alternative associations could be learned to 
replace the old ones (instead of just unlearning them). The persistence of old knowledge despite these character-
istics suggests that extinction studies may underestimate the effect of suppressing old behaviors in habit change.

Our findings also suggest that inhibiting responses may even further strengthen cognitive representations 
underlying the original behavior we want to replace, resulting in a rebound effect. This is based on participants 
exhibiting higher learning scores on the previously inhibited components of old knowledge (‘LL minus HL’, 
No-go) compared to those that were not inhibited (‘LL minus HL’, Go), when tested in the old context (Sequence 
A). Note, however, that the effect size for this finding was slightly smaller (Cohen’s d = 0.45) than the one used 
in the a priori calculations (a Cohen’s d of 0.50; see the “Estimation of required sample size” section in the 
Supplementary Information) and, consequently, the post-hoc power appeared somewhat lower than expected 
(power = 0.68 for two-tailed comparisons, instead of the expected 0.80). Therefore, future studies are needed 
to replicate this rebound effect6,7. Beyond the persistence of old knowledge, our design could also reveal that 
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old and new knowledge coexisted in the new context (at least for those trials in which responses were allowed 
during rewiring). We observed this effect both in reaction time (RT) (reported in the main text) and response 
accuracy measures (see Supplementary Information). This finding could explain the competition that could occur 
between old and new behaviors during habit change, and thus serve as the cognitive basis for such competition27. 
To translate these findings to a real-life example, let us suppose that Mary has just moved to Country B. Here, 
recycling is much more prevalent than her previous residence in Country A, and she has therefore had to start 
dividing household waste into different bins depending on its material. In this case, the old behavior (throwing 
all household waste into the same bin) is expected to be gradually unlearned and replaced by the new behavior 
(dividing waste into separate bins). Despite the decision to change her behavior, it is possible that (i) when 
Mary re-visits Country A (old context) she reverts to not recycling (relapse of the old behavior), and (ii) even in 
Country B (new context), she might divide waste on some occasions but not on others (coexistence of old and 
new behaviors). Furthermore, Mary may, consciously or unconsciously, suppress some aspects of her habitual 
behavior of not dividing waste, which could exacerbate the above-described behavioral pattern. Since old and 
new behaviors coexist, and a continuous inhibition of the old behavior may be unsustainable over longer periods, 
our findings highlight that interventions using other approaches for habit change must be tested (for further 
discussion see18,36,37).

One might argue that our results are driven by an incomplete acquisition of the new knowledge as suggested 
by data from the Rewiring phase (see also the “How does acquisition of new knowledge compare with the initial 
learning process?” section in the Supplementary Information). However, some aspects of performance in the 
Testing phase suggest otherwise. Specifically, direct comparisons of old and new knowledge indicate that, of those 
trials on which responses were allowed during rewiring, participants could express old and new knowledge at a 
similar level, both when compared in their respective contexts (i.e., in Sequence A vs. Sequence B, respectively), 
as well as in the new (Sequence B) context (see “Is the level of the new knowledge comparable to that of the old 
knowledge in the Testing phase?” section in the Supplementary information). Since a 24-h delay period was 
included between the Rewiring and the Testing phases in our design, it is likely that consolidation (i.e., stabili-
zation) of memory traces occurred in this period23, facilitating the expression of newly acquired knowledge in 
the Testing phase. Future research should test how rewiring schedules with different durations of practice and 
different lengths of consolidation periods in-between38,39 affect old and new knowledge across testing contexts.

In our experimental design, the duration of training for rewiring and the acquisition of old knowledge was 
the same. Recent studies showed that while we can acquire associative knowledge relatively quickly, updating 
it requires more extended practice40,41. Likewise, non-human animal studies of behavior change usually apply a 
non-fixed time window of training, lasting until the animal no longer exhibits signs of the original behavior42,43. 
Note, however, that this would be unfeasible in daily life as we may want to change behaviors that were developed 
and practiced over years or even decades. Consequently, in real-life examples of habit change, holding all other 
factors constant, we may expect an even weaker acquisition of new behavior and a stronger persistence of old 
behavior compared to what we observed in the current study. As the same amount of practice for new, preferred 
behaviors is unfeasible, new approaches need to be found and tested. Importantly, any such approach will need 
to track both the unlearning of old behavior and the acquisition of new behavior, as well as subsequently probe 
their coexistence—akin to the design of the current study.

What other factors should future research of habit change consider? While here, both the old and new 
knowledge were acquired incidentally (see also results of the free generation and triplet sorting tasks in the Sup-
plementary Information), encouraging intentional processes during rewiring (e.g., providing explicit instructions 
on what aspects of behavior to change) may be beneficial, albeit potentially temporary23. This is consistent with 
the observation that aspects of learning may be initially accessible to consciousness, however, after extended 
practice, at least some components of the automatic, habitual behaviors are no longer consciously accessible8,44.

The age when habits are acquired and then changed should also be considered. Although how people of dif-
ferent ages perform in habit change are poorly understood, research has shown that children, especially under 
the age of 12, are better at acquiring new complex associations underlying automatic behaviors, while older 
adults show significant difficulties in doing so, compared to young adults45,46. Our current study focused on 
young adults; investigating the same aspects of habit change in other age groups would be particularly important 
given the aging population across the world47. Since habit change involves not only unlearning old, unwanted 
behavior but also acquiring new, preferred behavior, we expect poorer performance and even stronger persistence 
of old behavior in older adults. Meanwhile, the childhood advantage in acquiring automatic behavior could be 
extensively utilized: ensuring that sustainable habits are learned in childhood could be key to succeeding in the 
global race for sustainability. Besides age, other characteristics of the sample should also be considered in the 
future: notably, the present study investigated educated young adults from the western world (often referred to 
as WEIRD people48), potentially limiting the generalizability of the present findings to a subgroup of the global 
population.

The present study applied an experimental design that was novel in several respects. First, we could track two 
key components of changing habit-like behaviors, that is, the acquisition of new knowledge and the simultaneous 
unlearning of old knowledge within the same task. Second, we investigated complex associations that could be 
acquired by responding to probability-based relationships between events of a stimulus stream, as opposed to 
more commonly used simple(r) stimulus–response associations in lab-based tasks. Third, we tested rewiring and 
the role of inhibitory control without explicit rewards or reinforcers, contrary to most human and non-human 
lab-based studies27,43. We considered this important as using rewards could evoke processes that are specifically 
related to the reward itself and would change the motivational/emotional aspects of habit change, possibly con-
founding the measurement of reward-independent learning processes underlying habit formation and change. 
These characteristics allowed us to more closely model how humans naturally develop habit-like behaviors44,49,50 
and test how inhibitory control affects key components of changing such behaviors. Nevertheless, as there are 
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numerous experimental tasks to test habit learning and change, all grasping (at least somewhat) different aspects 
of these processes (for more details see the “Behavioral and neural characteristics of habit learning across human 
and animal studies” section in the Supplementary information), further studies are needed to adapt our design 
to and test the role of inhibitory control in habit change with other tasks as well.

In conclusion, using a novel experimental design, we found that even though it is possible to acquire new 
habit-like behaviors, a parallel inhibition of the unwanted behavior may be maladaptive and may even strengthen 
the behavior we want to overcome. Thus, although inhibiting unwanted automatic behavior might be a natural 
reaction when attempting to replace unwanted, unsustainable habits with preferred, sustainable ones19, employing 
inhibitory control during habit change seems to have no beneficial effect on this process. The design developed 
here could be used to test new approaches to habit change, thereby uncovering how they affect the cognitive basis 
of old and new habit-like behaviors, independent of reward effects, in healthy adults and other populations. This 
can help us develop new intervention techniques for habit change and thereby create more adequate policies, 
improving our odds of replacing unwanted automatic behaviors with preferred ones.

Methods
Participants.  Thirty-three healthy undergraduate students participated in the experiment. They were 
attendees of a non-compulsory university course where course credits could be obtained by participating in sci-
entific experiments and were randomly assigned to the present study. The sample size was determined based on 
previous studies using similar experimental tasks in within-subject designs23,24 (for details, see the “Estimation of 
required sample size” section in Supplementary Information). Participants had normal or corrected-to-normal 
vision. None of them reported a history of any psychiatric or neurological condition, or substance use. One par-
ticipant dropped out of the experiment due to technical errors during data collection. Another participant was 
excluded due to consistent outlier performance (± 2 SDs) on RT measures throughout the experiment. There-
fore, 31 participants remained in the final sample (MAge = 21.1 years, SDAge = 2.15 years, MEducation = 14.2 years, 
SDEducation = 1.69 years, 29 females). They performed in the normal range on standard neuropsychological tests 
[Digit Span task51,52: M = 7.8, SD = 1.29; Counting Span task53,54: M = 3.7, SD = 0.70]. Prior to their inclusion in the 
study, participants provided informed consent to the procedure as approved by the Research Ethics Committee 
of the Eötvös Loránd University, Budapest, Hungary (Ref. no.: 2018/192). The study was conducted in accord-
ance with the Declaration of Helsinki, and participants received course credits for taking part in the experiment.

Design.  The experiment consisted of three phases, each separated by a 24-h (± 1 h) offline delay (Fig. 1). 
During the Learning phase (Day 1), participants performed a widely used and reliable55 four-choice visuomotor 
reaction time task called Alternating Serial Reaction Time (ASRT) task29,56, in which they acquired the asso-
ciations of Sequence A. This is referred to as old knowledge throughout the paper. During the Rewiring phase 
(Day 2), a structural change was implemented in the task by introducing Sequence B. This change prompted the 
rewiring of old knowledge by acquiring associations of the new sequence. This is referred to as new knowledge. 
In this phase, participants were asked to suppress their responses on some trials (stimuli underlined with a red 
line during the task; No-go trials), while they were allowed to respond on other trials (Go trials). During the 
Testing phase (Day 3), participants completed a shorter version of the task, and performance was tested on 
both Sequence A and Sequence B in a counterbalanced order. In this phase, participants responded on all tri-
als, including the ones that were No-go trials during the Rewiring phase. This enabled us to test how inhibitory 
control during rewiring affected the unlearning of old associations and the simultaneous acquisition of new 
associations. Throughout the experiment, participants were informed that they would participate in an experi-
ment assessing reaction times and response accuracy changes over extended practice; thus, both learning and 
rewiring occurred incidentally57. This was chosen because in everyday situations many habits are developed 
incidentally18,44; note the current study aimed to test the role of inhibitory control on (un)learning processes and 
not the effect of incidental vs. intentional processes on rewiring, for that see23. For the detailed description of 
the ASRT task and the structural changes introduced in the Rewiring phase, see the “Supplementary methods” 
section in the Supplementary Information.

At the end of the Testing phase, a free generation task and a triplet sorting task were administered to probe 
whether participants acquired consciously accessible knowledge about the sequence and/or the probability struc-
ture of the task using recall- and recognition-based approaches, respectively. Since these tasks were not designed 
to contrast knowledge gained/rewired on Go vs. No-go trials, they served the sole purpose of testing whether 
any knowledge throughout the task became consciously accessible; the results are reported in the Supplementary 
Information for comparability across studies and to support future meta-analytic efforts.

Statistical analysis.  Learning phase and rewiring phase.  To track the trajectory of the acquisition and 
unlearning of old knowledge and the simultaneous acquisition of new knowledge, we analyzed the Go trials 
of these two phases. First, trials were categorized based on whether they were high- or low-probability in the 
Learning phase (according to Sequence A) and whether they were high- or low-probability subsequently in the 
Rewiring phase (according to Sequence B). This resulted in four trial types: HL, LH, HH and LL, in which the 
first letter denotes the probability in the Learning phase and the second letter denotes the probability of the same 
trial in the Rewiring phase (Fig. 2a; H—high-probability, L—low-probability). Second, data were grouped into 
three periods, each containing 15–15 ASRT blocks for both phases. Third, for each participant, period, and trial 
type, median RTs for correctly responded trials were computed.

Fourth, learning scores were computed as differences in response times on trials with changed (LH or HL) 
versus unchanged occurrence probabilities (LL or HH). Specifically, we expected that participants would become 
increasingly faster on HL trials during the Learning phase, as compared to the LL trials (for raw RT performance 
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see Fig. S1 in the Supplementary Information), resulting in increasingly higher learning scores (‘LL minus HL’, 
Fig. 3a) in this phase. This would indicate the acquisition of old knowledge24,29. Then, in the Rewiring phase, 
unlearning of this knowledge would be reflected in smaller/decreasing learning scores as in this case the initially 
high-probability trials became low-probability. Furthermore, we expected similarly slow responses to LH and 
LL trials in the Learning phase (reflected in near-zero learning scores) as here both were low-probability, and 
then faster responses to LH than LL in the Rewiring phase (reflected in increasingly higher/positive learning 
scores, ‘LL minus LH’, Fig. 3b), indicating the acquisition of new knowledge in this phase. The LL trials served 
as a baseline for these learning scores as they helped control for general practice effects, while no speed-up was 
expected on them due to probability-based learning as they were low-probability in both phases.

Finally, repeated-measures analyses of variance (ANOVAs) with Phase (Learning vs. Rewiring) and Period 
(Period 1, 2, 3) as within-subject factors were performed separately for the two learning scores (testing old and 
new knowledge).

Testing phase.  In this phase, participants responded on all trials, including the ones that were No-go trials in 
the Rewiring phase. Therefore, both previously Go and No-go trials were analyzed here to test how inhibitory 
control during rewiring affected the old and new knowledge.

First, all trials were categorized as described above, resulting in four trial types (HL, LH, LL or HH). Second, 
data were grouped according to the tested sequence (Sequence A vs. Sequence B), both containing ten-ten ASRT 
blocks. Third, for each participant, each sequence, each trial type, and each response type (Go or No-go in the 
Rewiring phase), median RTs for correct trials were computed (for raw RTs see Fig. S1b in the Supplementary 
Information). Fourth, learning scores (‘LL minus HL’ and ‘LL minus LH’ for old and new knowledge, respectively) 
were computed as described above, separately for Sequence A and Sequence B, and separately for the previously 
Go vs. No-go trials. Finally, repeated-measures ANOVAs with the tested Sequence (Sequence A vs. Sequence B) 
and Inhibition (Go vs. No-go) as within-subject factors were performed separately for the two learning scores 
(testing old and new knowledge). This design enabled us to test (i) whether the old and new knowledge coexisted 
and was present even when it was irrelevant in a given context (e.g., positive learning score for the old knowledge 
when tested on Sequence B), and (ii) how inhibitory control during rewiring affected the old and new knowledge 
in these contexts (by contrasting performance on the previously Go vs. No-go trials, see Fig. 4).

In all analyses, Greenhouse–Geisser epsilon (ε) correction was used when necessary. Original df values and 
corrected p values (if applicable) are reported together with partial eta-squared (ηp

2) as the measure of effect size. 
For the significant interactions of the ANOVAs, pair-wise comparisons were performed using LSD post-hoc tests. 
We report Cohen’s d as a measure of effect size for pair-wise comparisons. Additionally, inverse Bayes factors were 
computed using default JASP priors (JASP v.0.14.1.058) to see if data provided evidence for the results obtained 
in the frequentist t-tests (anecdotal evidence for the null-hypothesis: 1 < BF01 < 3, at least substantial evidence for 
the null-hypothesis: BF01 > 3; anecdotal evidence for the alternative hypothesis: 1 > BF01 > 1/3, at least substantial 
evidence for the alternative hypothesis: BF01 < 1/3)59. To provide further contrasts across the learning scores of 
the old vs. new knowledge, additional analyses were performed where relevant (see Supplementary Information). 
All statistical tests were two-tailed. Figures were created using the ggplot2 package60.

Although RTs were the primary measures of interest in the current study, we performed similar analyses 
on the accuracy measures as well. These results are reported in the Supplementary Information, along with the 
results of the two additional tasks (free generation and triplet sorting tasks), which tested whether participants 
gained consciously accessible knowledge about the sequence and/or probability structure of the learning task.

Data availability
Data used for the analyses reported in this paper are available on the following online repository: https://​osf.​io/​
dt9b8/?​view_​only=​5b6b8​850ab​8e412​a9588​a5842​87034​6e.
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GENERAL DISCUSSION 

My doctoral research aimed to better understand the interplay between complex 

automatic behaviours and goal-directed behaviours during adaptation. Automatic 

behaviours were conceptualized using the procedural memory system, whereas goal-

directed behaviours were modelled with components of the executive control system, 

namely attention, inhibition, and performance monitoring. I investigated this interplay 

without manipulating it, alongside the manipulation of the executive control system 

during acquisition, expression, and change of automatic behaviours. In this chapter, I will 

first summarise the main findings of the studies included in this dissertation. Second, I 

will discuss what these five studies showed about the procedural memory system, the 

executive control system, and their interaction. I will then cover the possible limitations 

of these studies and the questions the present dissertation opens.  

 

IX. Main findings of the studies 

In this chapter, I briefly sum up the main findings of each study and draw the most 

important conclusions about the relationship between automatic and goal-directed 

behaviours. 

i. Study 1 

Study 1 asked the question of how errors contribute to the acquisition and retrieval 

of an automatic behaviour in order to enhance task adaptation. More precisely, I 

investigated some aspects of performance monitoring by the most prominent ERP 

correlates of error processing, namely the Ne and the Pe in the cued version of the ASRT 

task. A common behavioural correlate of error-related adaptation, namely the PES effect 

was also assessed. Acquisition and retrieval were measured on the cued predictable events 

(pattern trials), while unpredictable events (improbable trials) served as a baseline. 

At the behavioural level, we found that the order of the repeating pattern trials was 

rapidly acquired and performance on these trials increased subsequently. In contrast, no 

performance improvement was observed on the unpredictable events. It can be assumed 

that the former effects are grounded in the retrieval of the automatic behaviour developed 

based on the repeating pattern trials. That is, participants could (incidentally or 

intentionally) retrieve and use their knowledge about the repeating, predictable events to 
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achieve better performance in the task. It is important to note that acquisition and retrieval 

cannot be precisely and surely separated in the ASRT task, only assumed based on 

changes in the behavioural data. 

The PES effect following errors decreased over time, similarly for both the 

retrieval and the baseline processes. As errors should imply the possibility of adaptively 

use them, it is conceivable that the decreasing post-error adaptation reflects the 

significance of errors becoming lower and lower. At the electrophysiological level, we 

found that the error negativity decreased over time, and it did so similarly across the 

retrieval and the baseline processes. This effect points towards the same direction as the 

decreasing PES: the significance of errors dropped in the task over time for both the 

retrieval of an automatic behaviour and the baseline process. Decreasing error 

significance is presumably grounded in the rapid adaptation to the task (Gehring et al., 

1993; Hajcak et al., 2005). These findings together with a recent study showing successful 

acquisition of an automatic behaviour practically without errors (Vékony, Marossy, et al., 

2020) may suggest that information derived from erring is not essential for automatic 

behaviour adaptation. The error positivity increased over time, and it did not differ 

between the retrieval and the baseline process. These effects suggest that error awareness 

enhanced as adaptation to the task progressed (Endrass et al., 2007; Nieuwenhuis et al., 

2001), and this was not influenced by the retrieval of an automatic behaviour. 

Overall, Study 1 showed that when an automatic behaviour can be retrieved to 

achieve better task performance, adaptation processes are present at the 

electrophysiological and behavioural levels. Nevertheless, these reflect general task 

adaptation instead of a retrieval-specific effect. Based on Study 1, automatic behaviours 

and aspects of performance monitoring do not interact during behaviour adaptation. 

ii. Study 2 

Study 2 aimed to answer the questions of when and to what degree we can adjust 

automatic behaviours when the environment becomes unpredictable without any 

noticeable change at the surface level. To this end, one group of participants first acquired 

an automatic behaviour (first part of the task), and then, this behaviour was challenged in 

a new environment (second part of the task). This new environment lacked the 

probability-based structure underlying the automatic behaviour and thus was 

unpredictable. As a control, another group of participants first practiced in the 
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unpredictable environment (first part of the task) and subsequently acquired the automatic 

behaviour based on the probability-based structure of the new environment (second part 

of the task). That is, in this group, the acquisition of an automatic behaviour took place 

following experience with the unpredictable environment. Crucially, the change in the 

underlying structure was always unsignalled (i.e., participants were not informed about 

it). So far, it has not been investigated how a complex automatic behaviour changes in 

such circumstances. 

Prior to changing the underlying structure, procedural learning successfully took 

place in the group completing the predictable part first, whereas there was no learning in 

the group initially practicing the unpredictable part. After the unsignalled change in the 

environment, the following results emerged. On the one hand, in the group switching to 

the unpredictable part, the already established automatic behaviour persisted and was 

generalized to the unpredictable stimuli. Interestingly, this behaviour was then updated, 

and the automatic behaviour was no longer expressed by the end of the second part. 

However, this updating process took a longer time than initial acquisition. On the other 

hand, the group completing the unpredictable part first showed successful procedural 

learning in the subsequent predictable part. Moreover, their learning performance was 

comparable to the other group, despite already having been exposed to the unpredictable 

environment. That is, the predictable part influenced the subsequent behaviour on the 

unpredictable part, whereas the unpredictable part did not interfere with or influence in 

any way the performance on the subsequent predictable part (at least at the level of covert 

responses). These findings can also be interpreted as a proactive interference effect of a 

past memory trace, i.e., the previously acquired automatic behaviour interfering with the 

changed environmental structure (cf. Szegedi-Hallgató et al., 2017). 

These findings showed that automatic, habit-like behaviours are persistent, and 

we tend to rely on them when facing an unpredictable environment. In other words, 

adaptation to a new environment can take place by relying only on our automatic 

behaviours. It is important to note, however, that in the present study, both parts of the 

task appeared similar at the surface level, thus participants faced a partly new 

environment that differed from the old one only in certain structural features. That is, it 

is presumable that maintaining the old behaviour in this situation may have been adaptive. 

On the other hand, this study also revealed that automatic behaviours can be updated and 

adjusted, if necessary, probably without the direct engagement of the executive control 
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system. Finally, the prolonged length of practice required for updating/adjusting the old 

behaviour provided further evidence for the persistent nature of our automatic, habit-like 

behaviours. 

Overall, Study 2 showed that automatic behaviour adjustment and adaptation can 

successfully take place even if changes in the environment are hidden. However, it did 

not focus on and thus could not directly test the procedural memory vs. executive control 

system interplay during behaviour adaptation. Based on the results, it is unknown if and 

how participants spontaneously used their executive control system or relied solely on 

their procedural learning system when adjusting their behaviour. 

iii. Study 3 

The question of Study 3 was whether procedural learning remains intact when 

attention is divided between concurrent tasks and task goals. To answer this, a modified 

version of the cued ASRT task was used to induce the division of attention. As shown by 

Study 1, such a task is not difficult, in fact, the acquired knowledge can be intentionally 

retrieved to enhance performance. Therefore, a significant change was introduced to the 

task here; namely, instead of the commonly used self-paced design (e.g., Nemeth, 

Janacsek, & Fiser, 2013; Simor et al., 2019), we applied a fixed-paced and fast stimulus 

presentation. This modification aimed to prevent participants from intentionally learning 

and then retrieving the repeating predefined trials, dividing attention between their two 

goals in the task. A similarly fast and fixed-paced version of the original (un-cued) ASRT 

task was used as a control in a between-subject design. To assess whether divided 

attention differentially affected the retention of the acquired automatic behaviour, 

performance was retested after a 12-hour-long offline delay. The procedural learning of 

an automatic behaviour was assessed by comparing performance on the probable, but 

random and improbable random trials. 

Indeed, participants completing the cued task version showed poor performance 

when asked to report the order of the repeating predefined trials, suggesting that the 

applied timing parameters prevented retrieval. Crucially, procedural learning did not 

differ between the groups. That is, despite the attention being divided, the acquisition of 

an automatic behaviour remained intact, in line with previous studies probing the effect 

of a secondary task on procedural learning and memory expression (Nemeth et al., 2011; 

Vékony, Török, et al., 2020). Even more so, performance following the offline delay was 
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also comparable across groups, showing that the automatic behaviour not only developed 

in a similar manner but was also retained just as successfully as without the divided 

attention manipulation.  

To conclude, Study 3 showed that manipulating attention by dividing it between 

concurrent task goals does not interact with procedural learning or the offline retention of 

the acquired behaviour.  

iv. Study 4 

Study 4 investigated changing habit-like behaviours and the effect of response 

inhibition on this process. So far, it has been shown that i) automatic behaviours tend to 

“survive” rewiring procedures (Szegedi-Hallgató et al., 2019) and that ii) extinction, an 

experimental manipulation similar to a response inhibition manipulation, cannot 

successfully erase the old behaviour (Bouton 2000, 2004). In this study, the so-called old 

behaviour had to be changed according to a new environmental regularity (cf. Study 2 

where the changed part consisted of unpredictable stimuli instead of a new regularity). 

Thus, not only the unlearning/forgetting/adjustment of the old behaviour but the 

development of a new behaviour was measured here. In addition, during habit change, 

response inhibition was engaged in the task to model the common urge of inhibiting 

unwanted behaviours. 

In more details, participants practiced an extended version of the original ASRT 

task and acquired a habit-like behaviour on the first day. On the next day, this old 

behaviour was challenged: participants practiced a different but partially overlapping 

regularity and acquired a new automatic behaviour. Due to the overlapping nature of the 

new regularity, some parts of the old behaviour remained the same and were kept, while 

other parts had to be unlearned (or at least inhibited). On this day, a response inhibition 

manipulation was introduced to the task and participants had to suppress their responses 

in case of a warning sign (red line) presented together with the target stimulus, analogous 

to the standard Go/No-go paradigm. The occurrence of these stimuli was unpredictable, 

and a given proportion of all trial types had to be suppressed. Nevertheless, for those parts 

of the old behaviour that had to be unlearned, most responses had to be suppressed. 

Finally, on the third day, both the old and the new behaviour was probed without the 

response inhibition manipulation. In addition, both behaviours were probed in their 
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original context (i.e., the task contained the underlying regularity under which the 

behaviour was acquired) and in the opposite context, as well. 

The following results were found in this study. First, the automatic behaviour was 

acquired during Day 1 (referred to as old behaviour). Next, the new behaviour was also 

acquired during Day 2, though learning scores were considerably lower than during the 

first day. This result could reflect the hindering effect of the response inhibition 

manipulation as well as the proactive interference effect deriving from the previously 

acquired behaviour (cf. Szegedi-Hallgató et al., 2017). Additionally, the old behaviour 

was somewhat unlearned in this phase. Interestingly, the sensitivity index, i.e., the 

difference between correct response rate and false alarm rate, revealed that response 

inhibition was supported by acquisition of the new behaviour. In other words, the 

sensitivity index was higher indicating high accuracy on the Go trials and low false alarm 

rate on the No-go trials on the predictable associations of Day 2. Nevertheless, it remains 

unclear in what ways learning could have supported response inhibition (e.g., increasing 

efficiency, decreasing demand). The results obtained during Day 3 showed that the old 

behaviour remained intact. In fact, it was expressed both in its original context as well as 

in the context of the new behaviour. Moreover, those units of the behaviour that had to 

be inhibited during rewiring were further strengthened. In contrast, the new behaviour 

was expressed only in its original context, and those behavioural units that were inhibited 

previously, could not be retained. Overall, a new habit-like behaviour was developed, but 

response inhibition had a detrimental effect on habit change. These findings complement 

a recent brain imaging study where evidence was found for implementing new habits 

being more feasible than diminishing old ones (Brevers et al., 2021). 

Based on this study, there is a strong competitive relationship between procedural 

learning and the executive control system, or at least response inhibition during habit 

change. Accordingly, when we need to change a habit, it seems to be more adaptive to 

focus on acquiring and strengthening a new automatic behaviour instead of trying to 

inhibit the old one. 

v. Supplementary Study 

In this study, I aimed to investigate the relationship between acquisition of a 

complex automatic behaviour and interference suppression, the other core component of 

inhibition besides response inhibition. To do so, I introduced an Eriksen flanker-like 
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manipulation to the original (fully implicit) version of the ASRT task. Crucially, the 

flanker manipulation was unpredictable in the task. This design enabled us to directly test 

the interaction between procedural learning and interference suppression. According to 

the results, procedural learning successfully took place in the task and appeared to be 

similar across the different flanker congruency conditions (congruent, incongruent, 

neutral). The flanker congruency effect (difference between incongruent and congruent 

trials) was comparable across predictable (probable trials) and unpredictable events 

evidencing a similar level of interference, and surprisingly, generally decreased over time. 

A similar decrease effect in the Eriksen flanker task has not yet been reported, 

nevertheless, most studies use considerably shorter task versions. To the best of our 

knowledge, previous studies using flanked sequence learning tasks did not report a similar 

comparison of learning and flanker congruency effects (Li & Dupuis, 2008; Rüsseler et 

al., 2003). 

 An important aspect of behaviour adjustment in inhibitory control tasks is the 

congruency sequence effect, that is, a reduced flanker congruency effect following an 

incongruent trial (Egner, 2007, 2014). In this study, the CSE was found in the case of 

unpredictable events only (measured by both RTs and accuracy), whereas no such 

adaptation effect appeared on the predictable events. In fact, in the case of RTs, a reversed 

CSE was found for the predictable events; that is, the congruency effect was even higher 

following an incongruent trial than a congruent one.  

Altogether, the basic findings of the Supplementary Study showed that procedural 

learning and interference suppression could take place independently in the task; 

however, some level of interaction could be present when uncertainty is high (cf. 

accuracy). Nevertheless, fine-tuned investigation of the CSE revealed a hampering effect 

between procedural learning and interference suppression. Particularly, when a task event 

can be predicted by the procedural learning system and previous trial incongruency 

induces conflict adaptation processes, this could result in a maladaptive overshoot and 

impaired performance (Bocanegra & Hommel, 2014), at least when measured by RTs. 

Meanwhile, the lack of CSE (expected or reversed) on probable trials measured by 

accuracy may suggest the opposite: when a task event can be predicted by the procedural 

learning system, there is no need for the executive control system to adjust to the varying 

level of conflict present in the task, saving mental resources. Future studies are needed to 

clarify these findings. 
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X. Individual differences in the procedural memory vs. executive control system 

interplay 

Besides the different aspects and phases of procedural memory and the different 

subcomponents of the executive control system, individual differences may also influence 

the nature of these two systems’ interplay, as recent computational modelling studies have 

highlighted. First, individual efficiency and potential of the procedural memory system 

were shown to be differently related to goal-directed performance (Park et al., 2020). 

While higher efficiency of learning in the ASRT task was associated with better inhibitory 

and shifting abilities, higher potential was associated with poorer inhibition and better 

spatial short-term memory. Second, when investigating the forgetting over an extremely 

extended period of time in the ASRT task, better updating and spatial short-term memory 

abilities were associated with better retention of procedural memory (Éltető et al., 2022).  

Consequently, I conducted follow-up analyses for all five studies to gain some 

insight into if and how individual performances related to these two systems are 

associated. In Study 1-4, standard neuropsychological tests were assessed to obtain 

descriptive data on the samples' general cognitive functioning. These tests were now used 

for correlational analyses, separately for each study. More details about the analyses and 

the corresponding results can be found in Appendix V. To summarize, performance on 

neuropsychological tests appeared to be uncorrelated with performance on the ASRT task 

with one exception only. In Study 1, a significant association emerged between the 

percentage of perseverative errors in the Wisconsin Card Sorting Test (shifting) and the 

learning performance measured on the repeating cued pattern order (procedural learning) 

characterized by a strong negative correlation coefficient (Figure 3). In other words, better 

learning was associated with better shifting performance. It is conceivable that a good 

shifting capacity supports the intentional acquisition of the sequential information in the 

cued ASRT task. Unfortunately, the Wisconsin Card Sorting Test was not administered 

in Study 3 where a different version of the cued ASRT task was used, which could have 

provided further insight into this association.  
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Figure 3. Significant correlation between procedural learning performance and shifting 

performance measured by the Wisconsin Card Sorting Test in Study 1. Please note that 

the negative correlation denotes a positive relationship here (i.e., better learning is 

associated with fewer perseverative errors, that is, with better shifting).  

 

An important limitation of these analyses is that instead of probing the association 

of the two systems during their interplay, it can only reveal the relationship between 

performance measures assessed independently. Thus, based on these results, one cannot 

fully assume an independent relationship between procedural memory and the executive 

control system. 

The design of the Supplementary Study enabled to overcome this limitation. To 

analyse the relationship between procedural learning and interference suppression, 

learning sores and flanker congruency effect scores were calculated. All neutral trials 

were excluded in this analysis. Learning scores were calculated as the difference in 

performance between high-probability pattern and low-probability random trials, 

separately for congruent and incongruent trials. For the congruency effect, the difference 

in performance between congruent and incongruent trials were calculated, separately for 

pattern and random trials. Correlations were tested using Pearson’s r and, due to the 

smaller sample size, Kendall’s τ-B as well. Additionally, I calculated BF01 values for all 

tests using default JASP priors (JASP Team, 2019). The results are summarised in Table 

1.  
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Table 1. Association between procedural learning and interference suppression  

N = 36 
Pearson’s Kendall’s  

r p τ-B p BF01 
Learning effect 
Congruent – Flanker congruency effect 

Pattern .145 .400 .065 .576 3.989  

Learning 
effect 
Congruent 

– Flanker congruency 
effect – Random 

-.416 .012 -.283 .015 0.269#  

Learning effect 
Incongruent – 

Flanker congruency effect 
Pattern -.220 .196 -.175 .134 1.559  

Learning 
effect 
Incongruent 

– Flanker congruency 
effect – Random .489 .002 .322 .006 0.114#  

Note. Significant correlations are bold-faced. # Supported by the BF01 value on at least at 
a moderate level (BF01 < 1/3). 

 

The analysis revealed significant associations between the flanker congruency 

effect measured on the low-probability random trials and the learning effect. This 

association, characterised by medium correlation coefficients, was reversed in direction 

on the congruent and incongruent trials, respectively (Figure 4). That is, the larger the 

flanker congruency effect (i.e., worse interference suppression), the smaller the learning 

effect on the congruent trials but the larger on the incongruent ones. These associations 

were further supported by the Bayesian approach. 
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Figure 4. Significant correlations between procedural learning and the flanker 

congruency effect obtained in the Supplementary Study. A larger flanker congruency 

effect, that is, poorer interference suppression measured on the low-probability random 

trials was associated with poorer learning performance on the congruent trials, whereas 

the same flanker congruency effect was associated with better learning performance on 

the incongruent trials. 

 

These findings of the Supplementary Study suggest that a possibly hampering 

relationship between procedural learning and interference suppression can emerge when 

these processes are simultaneously involved in the same task, especially when uncertainty 

and conflict are both high. On the other hand, when a trial is characterized by a lower 

level of conflict, this relationship is reversed. These findings require clarifications in the 

future. 

 To conclude the results obtained in these correlational analyses, individual 

procedural learning performance and executive control performance seem to be 

independent. In other words, when learning and executive control performance are 

assessed separately, there seems to be neither a trade-off nor a positive link between these 

abilities. However, when the two systems are involved in the same task simultaneously, 

their interplay can be revealed. Moreover, the nature of this interplay probably depends 

on the exact characteristics of the given task events. 
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XI. Independent or competitive relationship? 

In this dissertation, I presented five studies that potentially combine the two major 

lines of research on the interplay of procedural memory and the executive control system. 

Here I focused on complex automatic behaviours, similarly to the competitive systems 

framework (Borragán et al., 2016; Nemeth, Janacsek, Polner, et al., 2013; Poldrack et al., 

2001; Smalle et al., 2022), and modulated the executive control system in a similar way 

as in the associative learning account (Coomans et al., 2011; Deroost et al., 2012; 

Jiménez, Abrahamse, et al., 2020). Based on the findings presented in the dissertation, 

the nature of the interaction between automatic and goal-directed behaviours seems to be 

different according to which aspect of these behaviours is investigated. 

Some results suggest an independent relationship: In Study 1, the retrieval of an 

automatic behaviour did not affect or interact with performance monitoring and 

adjustments following an error. In Study 3, acquisition, retention, and expression of an 

automatic behaviour were independent of attention being divided between two concurrent 

task goals. In the Supplementary Study, procedural learning took place irrespective of the 

level of interference in the task. Vice versa, interference suppression was independent of 

procedural learning in the task. Study 2 did not directly investigate this interplay. Yet, the 

update of a habit-like behaviour successfully took place that may or may not have 

included the spontaneous activation of the executive control system at least at some level 

(for further elaboration on this thought, see Subsection XIII.). These results are in line 

with some of the studies rooted in the associative learning account suggesting no 

interaction between procedural learning and goal-directed behaviours (Jiménez, 

Abrahamse, et al., 2020; Jiménez, Méndez, et al., 2020).  

However, some results suggest an interference between automatic and goal-

directed behaviours: In Study 4, response inhibition had a detrimental effect on both 

unlearning the old behaviour and acquiring the new one. That is, engaging response 

inhibition potentially hinders changing automatic behaviours. In the Supplementary 

Study, improved behaviour adjustment following a trial with high level of conflict was 

present only on uncertain and unpredictable events; whereas no such effect was present 

when a trial could be predicted based on probability. Even more so, a reversed effect was 

found suggesting a maladaptive overshoot of behaviour adaptation processes. That is, 

based on Study 4 and the Supplementary Study, there could have been an interaction 

between the procedural learning and the executive control systems which resulted in 
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interference and impaired performance. These findings are consistent with recent studies 

showing that engaging the executive control system interferes with procedural learning 

and memory expression (Prutean et al., 2022; Vaquero et al., 2020). 

A converging pattern seems to emerge from these results. While an independent 

relationship was found when studying initial acquisition (Study 1, Study 3), 

competition/interference was revealed in more fragile situations (Study 4, Supplementary 

Study). Moreover, the nature of this interplay may vary across different phases of 

procedural learning processes and/or across the processes contributing to the executive 

control system. In other words, acquiring an entirely new automatic behaviour and then 

expressing it is simpler and less challenging than changing a habit when acquisition of 

the new habit is conflicted with the old one. Adapting to an uncertain and at the same 

time distracting environment is similarly complex and challenging, and adaptation based 

on the procedural memory system could be conflicted by adaptation based on the 

executive control system. The interference of these two systems appeared in such cases 

in the studies reported here. It is conceivable that instead of a black-and-white picture, 

the procedural memory vs. executive control system interplay shows different 

characteristics according to the combination of processes involved in it (e.g., acquisition 

is independent of attentional load vs. habit change is hindered by response inhibition). 

Accordingly, here I propose that our automatic and goal-directed behaviours may operate 

independently in situations where we can easily rely on the extraction of environmental 

patterns, in sort of an “autopilot” mode. However, when this extraction is conflicted, 

interference can emerge.  

Another important implication of this dissertation is that whereas numerous 

studies using the ASRT task suggested a competitive relationship between procedural 

memory and goal-directed processes and/or the PFC, the studies presented here could not 

unequivocally support these findings. Instead, when the procedural memory system and 

the executive control system are simultaneously involved in a task, they do not seem to 

compete for mental resources or for selecting responses to be executed. Nevertheless, 

future studies are required to confirm or deny this proposal. 
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XII. The robust nature of procedural learning and memory 

From another perspective, all these studies provided evidence for the robustness 

of procedural learning, retention of the acquired behaviour, and its expression even when 

the executive control system was heavily engaged in the task. Previous studies arrived at 

a similar conclusion when studying the procedural memory system in a wide range of 

experimental designs and clinical populations (e.g., Janacsek et al., 2018; Kiss et al., 

2019; Kóbor et al., 2017; Nemeth et al., 2011; Obeid et al., 2016; Romano et al., 2010; 

Szegedi-Hallgató et al., 2017; Tóth-Fáber et al., 2021; Vékony, Török, et al., 2020). These 

studies are in line with the literature on increased reliance on habits under stress (Chaby 

et al., 2019; Tóth-Fáber et al., 2020; Wirz et al., 2018; Wood & Rünger, 2016). That is, 

even if the executive control system is permanently impaired or temporarily “switched 

off”, the procedural memory system and our automatic behaviours can yet remain intact 

and contribute to behaviour adaptation. 

Even though we often curse our automatic behaviours, especially bad habits or 

incorrect skills for being hard to alter, the robust, resistive, and inflexible nature of 

automatic behaviours is in fact adaptive. For example, we can reliably depend on these 

behaviours when the executive control system needs to engage with another task, like 

driving a car when trying to figure out the outline of a new, big city. Moreover, these 

findings may help us to develop new interventions, recovery, or coping techniques for 

those who suffer from neuropsychological impairment. The executive control system is 

impacted by various conditions, such as ADHD (Snyder et al., 2015), Tourette’s 

syndrome (Yaniv et al., 2017), mild cognitive impairment (Brandt et al., 2009), or 

epilepsy (Elger et al., 2004). These populations could benefit from training methods that 

aim to compensate for their impacted abilities in the executive control system by 

improving or emphasizing automatic behaviour adaptation as an alternative. 

 

XIII. Habit adjustment and habit change: Room for update as a goal-directed 

behaviour? 

I have referred to changing or adjusting habit-like behaviours as “updating” them. 

Updating, however, is another auxiliary component of the executive control system (Bari 

& Robbins, 2013; Miyake & Friedman, 2012), which is responsible for updating task 

goals and relevant information when a new plan is needed for successful goal-directed 



95 
 

actions. It is presumable and in no ways neglectable that during habit adjustment/change, 

participants may have engaged their executive control system spontaneously. In more 

detail, when their old automatic behaviour was challenged by structural changes in the 

underlying sequence (from predictable to unpredictable environment in Study 2 and from 

an old structure to a partially new structure in Study 4), not only this behaviour was 

updated by the new incoming information but also the related action plans and goals. 

However, the studies included in the dissertation cannot confirm or deny this speculation 

as overt responses cannot reveal the underlying processes leading to updating habits (for 

further details see Subsection XIV. on p. 89).  

 

XIV. From the viewpoint of the executive control system 

Although the present dissertation put more emphasis on the understanding of the 

procedural memory system, the findings can be discussed from the direction of the 

executive control system, as well. In Study 1, error processing took place similarly across 

the repeating cued patten trials and the (uncued) random ones, suggesting that error 

processing did not specifically benefit from learning the sequential order in the ASRT 

task. It is inconclusive, nevertheless, whether the observed decrease in error significance 

and increase in error awareness were grounded in general task adaptation rather than in 

procedural learning. In Study 4, response inhibition hindered the change of habit-like 

behaviours; however, response inhibition seemed to be supported by the procedural 

memory system according to the results from Day 2 (for more details see the 

Supplementary information of Study 4; Verbruggen & Logan, 2008a). Finally, in the 

Supplementary Study, a general decrease was observed for the flanker congruency effect 

which might have been grounded in the support of procedural learning (Deroost et al., 

2012; Jiménez, Abrahamse, et al., 2020; Koch, 2007). To conclude, approaching the 

procedural memory vs. executive control system interplay from the viewpoint of the latter 

highlighted that for revealing the full picture, both directions of the interplay should be 

considered.  

 



96 
 

XV. Graphical overview of the main findings and conclusions 

 
Figure 5. Summary of studies and main findings. Study 1 and Study 2 investigated the 

procedural memory vs. executive control system interplay during behaviour adaptation 

without manipulating either. Study 3, Study 4, and the Supplementary Study involved the 

experimental manipulation of the executive control system (yellow background shading). 

Study 1, Study 3, and the Supplementary Study focused on acquisition and expression, 

whereas Study 2 and Study 4 investigated habit adjustment and habit change grounded in 

environmental changes (purple framing). I found evidence for independent (blue), 

interfering (red), and supportive (green) relationships, with the latter being inconclusive 

(dotted). Grey dotted lines indicate relationships whose natures are currently unknown.  
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Table 2. Summary of conclusions. According to the findings presented in the dissertation, 

the interplay of automatic and goal-directed behaviours during adaptation is not uniform 

but depends on the (sub)processes and aspects of the two systems involved in the task. 

 

XVI. Limitations and future remarks 

The present dissertation is not without limitations. In this subsection, I will discuss 

these limitations and provide possible solutions for overcoming them. Next, I will cover 

the potential future directions and the questions opened by my doctoral research. 

First, in my dissertation, I presented various evidence for an independent 

relationship between the procedural memory system and the executive control system. 

These statistically negative findings could have been the result of low sample size and 

power; however, I would like to argue that this is not the case in the presented studies. 

On the one hand, in Study 1-3 and the Supplementary Study, we followed best practices 

based on previously published studies using the ASRT task and aimed for at least around 

25 participants per groups. In Study 4, detailed a priori sample size calculations were 
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conducted using previously collected data from a similar task design. On the other hand, 

effect sizes of the significant findings were at least moderate but most often strong, 

suggesting sufficient power in all five studies. Nevertheless, I conducted “a posteriori” 

sample size calculations using G*Power 3.1.9.6 (Faul et al., 2007) with an f effect size of 

0.3 (typical in ASRT studies) and a power of 0.8 (moderate effect) and found that a N = 

25 sample is indeed sufficient to show a significant main effect of a two-level variable 

(e.g., trial type in the present case). In addition, I conducted post-hoc Bayesian analyses 

for the insignificant findings where the original article did not include these. None of the 

originally published frequentist results were in contradiction by the Bayesian approach, 

further suggesting that the present null-results (“independent relationship”) are not due to 

the lack of power. 

Second, another noteworthy limitation of the dissertation is that although several 

aspects, phases, and subcomponents of the two systems were targeted in the five studies, 

their combinations were not fully comprehensive. For example, it remained unclear 

whether response inhibition hinders the original acquisition of a fully new automatic 

behaviour as well, or if the division of attention would interact with the adjustment of 

habit-like behaviours. I also neglected the processes responsible for correcting the 

suboptimal behaviour: (goal-directed) updating, shifting, and (plan) selection. Future 

studies should manipulate these processes during procedural learning, memory retention 

and expression, and habit adjustment/change to get a fuller picture about the nature of the 

procedural memory vs. executive control system interplay in behaviour adaptation. 

Furthermore, while some studies experimentally manipulated the engagement of the 

executive control system, none manipulated the procedural memory system. For instance, 

the complexity level of the underlying structure that can be extracted and acquired could 

be simplified or complicated, highlighted, made partially explicit, or mislead by certain 

cues, thereby modulating the engagement of the procedural memory system. On a related 

note, as behavioural, neural, and clinical findings regarding the procedural memory 

system often appear to be task-, modality-, and domain-dependent (Bogaerts et al., 2022; 

Conway, 2020; Frost et al., 2019; Schapiro & Turk-Browne, 2015), the present questions 

and designs should be expanded to different tasks, such as embedded pattern tasks or 

artificial grammar learning tasks. 

Finally, by focusing only on behavioural indices, crucial aspects of this interplay 

could remain hidden. ERPs are a powerful tool to reveal the temporal unfolding of 
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cognitive processes involved in the task from stimulus processing to response execution 

and the formation of expectations about the upcoming stimulus. Therefore, future studies 

should adapt the present designs for the study of ERPs and investigate how these steps 

take place and vary according to which processes and at what level are involved in the 

task. Non-invasive brain stimulation methods offer the possibility of altering the activity 

of certain brain regions and neural networks and draw causal links between the targeted 

structures and the behaviour. Thus, these methods could help us unveil how and which 

regions and networks contribute to behaviour adaptation based on the procedural memory 

and the executive control systems and their interplay. Additionally, studying clinical 

populations with impaired behaviour adaptation processes could get us closer to fully 

understand its behavioural and neural background. Besides the populations with impaired 

goal-directed behaviours listed in a previous subsection (p. 87), patients with impairments 

of the basal ganglia, like in Huntington’s disease and in Wilson’s disease (Rosenblatt & 

Leroi, 2000), or with impairments of the cerebellum, like in Spinocerebellar ataxia 

(Koeppen, 2005), should be examined.  

 

XVII. Conclusions 

The five studies included in this dissertation aimed to gain insights into the 

interaction of automatic and goal-directed behaviours during adaptation. I presented 

various evidence that our automatic behaviours are highly robust and independent of the 

operation of the executive control system. Importantly, however, when more fragile 

aspects of procedural learning and memory were inspected, such as the challenge of habit 

change or behaviour adjustment during uncertain events, competition/interference 

between the two systems was revealed, which was further strengthened by the analyses 

of individual differences in procedural memory performance and executive control 

performance. By taking forward the study designs and focusing on the issues raised in 

this dissertation, we could get closer to unravel the interplay of automatic and goal-

directed behaviours, and thereby develop methods to improve behaviour adaptation in our 

everyday life.   
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Janacsek, Andrea Kóbor 

 

Related publication:  

• Horváth K., Kardos, Z., Takács, Á., Janacsek, K., Nemeth, D., & Kóbor, A. (2021). 

Manipulation of cognitive control does not influence statistical learning: Evidence from 

a probabilistic sequence learning task combined with the Eriksen flanker paradigm. 

ESCAN 2021: Conference of the European Society for Cognitive and Affective 

Neuroscience. 23-26. July, Budapest, Hungary. Online poster presentation. 

 

Background 

The interplay of automatic and goal-directed behaviors is often studied in combined paradigms 

where stimulus presentation is determined by a predefined, repeating structure and the surface 

level contains interfering stimuli creating conflict in the task. Previous studies, however, 

revealed mixed results: some studies proposed a supportive relationship (Coomans et al., 2011; 

Deroost et al., 2012; Deroost & Soetens, 2006; Koch, 2007) and the necessity of goal-directed 

control for the successful expression of automatic behaviors (Thompson et al., 2014), while 

others argue for the independence of these processes (Jiménez, Abrahamse, et al., 2020; 

Jiménez, Méndez, et al., 2020). Importantly, these studies exclusively used simple deterministic 

sequences which cannot be well-translated to our everyday automatic behaviors. From another 

line of research, evidence for competition/interference between complex automatic behaviors 

and goal-directed behaviors has emerged (Ambrus et al., 2020; Nemeth et al., 2010, 2013; 

Poldrack & Packard, 2003; Smalle et al., 2022; Virag et al., 2015). Nevertheless, these studies 

disregarded the direct manipulation of goal-directed behaviors and applied solely correlational 

or interventional designs instead of combined paradigms. 

In the present study, we aimed to overcome the shortcomings of these studies by 

creating a new experimental design: automatic behaviors were modelled via a probabilistic 

sequence learning task and goal-directed behaviors were modeled via an interference 
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suppression paradigm. More precisely, the Alternating Serial Reaction Time (ASRT) task 

(Howard & Howard, 1997; Kóbor et al., 2019) was combined with the Eriksen flanker task 

(Eriksen & Eriksen, 1974) in a way that the underlying sequence did not predict/correlate with 

the distractor stimuli (for more details see the Methods section). 

 Besides examining how procedural learning and interference suppression take place in 

the task, additional behavior adjustment effects can be identified and studied in similar task 

designs. The most prominent measure of conflict-driven adjustment processes is the 

congruency sequence effect (CSE) or Gratton effect. The CSE refers to the phenomenon that 

interference suppression (so-called congruency effect in the Eriksen flanker task) is less 

demanding (i.e., the congruency effect is reduced) following an incongruent trial than a 

congruent one (Egner, 2007, 2014; Schmidt, 2019). Measuring CSE in the present task enabled 

us to reveal the otherwise hidden aspects of the interplay between procedural learning and 

interference suppression. 

 Our results showed that i) procedural learning successfully took place in the task despite 

the flanker manipulation, ii) the distracting effect of the flankers was evident, thus interference 

suppression had to be involved in the task, iii) these processes seemed to be operating 

independently. However, when examining the CSE in the present task, a hampering relationship 

between procedural learning and interference suppression possibly emerged. A more detailed 

explanation and discussion of the present findings can be found at the end of each subsection 

of the Results section. 

 

Methods 

Participants 

Forty-one healthy young adults participated in the experiment. Two of them were excluded for 

not meeting the recruitment criteria. Two more participants were excluded for technical errors. 

Thus, 36 participants remained in the final sample. All of them had normal or corrected-to-

normal vision and none of them reported a history of any psychiatric and/or neurological 

condition and substance use (26 females and 10 males, MAge = 22.4 years, SDAge = 2.91 years, 

MEducation = 14.9 years, SDEducation = 1.89 years). Prior to their inclusion in the study, participants 

provided informed consent to the procedure as approved by the research ethics committee of 

the United Ethical Review Committee for Research in Psychology (EPKEB) in Hungary. The 
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study was conducted in accordance with the Declaration of Helsinki and participants received 

course credits or vouchers (equivalent to a payment of ca. 5.5 euros) for taking part in the 

experiment. 

 

Task and procedure 

The experiment consisted of one session. Participants performed a four-choice visuomotor 

reaction time task. To create a sequential flanker task, we combined the Eriksen flanker task 

(Eriksen & Eriksen, 1974)—a task assessing interference suppression—and the Alternating 

Serial Reaction Time task (Howard & Howard, 1997; Kóbor et al., 2019)—an implicit 

procedural learning task. This design enabled us to test how these two processes operate and 

interact when simultaneously involved in the task. 

In this task, a centrally presented arrow target stimulus appeared together with four 

flanker stimuli—two on the left and two on the right (Figure 1). Four buttons of a response pad 

(Cedrus RB-540, Cedrus Corporation, San Pedro, CA) corresponded to the four spatial 

directions. Participants were asked to press the button corresponding to the target stimulus (left 

= left thumb, up = left index finger, right = right index finger, down = right thumb) when the 

stimuli appeared on the screen as fast and as accurately as they could. In 37.5% of trials, the 

direction of the flanker stimuli was congruent with the direction of the target stimulus 

(congruent condition). In 37.5% of trials, the flanker stimuli pointed to the opposite direction 

as the target stimulus (incongruent condition). In the remaining 25%, the flanker stimuli had no 

spatial properties (rectangular shapes, neutral condition). Participants were instructed to ignore 

the flanker stimuli. 

 Unbeknownst to the participants, the presentation of target stimuli followed an 

alternating regularity. In this regularity, predetermined pattern (P) trials alternated with 

randomly chosen ones (e.g., 2 – r – 3 – r – 4 – r – 1 – r, where numbers denote the four 

predetermined directions [1 = left, 2 = up, 3 = down, 4 = right], and rs denote the randomly 

chosen directions out of the possible four). Due to this alternating regularity, some runs of three 

consecutive trials (triplets) occurred with a greater probability than others. In the example 

above, 2 – x – 3, 3 – x – 4, 4 – x – 1, and 1 – x – 2 (where x denotes to the middle element of 

the triplet) were more probable, as these were presented in every sequence repetition and also 

by chance. Meanwhile, for instance, 2 – x – 1, 3 – x – 2, 4 – x – 3, and 1 – x – 4 occurred less 
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probably as these triplets could only be formed by chance. We refer to the former category as 

high-probability triplets (62.5% of all trials), whereas low-probability triplet denotes the latter 

category (37.5% of all triplets). For all triplets, the third element (n) of a triplet was predictable 

by the first element (n-2) of that triplet with either high or low probability, while the middle 

element (n-1) did not have a predictive value. Triplets were identified using a moving window 

throughout the stimulus stream; thus, each trial was categorized as the last element of a high- 

or low-probability triplet; then, the same trial served as the middle and the first element for the 

categorization of the following triplets (Figure 1). Importantly, those random trials that were 

the third elements of a high-probability triplet (random high-probability trials) could be 

considered as “accidentally-regular” and seem to be characterized by unique response biases 

(Kóbor et al., 2018, 2019; Szegedi-Hallgató et al., 2019). Consequently, all random high-

probability trials were excluded from the analysis (Horváth et al., 2021; Kóbor et al., 2021). 

The task was organized into blocks, each consisting of 85 trials. In the first five trials, 

randomly chosen arrows were presented and served as a warm-up; this was followed by ten 

repetitions of the eight-element alternating sequence. All stimuli were presented as the 

combination of a central target stimulus and four flanker stimuli (two on the left, two on the 

right). The flanker congruency of the five warm-up trials were randomly selected, whereas the 

congruency of each trial of the repeating sequence was predetermined based on but not 

predicted by the ASRT sequence. In more details, flanker congruency was defined for the last 

trials of every unique triplet (64 altogether), and for all occurrences of a given unique triplet, 

the last trials had the same flanker congruency. 37.5-37.5% of both high-probability and low-

probability triplets were assigned into the congruent and incongruent categories, while the 

remaining 25-25% were assigned into the neutral category.  

Stimuli—target and flanker—were presented centrally on the screen for 200 ms. Then, 

a blank screen was presented until a response was provided but no longer than 500 ms. If 

participants responded during stimuli presentation, the stimuli disappeared. Following, another 

blank screen was presented for 700 ms (response-to-stimulus interval, RSI); then, the next 

stimuli appeared. In the case of an incorrect response, 500 ms after incorrect response onset, a 

black “X” was presented for another 500 ms. In the case of no response within the given time 

window, an “!” was presented for 500 ms. The experiment consisted of 30 blocks altogether, 

following a two-block practice where all stimuli appeared in a random order (Kóbor et al., 

2019). A short self-paced break was administered before each block started. After completion 
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of the task, a short post-task questionnaire was assessed. Participants were asked to report 

anything special observed and/or any regularity discovered in the task. None of them reported 

any regularity possibly linked to the ASRT sequence. 

 

Figure 1. Design of the task. Stimuli (target and flanker) were presented for 200 ms, then, 

participants had a maximum of 500 ms to provide a response. Following a blank screen 

presented for 700 ms (RSI), the next stimuli appeared on the screen. Trial congruency was 

either congruent (37.5% of all trials), incongruent (37.5%) or neutral (25%), and was defined 

based on but not predicted by the ASRT sequence. 

 

Statistical analysis 

Trial types were determined by the combination of probability (high/low) and congruency 

(congruent/incongruent/neutral). First, data were grouped into three equal time bins (periods), 

each including ten task blocks to track the trajectory of performance (for a similar approach, 

see Horváth et al., 2021). Second, median RTs for correctly responded trials and mean response 

accuracy were calculated separately for all trial types in each period. Finally, the RT and 

accuracy data calculated at the participant level were submitted into separate Probability (2) x 

Congruency (3) x Time (3) repeated-measures analyses of variance (ANOVAs). Procedural 

learning, i.e., the acquisition of probability-based associations, was measured as the difference 

in performance between (pattern) high-probability and low-probability trials (Kóbor et al., 
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2021). The congruency effect was measured as the difference in performance between 

congruent and incongruent trials (Botvinick et al., 1999; Egner, 2007; Gratton et al., 1992). 

To probe whether a conflict driven-adjustment effect, namely, the congruency sequence 

effect (CSE; Egner, 2007), was present in the task, congruency of the previous trial was 

additionally considered. Neutral trials and trials following a neutral trial were excluded in this 

analysis. Thus, eight trial types were distinguished based on probability (high/low), current trial 

congruency (congruent/incongruent), and previous trial congruency (congruent/incongruent). 

The calculated RT and accuracy data of these trial types were then submitted into separate 

Probability (2) x Current (2) x Previous (2) repeated-measures ANOVAs. 

Greenhouse-Geisser epsilon (ε) correction was used when necessary. Original df values 

and corrected p values (if applicable) are reported together with partial eta-squared (ηp
2) as the 

measure of effect size. LSD correction was used for pair-wise comparisons to correct for Type 

I error. All tests were two-tailed. All figures were created using the ggplot2 (Wickham, 2016) 

package. 

 

 Results  

Does interference suppression influence the extraction and acquisition of probability-

based associations? 

Reaction time – Learning was successful (main effect of Probability, F(1, 35) = 58.63, p < 

.001, ηp
2 = .626) and a strong congruency effect was found (main effect of Congruency, F(2, 

70) = 144.21, ε = .716, p < .001, ηp
2 = .805), which was decreasing over time (Congruency * 

Time interaction, F(4, 140) = 17.62, ε = .766, p < .001, ηp
2 = .335; Figure 2). Importantly, the 

learning effect and the congruency effect seemed not to influence one another as shown by the 

non-significant Probability * Congruency interaction (F(2, 70) = 1.05, p = .357, ηp
2 = .029). 

General performance—irrespective of trial type—improved over time (main effect of Time, 

F(2, 70) = 48.59, p < .001, ηp
2 = .581). The Probability * Time interaction and the triple 

interaction did not reach significance (F(2, 70) = 0.63, p = .537, ηp
2 = .018; F(4, 140) = 1.16, p 

= .332, ηp
2 = .032, respectively). Overall, despite the task having combined procedural learning 

and interference suppression manipulations, we observed statistically strong learning effect and 

congruency effect. These two effects seemed to be present independently. Interestingly, the 

flanker congruency effect decreased as the task progressed suggesting adaptation to the 
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interfering stimuli (Figure 2). To the best of our knowledge, no such effect has been reported 

so far, raising the possibility that procedural learning supported interference suppression over 

time. Nevertheless, future studies are needed to clarify this effect as typical flanker tasks contain 

far less trials than the present one. 

 

 

Figure 2. Main task performance measured by RTs over the course of the task. Blue colors 

represent performance on the low-probability trials and orange colors represent performance on 

the high-probability trials. Congruency is indicated by color gradient, from lightest to darkest 

respectively for neutral, congruent, and incongruent trials. Faded circle shapes show individual 

data points. Participants performed better on high-probability and congruent trials, while their 

performance was poorer on the low-probability and incongruent trials. RTs between high- and 
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low-probability trials differed in all congruency conditions indicating successful procedural 

learning. In both probability conditions, performance on incongruent trials was poorer 

compared with performance on the congruent ones, indicating the congruency effect. Error bars 

represent Standard Error of the Mean (SEM).  

 

Accuracy – We observed a similar overall pattern in accuracy as in RTs (Figure 3). Both the 

procedural learning effect and the flanker congruency effect were present (main effect of 

Probability, F(1, 35) = 55.857, p < .001, ηp
2 = .615; main effect of Congruency, F(2, 70) = 

65.41, ε = .762, p < .001, ηp
2 = .651, respectively; Figure 3), both appearing constant over time 

(non-significant Probability * Time and Congruency * Time interactions, F(2, 70) = 2.06, p = 

.135, ηp
2 = .056, F(4, 140) = 2.28, p = .064, ηp

2 = .061, respectively). Interestingly, however, a 

significant—but less strong—Probability * Congruency effect was observed (F(2, 70) = 3.55, 

p = .034, ηp
2 = .092). Based on the pair-wise comparisons, this effect was possibly driven by 

the poor performance on incongruent low-probability trials (88.8%; accuracy in all other 

conditions was ≥ 91.5%), leading to a larger flanker congruency effect on low-probability trials 

compared with the high-probability ones (p < .001). The magnitude of learning did not differ 

across flanker types (all ps ≥ .269). The main effect of Time and the triple interaction did not 

reach significance (F(2, 70) = 0.15, p = .308, ηp
2 = .073, F(4, 140) = 37.77, ε = .755, p < .001, 

ηp
2 = .519, respectively). Thus, we found a weak effect suggesting the interaction of procedural 

learning and interference suppression. Nevertheless, the effect seemed to be driven by the poor 

performance on the incongruent low-probability trials possibly due to the increased cognitive 

load.  
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Figure 3. Main task performance measured by accuracy over the course of the task. Blue 

colors represent performance on the low-probability trials and orange colors represent 

performance on the high-probability trials. Congruency is indicated by color gradient, from 

lightest to darkest respectively for neutral, congruent, and incongruent trials. Faded circle 

shapes show individual data points. Participants committed more errors on low-probability and 

incongruent trials. Performance on high- and low-probability trials differed in all congruency 

conditions, indicating successful procedural learning. In both probability conditions, the flanker 

congruency effect was observed between the congruent and incongruent conditions. Error bars 

represent Standard Error of the Mean (SEM).  
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Interim summary – Overall, our RT findings suggest that procedural learning and interference 

suppression operate in parallel when simultaneously involved in the task. In other words, 

interaction between these processes seemed to be absent in the present task suggesting an 

independent relationship, in line with some parts of previous literature (Jiménez, Abrahamse, 

et al., 2020; Jiménez, Méndez, et al., 2020). From another point of view, these findings also 

highlight the robust nature of procedural learning (e.g., Horváth et al., 2020; Nemeth et al., 

2011; Tóth-Fáber et al., 2020) as it appeared to be resistant to the increased amount of conflict 

in the task. Importantly, however, the analysis of accuracy revealed that procedural learning 

and interference suppression may interact with each other. The congruency effect was larger on 

the improbable trials, suggesting that when both uncertainty and conflict are higher due to the 

trial being improbable and incongruent, respectively, they affect response selection in an 

additive way. Alternatively, the two underlying processes may interfere or even compete for 

response selection resulting in an impaired performance (see also Bocanegra & Hommel, 2014).  

 

Is there an interaction between interference suppression and procedural learning when 

the conflict-driven adjustment effect is considered? 

Reaction time – Conflict-driven adjustment was measured by the CSE. In the case of a 

canonical CSE, the congruency effect is reduced following an incongruent trial than a congruent 

one. The influential effect of previous trial congruency was shown by the significant Probability 

* Current * Previous interaction (F(1, 33) = 16.67, p < .001, ηp
2 = .336; Figure 4). Pairwise 

comparisons revealed the following effects. In the case of low-probability trials, the congruency 

effect following an incongruent trial appeared reduced compared with following a congruent 

one (p = .004; 21 ms vs. 38 ms). Interestingly, in the case of high-probability trials this effect 

seemed to be reversed and the congruency effect was slightly larger following an incongruent 

trial compared with following a congruent one (p = .023; 33 ms vs. 27 ms). The ANOVA also 

revealed a significant main effect of current trial congruency in the expected direction; all other 

main effects and interactions were non-significant (all ps ≥ .059, [the p value of the trend-level 

main effect of Probability]).  
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Figure 4. Congruency Sequence Effect in the task. CSE was examined for the whole session. 

Blue represents performance on low-probability trials and orange represents performance on 

high-probability trials. Current trial congruency is indicated by different shapes and lines and 

capital letters: congruent trials are represented by squares, solid lines, and letter ‘C’, and 

incongruent trials are represented by rhombuses, dashed lines, and letter ‘I’. Previous flanker 

type is indicated on the horizontal axis and by lowercase letters (‘c’ = congruent, ‘i’ = 

incongruent). The vertical axis shows performance (left side: RTs, right side: accuracy). In RTs, 

CSE was apparent on low-probability trials; nevertheless, an effect opposing the canonical 

direction of the CSE also emerged on the high-probability trials. In accuracy, CSE was found 

only on the low-probability trials. Error bars represent Standard Error of the Mean (SEM). 

 

Accuracy – This analysis also revealed a significant Probability * Current * Previous 

interaction (F(1, 33) = 10.81, p = .002, ηp
2 = .247; Figure 4). Pairwise comparisons showed that 

the congruency effect measured on low-probability trials was reduced following an incongruent 

trial (p = .002; 2.1% vs. 8.2%), whereas such effect was not present on the high-probability 

trials (p = .635; 4.8% vs. 4.5%). The ANOVA also revealed significant main effects of 

Probability and Current trial congruency in the expected direction (F(1, 33) = 9.01, p = .005, 

ηp
2 = .215; F(1, 33) = 55.44, p < .001, ηp

2 = .624, respectively). The significant main effect of 

Previous trial congruency (F(1, 33) = 26.56, p < .001, ηp
2 = .446) showed that incongruent trials 

lead to higher accuracy irrespective of current trial type, possibly reflecting the strong CSE 

effect measured on low-probability trials. The Probability * Previous and the Current * Previous 
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interactions reached significance (F(1, 33) = 5.60, p = .024, ηp
2 = .145; F(1, 33) = 9.62, p = 

.004, ηp
2 = .226, respectively); nevertheless, as these effects possibly contain the covert 

influence of current trial properties, we do not discuss them here. The Probability * Current 

interaction appeared as non-significant (F(1, 33) = 0.28, p = .601, ηp
2 = .008). Altogether, while 

the CSE was present only on the low-probability trials, accuracy in general seemed to be more 

sensitive to previous trial congruency compared with RTs. 

 

Interim summary – Opposing the analysis of the learning effect and the congruency effect 

without taking into account conflict-driven adjustment effects, the analysis of the CSE revealed 

an interactive relationship between these processes. Interestingly, while the CSE appeared in 

the case of low-probability trials as expected, it was reversed for high-probability trials in RTs 

and absent in accuracy. These findings suggest that a hampering effect between procedural 

learning and interference suppression may be present. In more detail, it is presumable that when 

a trial cannot be predicted, conflict adaptation processes can exert their effect on response 

selection, thus the CSE appears on improbable trials. On the other hand, when a trial can be 

predicted, both procedural learning and conflict adaptation processes are involved in response 

selection, however, their additional effect results in an overshoot or overcontrol leading to 

worse performance in fact. A similar effect was found by Bocanegra and Hommel (2014) who 

proposed that in a predictable environment, the additional involvement of cognitive control 

processes hinders performance. Notably, this effect was present only for RTs and was absent in 

accuracy. The present study did not aim to and cannot clarify the differences emerged across 

RTs and accuracy; thus, further studies are needed to target this question. 
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Perceiving structure in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable transitional probabilities  

Authors: Andrea Kóbor, Kata Horváth, Zsófia Kardos, Dezso Nemeth, Karolina Janacsek 

 
 

Figure S1. Distribution of triplet frequencies for the 64 unique triplet types in the entire sample (N = 50) according to the six unique ASRT sequences, 

separately for the structured and unstructured sequences. In the structured sequences, among the 64 unique triplets, 16 are high-probability triplets and 48 are 

low-probability ones; the formers are indicated by the higher bins. There is partial overlap across the six unique ASRT sequences in terms of the actual high-

probability triplets. The distribution of triplet frequencies is flat in the unstructured sequences, as each triplet occurs with equal probability.  



 
 

Figure S2. Distribution of 2nd order nonadjacent transitional probabilities (16 triplet categories, e.g., 1 – X – 3, 3 – X – 2; X denotes the middle trial of the 

triplet) in the entire sample (N = 50) according to the six unique ASRT sequences, separately for the structured and unstructured sequences. In the structured 

sequences, four triplet categories include all the high-probability triplets in the given unique ASRT sequence, indicated by the higher bins. There is partial 

overlap across the six unique ASRT sequences in terms of the high-probability triplet categories. The distribution of 2nd order nonadjacent transitional 

probabilities is flat in the unstructured sequences, as each of them occurs with equal probability. 
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Supplementary Materials for ‘Divided Attention does not affect the acquisition and 

consolidation of transitional probabilities’ 

 

Kata Horváth, Csenge Török, Orsolya Pesthy, Dezso Nemeth, Karolina Janacsek 

 

 

1. Raw (non-standardized) RT performance on random high-probability vs. random-low 

probability trials 

Here we report performance on the random high-probability vs. random low-probability trials 

(i.e. statistical learning contrast) measured by raw RTs (Figure S1). A mixed-design ANOVA 

containing EPOCH (1-5 for the Learning Phase, 5-6 for the 12-hr delay) and TRIAL TYPE 

(random high-probability vs. random low-probability) as within-subject factors and 

INSTRUCTION (cued vs. uncued) and SLEEP (sleep vs. no-sleep) as between-subject factors 

was conducted for the Learning Phase as well as for the 12-hr post-learning offline delay. Below 

we highlight and summarize only those results that are relevant for the primary analyses and 

interpreted in the main text. For the detailed results see Table S1. 

 The Cued group showed significantly slower RTs on average compared with the Uncued 

group both in the Learning phase and after the 12-hour delay (significant main effect of 

INSTRUCTION; p < .001, p = .011, respectively). Slower RTs in the Cued group could suggest 

a higher attentional load, which could also indicate that the divided attention manipulation was 

effective, in line with the performance on sequence trials (see section 2, Table S2, and Figure 

S2 below) and on the post-block sequence report task (for more details see Results in the main 

text). The average RTs did not differ across the four subgroups when the SLEEP factor was 

also taken into account (the INSTRUCTION x SLEEP interaction not significant), however, 

the trajectory of average RTs differed across the four subgroups (significant EPOCH x 

INSTRUCTION x SLEEP interaction). Importantly, this latter effect did not involve the TRIAL 

TYPE factor, suggesting that the effect was independent of statistical learning, and therefore 

will not be discussed further. To control for group differences in average RTs in the subsequent 

analyses, raw RTs were standardized as presented in the main text (for more details see 

Statistical Analysis and Results). Nevertheless, it is important to note, that the TRIAL TYPE-

related effects (that is, those related to statistical learning) in the raw RT ANOVAs are 
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consistent with the results on standardized RTs presented in the main text as well as with the 

Bayesian analyses presented below in Table S4.  

 

 

Figure S1. Raw reaction times (RTs) for the random high-probability and random low-probability trials 

over the time course of learning, separately for the four subgroups. The Cued group showed slower RTs on average 

compared with the Uncued group, while the difference between the random high- and low-probability trials, that 

is statistical learning, did not differ across groups. Error bars represent the standard error of the mean (SEM). 

 

Table S1. ANOVA results for raw RTs on random high-probability vs. random low-probability trials. 

 EPOCH TRIAL TYPE 
EPOCH * TRIAL 

TYPE 
INSTRUCTION 

 F p  ηp
2 F p  ηp

2  F p  ηp
2 F p  ηp

2 

Learning 

Phase 
10.737 < .001 .105 

221.81

2 
< .001 .707 5.072 .001 .052 5.518 .021 .021 

12-hr delay 
115.17

8 
< .001 .556 

196.53

0 
< .001 .681 2.840 .095 .030 6.699 .011 .068 

 

EPOCH x 

INSTRUCTION 

TRIAL TYPE x 

INSTRUCTION 

EPOCH x TRIAL 

TYPE x 

INSTRUCTION  

SLEEP 

F p  ηp
2 F p  ηp

2 F p  ηp
2 F p  ηp

2 

Learning 

Phase 
1.206 .307 .013 0.002 .963 < .001 0.652 .625 .007 1.880 .174 .020 

12-hr delay 1.890 .173 .020 0.002 .961 < .001 0.037 .848 < .001 0.341 .561 .004 
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 EPOCH x SLEEP TRIAL TYPE x SLEEP 
EPOCH x TRIAL 

TYPE x SLEEP 

INSTRUCTION x 

SLEEP 

 F p  ηp
2 F p  ηp

2 F p  ηp
2 F p  ηp

2 

Learning 

Phase 
0.504 .654 .005 0.154 .696 .002 0.358 .839 .004 0.645 .424 .007 

12-hr delay 1.326 .253 .014 0.006 .940 < .001 0.001 .991 < .001 2.740 .101 .029 

 

EPOCH x 

INSTRUCTION x 

SLEEP 

TRIAL TYPE x 

INSTRUCTION x 

SLEEP 

EPOCH x TRIAL 

TYPE x 

INSTRUCTION x 

SLEEP 

 

 F p  ηp
2 F p  ηp

2 F p  ηp
2    

Learning 

Phase 
2.842 .046 .030 2.743 .101 .029 .221 .927 .002    

12-hr delay 0.062 .803 .001 0.645 .424 .007 0.176 .676 .002    

Note. P values < .05 are bold-faced. The main effect of EPOCH can indicate RT changes during the task, 

irrespective of trial type. The main effect of TRIAL TYPE can indicate RT differences between the random high- 

probability and random low-probability trial types (that is, statistical learning), while the EPOCH x TRIAL TYPE 

interaction can indicate different trajectories for these trial types in the time course of learning. The main effect of 

INSTRUCTION can indicate differences in average RTs between the Uncued and Cued groups, irrespective of 

trial type, while the EPOCH x INSTRUCTION interaction can indicate group differences in the time course of 

average RTs. The TRIAL TYPE x INSTRUCTION interaction can indicate trial type-related differences between 

the Uncued and Cued groups, and the EPOCH x TRIAL TYPE x INSTRUCTION interaction can indicate such 

differences in the time course of learning. The main effect of SLEEP can indicate differences in average RTs 

between the Sleep and No-sleep subgroups, irrespective of the cuing manipulation and trial type, while the EPOCH 

x SLEEP interaction can indicate group differences in the time course of average RTs. The TRIAL TYPE x SLEEP 

interaction can indicate trial type-related differences between the Sleep and No-sleep subgroups, irrespective of 

the cuing manipulation, and the EPOCH x TRIAL TYPE x SLEEP interaction can indicate such differences in the 

time course of learning. The INSTRUCTION x SLEEP interaction can indicate differences in average RTs across 

the four subgroups, irrespective of trial type, while the EPOCH x INSTRUCTION x SLEEP interaction can 

indicate differences in the time course of average RTs across the four subgroups. Finally, the TRIAL TYPE x 

INSTRUCTION x SLEEP interaction can indicate trial type-related differences across the four subgroups, while 

the EPOCH x TRIAL TYPE x INSTRUCTION x SLEEP interaction can indicate such differences in the time 

course of learning.  

 

2. Standardized RTs for sequence trials compared with random trials across the four 

subgroups 

To ensure that participants in the Cued group indeed followed the instruction regarding the 

sequence trials and, therefore, the divided attention manipulation was successful, we tested the 

performance on the sequence vs. random trials, irrespective of trial probability (that is, random 

trials included both high- and low-probability trials), across the four subgroups (see Figure S2). 
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Here we report mixed design ANOVAs on standardized RTs with EPOCH (1-5 for the Learning 

Phase; 5 vs. 6 for the 12-hr delay) and TRIAL TYPE (Sequence vs. Random) as within-subject 

factors and INSTRUCTION (Uncued vs. Cued) and SLEEP (Sleep vs. No-sleep) as between-

subject factors (for detailed results see Table S2). Importantly, these ANOVAs revealed a 

significant TRIAL TYPE x INSTRUCTION interaction both in the Learning and the Testing 

phases (p = .001, p = .002, respectively). The Cued group showed faster responses on the 

sequence trials compared with the random ones during the entire experiment (all ps < .001). In 

contrast, the Uncued group showed similar RTs on the sequence vs. random trials (Learning 

Phase: p = .913, 12-hr delay: p = .094). Overall, this result suggests that the Cued group 

followed the divided attention instruction throughout the task, and thus the manipulation was 

effective. 

 

 

Figure S2. Standardized RTs for the sequence and the random trials (irrespective of trial probability) over 

the time course of learning across the four subgroups. While the Uncued Sleep and No-sleep subgroups showed 

similar RTs for trials in the sequence position as for trials in the random position, the Cued Sleep and No-sleep 

subgroups responded faster to the sequence trials compared with the random trials, indicating the effect of divided 

attention instruction. Error bars represent the SEM. 
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Table S2. ANOVA results for standardized RTs on sequence vs. random trials. 

 EPOCH TRIAL TYPE 
EPOCH * TRIAL 

TYPE 
INSTRUCTION 

 F p  ηp
2 F p  ηp

2  F p  ηp
2 F p  ηp

2 

Learning 

Phase 
18.531 < .001 .169 11.700 .001 .113 5.789 < .001 .059 2.576 .112 .027 

12-hr delay 
131.84

0 
< .001 .589 31.680 < .001 .256 1.598 .209 .017 .788 .377 .008 

 

EPOCH x 

INSTRUCTION 

TRIAL TYPE x 

INSTRUCTION 

EPOCH x TRIAL 

TYPE x 

INSTRUCTION  

SLEEP 

F p  ηp
2 F p  ηp

2 F p  ηp
2 F p  ηp

2 

Learning 

Phase 
1.643 .191 .018 12.787 .001 .122 1.121 .344 .012 0.482 .489 .005 

12-hr delay 4.808 .031 .050 10.486 .002 .102 1.748 .189 .019 1.845 .178 .020 

 EPOCH x SLEEP TRIAL TYPE x SLEEP 
EPOCH x TRIAL 

TYPE x SLEEP 

INSTRUCTION x 

SLEEP 

 F p  ηp
2 F p  ηp

2 F p  ηp
2 F p  ηp

2 

Learning 

Phase 
0.438 .677 .005 0.001 .993 < .001 0.143 .951 .002 3.302 .072 .035 

12-hr delay 1.041 .310 .011 0.049 .826 .001 0.024 .877 < .001 5.358 .023 .055 

 

EPOCH x 

INSTRUCTION x 

SLEEP 

TRIAL TYPE x 

INSTRUCTION x 

SLEEP 

EPOCH x TRIAL 

TYPE x 

INSTRUCTION x 

SLEEP 

 

 F p  ηp
2 F p  ηp

2 F p  ηp
2    

Learning 

Phase 
2.353 .089 .025 0.006 .939 .006 0.664 .596 .007    

12-hr delay 0.154 .695 .002 0.001 .979 < .001 0.167 .683 .002    

Note. P values < .05 are bold-faced. For how to interpret these effects, please see the note of Table S1, with the 

only difference that the ANOVAs reported here contrasted sequence vs. random trials, instead of random high- vs. 

random-low probability trials. The ANOVAs revealed some differences in average RTs and their trajectories 

across groups (INSTRUCTION x SLEEP, EPOCH x INSTRUCTION x SLEEP, and EPOCH x INSTRUCTION 

interactions). Importantly, none of these effects involved the TRIAL TYPE factor and, therefore, it will not be 

further discussed. The interested reader could gain further insights into these effects on average RTs by inspecting 

Figure S2. 

 

3. Acquisition and consolidation of statistical knowledge measured by accuracy 

Similar ANOVAs were conducted for the statistical learning scores calculated on accuracy data 

as the ones reported in the main text using standardized RT data (see Results). The details of 
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these ANOVAs can be found in Table S3. While most of the effects are consistent with the 

results on the standardized as well as raw RT data, the main effect of SLEEP and the EPOCH 

x SLEEP interaction during the 12-hr delay revealed an additional trend (p = .079; p = .061, 

respectively). Learning scores in the Testing Phase appeared to be slightly decreased when the 

offline delay contained wake activity (p = .023; end of the Learning Phase: 3.6%; Testing Phase: 

1.6%) compared with sleep (p = .693; end of the Learning Phase: 3.7%; Testing Phase: 4.1%). 

This additional trend suggests a beneficial effect of sleep on consolidation regardless of 

attention manipulation, contrary to the standardized and raw RT effects (see the Results section 

in the main text and Table S4 below, respectively). This difference might be originating from 

accuracy and RT measures capturing different aspects of learning/memory: It has been 

previously argued that while RTs could reflect involuntary processes, accuracy could reflect 

voluntary and more controlled processes [1]. It is important to note, however, that this accuracy 

effect should be treated with caution as it was not supported by the Bayesian analysis (see Table 

S4). Moreover, previous studies reporting accuracy data found retention of the acquired 

knowledge [2–5], irrespective of post-learning delay activity [2,4]. Therefore, further studies 

are needed to confirm or disprove this effect.  

 

Table S3. ANOVA results for statistical learning scores calculated on the accuracy data. 

 INTERCEPT EPOCH INSTRUCTION 
EPOCH x 

INSTRUCTION 

 F p  ηp
2 F p  ηp

2 F p  ηp
2 F p  ηp

2 

Learning 

Phase 
88.848 < .001 .491 5.506 < .001 .056 .802 .373 .009 1.336 .256 .014 

12-hr delay 80.127 < .001 .466 1.772 .186 .019 1.142 .288 .012 0.119 .731 .001 

 SLEEP EPOCH x SLEEP 
INSTRUCTION x 

SLEEP 

EPOCH x 

INSTRUCTION x 

SLEEP  

 F p  ηp
2 F p  ηp

2 F p  ηp
2 F p  ηp

2 

Learning 

Phase 
0.415 .521 .005 1.497 .202 .016 0.011 .918 < .001 1.248 .290 .013 

12-hr delay 3.150 .079 .033 3.602 .061 .038 0.003 .956 < .001 0.295 .588 .003 

Note. P values < .05 are bold-faced. Since the ANOVAs are conducted on learning scores, the INTERCEPT can 

indicate significant learning. The main effect of INSTRUCTION can indicate INSTRUCTION differences in the 

learning scores. The main effect of EPOCH can indicate changes in the learning scores during the task, while the 

INSTRUCTION x EPOCH interaction can indicate INSTRUCTION differences in the time course of learning. 

The main effect of SLEEP can indicate Sleep and No-sleep SLEEP differences irrespective to the level of intention 
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to learn. The INSTRUCTION x SLEEP interaction can indicate the SLEEP differences within the main 

INSTRUCTIONs, while the INSTRUCTION x EPOCH x SLEEP interaction can indicate these differences in the 

time course of learning. For more details, see the main text of the manuscript.  

 

4. Bayesian ANOVAs conducted on the raw RT and accuracy data 

Finally, here we present all BF01 and BFExclusion values for the Bayesian ANOVAs conducted 

on the raw RT and accuracy data (see Table S4). Please note that although raw RTs are 

presented separately for the random high-probability and random low-probability trials above 

(Figure S1, Table S1), here we report the Bayesian ANOVA conducted on learning scores for 

better comparability with the analysis presented in the main text as well as with the analysis 

conducted on accuracy data. 

 These analyses are in line with and support most results of the frequentist analyses (i.e., 

null-hypothesis significance testing). Notably, the slight trend for the effect of sleep on 

consolidation found in the accuracy data (see the previous section above) is not confirmed by 

the Bayesian ANOVA, supporting the conclusion that this effect should be treated with caution. 

 

Table S4. Bayesian ANOVA results for statistical learning scores calculated on the raw RT and accuracy data. 

Model 

Raw RTs Accuracy 

Learning Phase 12-hr delay Learning Phase 12-hr delay 

BF01 BFExclusion BF01 BFExclusion BF01 BFExclusion BF01 BFExclusion 

NULL MODEL 1.000 - 1.000 - 1.000 - 1.000 - 

EPOCH 0.029 0.081 1.478 3.278 0.002 4.629e-4 2.515 4.255 

INSTRUCTION 7.676 19.246 5.320 13.109 3.412 6.802 3.437 7.752 

EPOCH x 

INSTRUCTION 6.567 113.944 34.553 30.268 0.018 5.747 35.247 20.408 

SLEEP 7.278 17.832 5.289 12.947 5.504 12.500 1.460 2.740 

EPOCH x SLEEP 10.139 175.568 35.192 32.186 0.074 20.408 2.945 2.994 

INSTRUCTION x SLEEP 102.293 52.811 82.730 48.507 89.200 41.667 18.341 14.085 

EPOCH x 

INSTRUCTION x SLEEP 94290.995 

2262483.

216 9499.680 1037.228 13.192 1000.000 512.674 11.111 

Note. The BF01 value of the best fitting model is bold-faced. In Bayesian ANOVAs, BF01 values reflect how well 

a model fits the data: The smaller the BF01 value is, the better the model predicts the data. BF01 value of the null 

model, which contains the grand mean only is always 1 [6]. The BFExclusion value quantifies the evidence for the 

inclusion of a factor or an interaction of factors in the model and can be interpreted in the same direction as BF01 

values (i.e. the smaller the value, the stronger the evidence for including the given factor). For how to interpret the 

main effects and interactions see the note of Table S3. 
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Supplementary introduction: Behavioral and neural characteristics of habit learning 

across human and animal studies 

The definition of habits was originally described in animal studies1,2, highlighting them as 

behaviors that are elicited by environmental stimuli to which they have become strongly tied 

and that become insensitive to both outcome (reward) devaluation and contingency 

degradation3. Importantly, it has been recognized that these features and the experimental 

methods developed to assess habits in animals may not be directly translatable to and likely not 

sufficient to capture habits in humans2,4. Humans are capable of performing tasks without 

rewards—simply because they are instructed to do so. Therefore, the habitual nature of the 

acquired associations can be tested using a broader range of methods compared to animals 

where the outcome devaluation and contingency degradation tests are needed to establish the 

presence of habitual behaviors2,5,6. Moreover, in some cases humans might even use alternative 

or additional cognitive mechanisms to solve the same task compared to animals (e.g., healthy 

humans solve a simple concurrent discrimination task using declarative learning processes, 

while monkeys use habit learning processes7–9), further highlighting that different approaches 

should be favored when testing human habit learning. Indeed, probabilistic classification, 

sequential decision making, and (motor) sequence learning tasks have all been used to test 

aspects of habitual behavior in humans as they show similarities with more classical habit 

learning tasks both on behavioral and neural level10–15. (For recent successful attempts at 

identifying habitual behaviors in more classical habit learning tasks, the outcome devaluation 

test and the reversal learning task, see16,17 and the Discussion in the main text.) 

 Here we present the major similarities—both behavioral and neural—between sequence 

learning tasks and other commonly used habit learning tasks and argue that despite rarely being 

employed in the animal literature, sequence learning tasks, including the ASRT used in our 

study, are valid tools to measure habit learning and change in humans.  

On the behavioral level, habits in humans are often defined by a collection of attributes 

that include (i) gradual learning over extended practice; (ii) learning can occur implicitly (i.e., 

without awareness of what was learned and without conscious control over the acquired 

knowledge); and (iii) the learned behavior is performed automatically (e.g., without full 

attention, such as under distraction), even when the behavior becomes no longer relevant (e.g., 

when environmental contingencies or the outcomes/rewards of the behavior change)2,18–20. 

Notably, it has been recognized that these characteristics of habits do not always cluster 

together; it is possible that some of these characteristics emerge without others. For example, if 
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no rewards/reinforcers are given, the other characteristics of habit learning and behavior can 

still be captured2,20. In the next paragraphs, we will discuss how learning and the acquired 

knowledge in sequence learning tasks and the ASRT, in particular, show many of the defining 

attributes of habits. 

First, habits are learned gradually, over an extended training period4,18. Learning in 

SRT-like tasks is likewise gradual and based on extended practice21. In the present study, both 

the Learning phase and the Rewiring phase contained 45 blocks, with 80 stimuli and button 

presses in each block (excluding the first 5 random trials), that is, the associations were 

practiced over 3600 trials in each phase. This added up to around an hour and a half of practice 

per session with breaks between blocks (for more details see the Methods and Supplementary 

methods sections in the revised MS and SI, respectively). This amount of practice constitutes 

an extensive training compared to a range of other ASRT studies that focused mainly on earlier 

phases of learning (with ~1600-2000 trials per session) e.g., 22–24. It has been previously shown 

in healthy human adults that an extended practice of 3600 trials leads to persistent memories of 

the acquired associations even after a one-year delay that did not include any further practice25. 

Thus, while fewer trials can be sufficient for the initial acquisition of the associations embedded 

in the task, a more extended practice can help strengthen and automatize the acquired 

knowledge (see also below). This is why we chose 3600 trials per session in the present study. 

Second, habits can be acquired and performed implicitly, that is, without awareness 

of or conscious control over the acquired knowledge2,4,26. While learning in deterministic 

sequence learning tasks often reaches awareness (i.e., participants consciously recognize the 

repeating sequence) e.g., 27–29, numerous studies have shown that learning in the ASRT task 

typically remains fully implicit. The implicit nature of learning and the acquired knowledge can 

be probed by verbalization, generation, and recognition tests30. The verbalization test probes 

whether participants can verbally declare any task regularities that they may have 

noticed/learned e.g., 31,32. The generation test probes whether participants can consciously control 

the acquired knowledge by asking them first to generate the regularity present in the task and 

then generate a new series of responses that do not contain the learned regularities 23,33,34. In the 

recognition test, participants are presented with the acquired associations and are asked to 

decide whether they recognize them or not15,35. Based on an extensive list of studies that used 

verbalization, generation, and/or recognition tests, a recent review conclusively showed that 

learning and the acquired knowledge remains implicit in the ASRT task 30. 



4 
 

In our study, we used both a generation and a recognition task to test whether 

participants gained awareness about and conscious control over the acquired knowledge. In the 

Free generation task, we asked participants to think about the first day then the second day of 

practice (in a counterbalanced order) and then try to generate the order in which the stimuli 

appeared. The results showed that they produced the acquired associations at a similar rate for 

both experimental phases; thus, they did not have conscious control over the acquired 

knowledge. In the Triplet sorting task, participants were presented with all unique associations 

(triplets) learned during the Learning phase and the Rewiring phase, separately, and were asked 

to decide whether the presented associations occurred frequently or not during the given 

experimental phase. Performance was similarly at chance level for all trial types for both phases 

(i.e., triplets that were high-probability in the Learning phase but became low-probability in the 

Rewiring phase, or vice versa, separately in Go and No-go trials), showing that the acquired 

knowledge was implicit. Further details on these tasks and analyses can be found in the 

Supplementary results section. We believe that these two measures together with previous 

studies using the same task and similar samples prove that the acquired associative knowledge 

in the ASRT task is implicit. 

Third, habits are performed automatically. For sequence learning tasks, including the 

ASRT task, a growing body of evidence shows that divided attention23,36, cognitive load37, or a 

secondary task38 does not affect the learning and expression of associative knowledge. 

Additionally, using preparatory event-related brain potentials, a recent ASRT study31 showed 

that anticipation and processing of stimuli that were predictable based on the acquired 

associations required less attentional resources compared to unpredictable stimuli; thus, 

anticipation and processing of the upcoming stimuli were automatic and sensitive to the 

acquired associative knowledge. 

As noted above, in sequence learning tasks, alike most human cognitive tasks, 

participants provide responses simply because they are instructed to do so. Therefore, the mere 

fact of responding to a stimulus does not necessarily provide useful information about the 

automatic stimulus-response (S—R) links that participants learn in these tasks. Instead, 

automaticity can be assessed using the characteristics of responses such as response speed. For 

example, in the ASRT task, participants acquire and their responses become driven by 

probability-based associations between runs of three consecutive stimuli: in some cases, the 

current stimulus (third of the three) can be predicted with a higher probability based on the two 

previous stimuli, while in other cases, this predictive probability is low. Once acquired, the first 
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stimulus automatically elicits the high-probability association when the third stimulus is 

presented, resulting in faster reaction times than for those third stimuli that are less predictable 

by the first ones. Thus, S—R links are developed in this task where the speed of the current 

response is influenced by the combination of the previous and the current stimuli (instead of 

the current stimulus alone). Indeed, in the present study, participants answered increasingly 

faster to high-probability stimuli than to low-probability ones, indicating the development of 

automatic associations as learning progressed. 

Further evidence for automaticity in the ASRT task comes from probing whether 

participants keep responding according to the old associations they have learned even when 

those associations are no longer relevant. Szegedi-Hallgató et al.15 used an experimental design 

similar to ours but without the Go/No-go manipulation: after participants acquired the 

associations in an extended learning phase of the ASRT task, the sequence was changed in the 

rewiring phase, and therefore, some of the acquired associations became less relevant 

(improbable). The authors tested whether errors committed in the rewiring phase were simple 

motor control errors or so-called anticipatory errors. While a motor control error could be any 

incorrect response (i.e., pressing any of the three response buttons that are incorrect for a given 

stimulus), an anticipatory error would reflect the acquired associative knowledge (i.e., pressing 

the response button that would be an appropriate response for a high-probability triplet even 

when participants are presented with a low-probability triplet). They found that participants (in 

the Implicit-Implicit group that is most closely related to our study) committed anticipatory 

errors based on the old associations they learned in the previous phase, even though those 

associations were no longer relevant in the rewiring phase.  

Another study by Kóbor et al.32 introduced a pseudorandom environment (i.e., a 

stimulus stream lacking any regularities) after the initial extended learning phase of ASRT. 

They found that the associations learned in the initial learning phase were automatically 

transferred to and influenced participants’ responses in the pseudorandom environment, further 

highlighting the persistence and automaticity of the acquired knowledge. The introduction of a 

rewiring phase/pseudorandom environment where the initially acquired associations are no 

longer relevant could be considered as a test to see whether the presented (sequences of) stimuli 

automatically elicit responses that were appropriate in the old environment. Therefore, although 

significant differences exist between these experimental designs in humans and the typical tests 

(with reinforcers) in animal studies, these designs could shed further light on the automatic 

nature of the acquired associative knowledge in humans. The results of the present study also 



6 
 

reveal the automatic/persistent nature of the acquired knowledge in that the old knowledge 

persisted in the irrelevant (new) context when probed in the Testing phase. 

As discussed so far, evidence shows that sequence learning tasks, and the ASRT task in 

particular, can be used to test habit learning in humans as the learning process and the acquired 

associative knowledge exhibit the behavioral characteristics of habits. Further evidence 

supporting the use of such tasks comes from studies testing the neural underpinnings of 

habits. It has long been recognized that the striatum (a structure within the basal ganglia) plays 

a key role in habits39,40. Specifically, studies have suggested a shift from reliance on the 

associative striatum (broadly corresponding to the dorsomedial striatum in rodents) during 

initial learning to the sensorimotor striatum (broadly corresponding to the dorsolateral striatum 

in rodents) later in learning4,40–42. This has often been interpreted as a shift from a goal-directed 

to a habitual behavior in animal studies4. 

Learning in the (A)SRT task elicits similar brain activation41,43. Specifically, a recent 

meta-analysis of human functional fMRI data revealed converging activation in the striatum, 

including the anterior segment of the caudate nucleus and the putamen41, although this study 

did not contrast early vs. later phases of learning to test the shift in reliance from the associative 

to the sensorimotor striatum. In another meta-analysis of functional fMRI data, Lohse et al.43 

tested neural increases and decreases over short, medium and long timescales of a range of tasks 

that included sequence learning tasks as well. They found increased activation in the putamen 

over the medium and long timescales, suggesting that an increasing automatization on the 

behavioral level over extended practice is associated with increased involvement of the putamen 

(sensorimotor striatum). Finally, another meta-analysis contrasted brain activation during 

different habit learning tasks directly to test whether the human putamen plays a similar role to 

the rodent dorsolateral striatum in habitual behavior13. They found that outcome devaluation, 

sequential decision-making, and sequence learning tasks likewise elicited activation in the 

putamen, suggesting that despite being highly different tasks, they rely on similar learning 

mechanisms. To sum up, converging evidence from brain imaging studies shows that classic 

habit learning tasks and implicit sequence learning tasks rely on the same basal-ganglia-based 

network, both in humans and animals.  

In conclusion, we discussed that, compared to habit research in animals, a broader set 

of behavioral characteristics are used to capture habits in humans. We provided evidence both 

from previous research and the current study that these characteristics are present in sequence 

learning tasks, including the ASRT task. Research probing the neural underpinnings of habits 
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also revealed that the same basal-ganglia-based network is involved in sequence learning and 

other, more traditional habit learning tasks. 
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Supplementary results: Reaction times 

Raw reaction time (RT) performance 

To illustrate how general performance changed throughout the experiment, we present raw RTs 

in Figure S1. 

 

Figure S1. Raw RT performance throughout the experiment. a) Mean RTs measured in the Learning and 

Rewiring phases, separately for the four trial types (HH, HL, LH, LL). During the Learning phase, RTs were faster 

for the high-probability trial types (HL, HH) compared with the low-probability ones (LH, LL), indicating 

acquisition of the associations of Sequence A. In the Rewiring phase, participants showed increasingly faster RTs 

on the LH trials compared to the LL trials, indicating the acquisition of the Sequence B associations (for detailed 

analyses, see main text). In these two phases, only responses on Go trials are displayed. b) Mean RTs during the 

Testing phase, separately for four trial types (HH, HL, LH, LL), the previously Go and No-go trials, and the tested 

contexts (Sequence A vs. B). Please note that there were no No-go trials within the HH trial type, and therefore 

the primary measures of interest were derived from the other three trial types (for details see Methods section in 

the main text). When tested on Sequence A, participants expressed the old knowledge both on the Go and No-go 

trials (faster RTs for HL than for LL). When tested on Sequence B, the new knowledge was present on the Go 

(faster RTs for LH than for LL trials) but not on the No-go trials; additionally, the old knowledge (associations of 

Sequence A) also persisted (faster RTs on HL than on LL) even though it was not relevant in this testing context. 

The interpretation presented here is supported by analyses on the learning scores reported in the main text. Error 

bars represent the Standard Error of the Mean (SEM).  
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How does acquisition of new knowledge compare with the initial learning process?  

To answer this question, we directly compared the acquisition of old knowledge in the Learning 

phase and the acquisition of new knowledge in the Rewiring phase (measured by the ‘LL minus 

HL’ and ‘LL minus LH’ learning scores, respectively). There was no significant difference 

between the learning trajectories of the old and new knowledge (Phase x Period interaction: 

F(1, 30) = 0.657, p = .522, ηp
2 = .021; circled areas of Figure 3ab), however, the overall 

magnitude of learning was greater in the Learning than in the Rewiring phase (7.7 ms and 1.9 

ms, respectively; significant main effect of Phase: F(1, 30) = 6.215, p = .018, ηp
2 = .172). 

Learning scores gradually increased, irrespective of the phase (main effect of Period: F(2, 60) 

= 7.646, p = .001, ηp
2 = .203). Overall, these results suggest that, although participants were 

able to acquire the new knowledge, this process was less successful than the initial acquisition 

of the old knowledge.  

 

Is the level of the new knowledge comparable to that of the old knowledge in the Testing 

phase? 

To test this question, first we performed paired samples t-tests contrasting the old knowledge 

with the new one in their relevant contexts of the Testing phase (i.e., tested on Sequence A vs. 

Sequence B, respectively). These data are displayed in the circled areas of Figure 4ab of the 

main text. 

 On the Go trials, there was no significant difference between the learning scores (t(30) 

= -0.47, p = .643, Cohen’s d = 0.08, BF01 = 4.715), suggesting that participants could express 

both the old and new knowledge in their respective relevant contexts to a similar extent. This 

finding could be interpreted as flexibility of the acquired knowledge. On the No-go trials, the 

learning score for the old knowledge was significantly greater than that for the new knowledge 

(t(30) = 5.79, p < .001, Cohen’s d = 1.04 , BF01 = 2.841e-5). Consistent with the finding that 

only the learning score for the old knowledge was significantly above zero (reported in the main 

text), this result reveals the detrimental effect of inhibition: on the previously inhibited trials, 

the old knowledge was reinstated, and the new knowledge was not expressed (and presumably 

not acquired).  

Next, we performed similar analyses to contrast the level of old and new knowledge in 

the new (Sequence B) context. Thus, data displayed in the non-circled area of Figure 4a and the 

circled area of Figure 4b of the main text are contrasted in this analysis. On the Go trials, there 
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was no significant difference between the learning scores (p = .402, Cohen’s d = 0.15; BF01 = 

3.743, indicating strong evidence for no difference), suggesting that participants could express 

both the old and new knowledge in the new context to a similar extent. On the No-go trials, the 

learning score for the old knowledge was significantly greater than that for the new knowledge 

(p < .050, Cohen’s d = 0.37, BF01 = 0.849). Again, consistent with the finding that only the 

learning score for the old knowledge was significantly above zero (reported in the main text), 

this result further supports the detrimental effect of inhibition.  
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Supplementary results: Accuracy 

As it is shown in Figure S2a, there was a ceiling effect in accuracy (97.4% on average) in the 

Rewiring phase, likely due to the introduction of the Go/No-go manipulation in this phase. 

Therefore, accuracy data of the Rewiring phase and of the Learning phase for comparability, 

were analyzed as follows: First, we compared average accuracy measured on the Go trials for 

the four trial types, separately for the two phases using repeated measures ANOVAs with Trial 

type (HH, LL, LH, HL) and Period (1, 2, 3) as within-subject factors. Next, we calculated 

sensitivity indices for the Rewiring Phase only, separately for the LL, LH and HL trial types. 

For these indices, false alarm rate (on No-go trials) was extracted from the ratio of correct 

responses (on Go trials). Since all HH trials were Go, these trials could not be included in this 

analysis. The sensitivity indices were submitted to a repeated measures ANOVA with Trial type 

(LL, LH, HL) and Period (1, 2, 3) as within-subject factors.  

Since participants responded on all trials during the Testing phase, accuracy did not 

show ceiling effect (91% on average, see Figure S2c), and ANOVAs on learning scores could 

be performed in accordance with the RT analysis reported in the main text. Learning scores 

were calculated as follows: for old knowledge, accuracy on LL trials were subtracted from 

accuracy on HL trials; for new knowledge, accuracy on LL trials were subtracted from accuracy 

on LH trials. In both cases, higher learning scores indicated better knowledge. Repeated 

measures ANOVAs with the tested Sequence (Sequence A vs. Sequence B) and Inhibition (Go 

vs. No-go) as within-subject factors were performed separately for the two learning scores 

(testing old and new knowledge). Additionally, for comparability with RT analyses, we 

performed one-sample t-tests to reveal whether the learning scores were significantly above 

zero. 

Greenhouse-Geisser epsilon (ε) correction was used when necessary. Original df values 

and corrected p values (if applicable) are reported together with partial eta-squared (ηp
2) as the 

measure of effect size. LSD correction was used for pair-wise comparisons to correct for Type 

I error. We report Cohen’s d as a measure of effect size for pairwise comparisons. Additionally, 

Bayes factors were computed using default JASP priors to see if data provided strong evidence 

for the results obtained in the frequentist t-tests (anecdotal evidence for the null-hypothesis: 1 

< BF01 < 3, at least substantial evidence for the null-hypothesis: BF01 > 3; anecdotal evidence 

for the alternative hypothesis: 1 > BF01 > 1/3, at least substantial evidence for the alternative 

hypothesis: BF01 < 1/3) 44,45. 
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Figure S2. Performance in the Learning and Rewiring phases as measured by accuracy and sensitivity 

index. (a) The analysis of the Learning phase revealed that participants successfully acquired the associations of 

Sequence A as there were more accurate on those trials that were high-probability compared to those that were 

low-probability in this phase (HH and HL vs. LL and LH; underlined letters indicating probabilities of the current 

comparison; see also Figure 2 in main text). Accuracy in the Rewiring phase was very high due to the introduction 

of No-go trials, and therefore no significant effects could be detected in the analysis. (b) To track rewiring despite 

the very high accuracy, sensitivity index (ratio of correct responses minus false alarm rate) was computed for the 

Rewiring Phase. The analysis of this index revealed that participants successfully acquired the associations of 

Sequence B as the index was higher (i.e., fewer false alarms) for these trials that became high-probability compared 

to those that were and/or became low-probability in the Rewiring phase (LH vs. LL, and LH vs. HL, respectively). 

Additionally, participants showed similar sensitivity index for LL and HL trials, suggesting unlearning of the 

associations of Sequence A during rewiring. (c) During the Testing phase, participants responded to all trials, and 

old and new knowledge were tested in both the old (Sequence A) and new (Sequence B) contexts. When tested on 

Sequence A, participants expressed the old knowledge both on the Go and No-go trials (higher accuracy for HL 

than for LL). When tested on Sequence B, the new knowledge was also present both on the Go and No-go trials 

(higher accuracy for LH than for LL trials). Additionally, the old knowledge (associations of Sequence A) also 

persisted (higher accuracy on HL than on LL) even though it was not relevant in this testing context. The 

interpretation presented here is supported by analyses on the learning scores reported in the “Results of the Testing 

phase” section below.  Error bars represent the SEM. 

 

Results of the Learning and Rewiring phases. The analysis of the Learning phase revealed 

that the associations of Sequence A were successfully acquired. Participants were more accurate 

on those trials that were high-probability in this phase (that is, HH and HL) than on those that 

were low-probability (LL and LH) (significant main effect of Trial type: F(3, 90) = 18.956, p 
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< .001, ηp² = .387), and this difference increased as the task progressed (significant Period x 

Trial type interaction: F(6, 180) = 5.718, p < .001, ηp² = .160; Figure S2a). This result suggests 

that participants successfully acquired the associations of Sequence A. The main effect of 

Period was also significant (F(6, 180) = 8.734, ε = .771, p = .002, ηp² = .225) due to the 

decreasing accuracy on the low-probability trials.  

In the analysis of the Rewiring phase, neither the main effects nor the interaction reached 

significance (main effect of Period: F(6, 180) = 0.799, p = .455, ηp² = .026; main effect of Trial 

type: F(3, 90) =2.002, p = .119, ηp² = .063; Period x Trial type interaction: F(6, 180) = 0.571, 

p = .753, ηp² = .019; Figure S2b), likely due to the very high accuracy on all trial types (97.4% 

on average). 

To track rewiring despite the very high accuracy, we performed an ANOVA using the 

sensitivity index as described above. The ANOVA revealed a significant main effect of Trial 

type (F(2, 60) = 44.178, p < .001, ηp² = .596): the sensitivity index was higher for those trials 

that became high-probability compared to those that were low-probability throughout the 

experiment (LH vs. LL: p < .001, Cohen’s d = 1.66, BF01 = 2.471e-8) as well as compared to 

those trials that became low-probability in the Rewiring phase only (LH vs. HL: p < .001, 

Cohen’s d = 1.45, BF01 = 4.415e-7). This indicates that participants acquired the new knowledge 

(associations of Sequence B) during the Rewiring phase. At the same time, the latter finding 

also suggests that unlearning of the old knowledge took place, at least partly, since if 

participants had responded according to the probabilities of the Learning phase, an opposite 

pattern would have been expected with higher sensitivity index for the HL than for the LH 

trials. Moreover, the sensitivity index on those trials that became low-probability only in the 

Rewiring phase did not differ significantly from that on the trials that were low-probability 

throughout the experiment (HL vs. LL: p = .378, Cohen’s d = 0.16, BF01 = 3.615), further 

suggesting unlearning of the old knowledge (associations of Sequence A). . The main effect of 

Period and the Period x Trial type interaction did not reach significance (F(2, 60) = 1, 400, p = 

.254, ηp² = .045, F(4, 120) = 2.345, p = .059, ηp² = .072, respectively). 

Altogether, these results are consistent with those of RT measures reported in the main 

text: namely, the associations of Sequence A and Sequence B were both successfully acquired 

in the Learning and Rewiring phases, respectively, and the associations of Sequence A seemed 

to be unlearned during the Rewiring phase.  

 

Results of the Testing phase. The ANOVA on the ‘HL minus LL’ learning score measuring 

the old knowledge (Figure S3a) revealed a significant main effect of Sequence (F(1, 30) = 6.095, 
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p = .129, ηp² = .169), with overall smaller learning scores when tested on Sequence B than on 

Sequence A, suggesting an effect of rewiring. Nevertheless, participants performed above zero 

in both contexts (p < .001, Cohen’s d = 1.18 and p = .006, Cohen’s d = 0.53, for Sequence A 

and Sequence B, respectively), suggesting the persistence of the old knowledge both in the 

relevant (Sequence A) and irrelevant (Sequence B) testing contexts. The main effect of 

Inhibition (F(1, 30) = 0.011, p = .915, ηp² < .001) and the Sequence x Inhibition interaction did 

not reach significance (F(1, 30) = 0.277, p = .603, ηp² = .009). 

In the ANOVA on the ‘LH minus LL’ learning score measuring the new knowledge 

(Figure S3b), neither of the main effects nor the interaction reached significance (main effect 

of Sequence: F(1, 30) = 2.442, p = .129, ηp² = .075; main effect of Inhibition: F(1, 30) = 0.435, 

p = .514, ηp² = .014; Sequence x Inhibition interaction: F(1, 30) = 0.253, p = .619, ηp² = .008). 

Nevertheless, for comparability with RT analyses, we performed one-sample t-tests to reveal 

whether any of the learning scores of the new knowledge were significantly above zero. These 

t-tests revealed that learning scores in the new (Sequence B) testing context were significantly 

above zero both on the previously Go (p < .001, Cohen’s d = 0.86, BF01 = 0.002) and No-go 

trials (p = .043, Cohen’s d = 0.38, BF01 = 0.756).  Opposingly, in the old (Sequence A) testing 

context, learning scores seemed to be at zero-level both for the No-go trials (p = .397, Cohen’s 

d = 0.15, BF01 = 3.717) and Go trials (p = .158, Cohen’s d = 0.26, BF01 = 2.030).  

Overall, the accuracy results of the Testing phase suggest the persistence of old 

knowledge both in the relevant (Sequence A) and irrelevant (Sequence B) testing contexts, and 

the simultaneous presence of the new knowledge that was expressed in its relevant (Sequence 

B) testing context but not in the old (Sequence A) testing context.  
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Figure S3. Performance in the Testing phase as measured by accuracy. (a) The analysis of the ‘HL minus LL’ 

learning score revealed that the old knowledge was expressed both when tested in the old, relevant context 

(Sequence A) and in the new context (Sequence B), in which this knowledge was irrelevant. Inhibition of responses 

during rewiring did not significantly affect these results. (b) The analysis of the ‘LH minus LL’ learning score 

revealed that the new knowledge was expressed in the new (Sequence B) context, in which it was relevant, but not 

in the other context. Again, inhibition of responses during rewiring did not significantly affect these results. Error 

bars represent the SEM. 
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Supplementary results: Was the acquired knowledge consciously accessible? 

At the end of the Testing phase, a free generation task15,46 and a triplet sorting task15,47,48 were 

administered to probe whether participants acquired consciously accessible knowledge about 

the probability structure of the task using recall- and recognition-based approaches, 

respectively. 

 

Free generation task 

Task and procedure. In this task, participants were asked to generate a series of responses that 

followed the order within which stimuli appeared in the ASRT task. The task was administered 

for Sequence A and Sequence B separately by asking participants to remember what they 

practiced on Day 1 and on Day 2, respectively, and generate series of responses similar to those 

that they practiced46. This task was used to test if participants could consciously access and 

control their old and/or new knowledge (associations of Sequence A and B, respectively) to 

generate responses according to the testing conditions27,46,49. The two conditions (Sequence A 

and B) were administered in a counterbalanced order and each consisted of four runs with 24 

button presses. Participants were asked to use the same response buttons as in the ASRT task.  

 

Statistical analysis. To test the performance on the free generation task, first, trials (responses) 

were categorized as being high- or low-probability both according to Sequence A and Sequence 

B. This resulted in four trial types (HH, HL, LL, LH), similar to the analyses of the ASRT task. 

Since three consecutive trials were needed to identify the third trial’s probability, 22 trials were 

evaluated in each run. Second, responses that corresponded to HH or LL triplets were excluded 

from the analyses because these were the same in Sequence A and B and, therefore, could not 

be used to probe if participants gained conscious knowledge separately about Sequence A (old 

knowledge) or Sequence B (new knowledge). Third, the percentage of HL and LH responses 

out of all evaluated ones (22) were calculated for each run, both for Sequence A and Sequence 

B. Fourth, we computed averages of these percentages across the four runs in each condition.  

HL responses could be interpreted as the knowledge of Sequence A since these reflect 

high-probability triplets in Sequence A, and LH responses could be interpreted as the 

knowledge of Sequence B since these reflect high-probability triplets in Sequence B. Therefore, 

if participants generated more HL than LH responses in the Sequence A condition and/or more 

LH than HL responses in the Sequence B condition, that would indicate that they gained 
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consciously accessible knowledge that they could use to control their responses according to 

the testing conditions46. To test this possibility, the percentages of HL vs. LH responses were 

compared using paired samples t-tests, separately in Sequence A and Sequence B conditions. 

Additionally, Bayes factors were computed using default JASP priors for all pairwise 

comparisons2. 

 

Results. The percentages of HL and LH responses did not differ significantly either in the 

Sequence A (MHL = 23.70% vs. MLH = 21.20%; t(30) = 1.176, p = .249, Cohen’s d = 0.21, BF01 

= 5.138) or Sequence B conditions (MHL = 22.27% vs. MLH = 21.46%; t(30) = 0.456, p = .652, 

Cohen’s d = 0.08, BF01 = 4.210). This indicates that participants could not consciously control 

their old or new knowledge to generate their responses according to the testing conditions.  

 Overall, the results of the free generation task indicate that participants did not gain 

consciously accessible knowledge either about the associations of Sequence A (old knowledge, 

tested by HL responses) or Sequence B (new knowledge, tested by LH responses) that they 

could use to generate their responses according to the testing conditions, thus they remained 

implicit.  

 

Triplet sorting task  

Task and procedure. In this task, participants saw each unique triplet of the practiced 

sequences and were asked to make forced-choice decisions on their occurrence probability to 

probe if they gained any consciously accessible knowledge about the learned/rewired 

associations. The same stimuli were used as in the ASRT task: that is, participants saw a picture 

with the dog’s head appearing in one of the four possible stimulus locations. The three 

consecutive stimuli that formed a triplet were presented as follows: the first one was presented 

for 700 ms on the upper third of the screen, then the second one was added to the middle of the 

screen for another 700 ms. Finally, the third one was also added to the lower third of the screen. 

All three stimuli remained on the screen until a response was provided. Participants were 

instructed to remember what they practiced on Day 1 and Day 2, respectively, and decide 

whether the presented triplet occurred frequently (high-probability triplets) or not (low-

probability triplets) for the particular experimental phase (Day 1 vs. Day 2). Thus, all 64 unique 

triplets were presented to the participants twice: once for determining their probabilities on Day 

1 (i.e., in Sequence A) and once for determining their probabilities on Day 2 (i.e., in Sequence 

B), in a counterbalanced order.  
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Statistical analysis. To analyze the performance on the triplet sorting task, first we determined 

correct responses as identifying high-probability triplets as high-probability and low-

probability triplets as low-probability separately in the two conditions of the task (i.e., when 

tested on Sequence A and on Sequence B). Next, we calculated the percentage of correct 

responses for all four trial types (HH, LL, LH, HL), for both conditions. As in the free 

generation task, the HL and LH categories were the primary measures of interest. If participants 

had more correct responses on HL trials in Sequence A than in Sequence B, or vice versa, more 

correct responses on LH trials in Sequence B than in Sequence A, that would indicate that they 

gained consciously accessible knowledge about the associations and could successfully identify 

in which phase of the experiment those associations were more probable.  

Since all unique triplets were presented in this task, it enabled us to also categorize 

triplets based on whether they were inhibited during rewiring or not (i.e., No-go vs. Go trials, 

respectively) and test the percentage of correct responses as a function of inhibition as well. 

This resulted in eight measures that were included in the analysis: the percentage of correct 

responses for HL and LH trials, separately for the previously No-go and Go trials, and 

separately for Sequence A and Sequence B.  

First, we conducted a repeated measures ANOVA on the percentage of correct responses 

with Trial type (LH vs. HL), Inhibition (Go vs. No-go), and Sequence (tested on Sequence A 

vs. on Sequence B) as within-subject factors to probe if any of these factors or their interactions 

affected participants’ responses. Finally, all eight measures were tested against chance level 

(50%) using one-sample t-tests, supplemented by Bayes factors using default JASP priors2.  

Results. The frequentist ANOVA did not reveal any significant main effects or interactions (all 

ps > .221, all ηp
2 < .05), suggesting that participants’ decisions did not differ as a function of 

trial type (HL vs. LH), whether they suppressed responses to the tested trials during rewiring 

(No-go vs. Go), or whether they were tested on Sequence A or on Sequence B.  

The percentage of correct responses (ranging from 47.7% to 55.5%) did not differ 

significantly from chance level (50%) for any of the eight measures (all ps ≥ .280, Cohen’s ds 

≤ 0.20, BF01s ≥ 3.544 with the exception of LH No-go trials tested on Sequence B where BF01 

= 2.547), suggesting that participants categorized the triplets as high- or low-probability 

randomly.  

Overall, these results indicate that participants did not gain consciously accessible 

knowledge about the practiced associations in the experiment, irrespective of the tested 
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knowledge, inhibition, and testing condition, further reflecting that the acquired knowledge 

remained implicit.  
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Supplementary methods 

Estimation of required sample size 

We calculated the required sample size based on previously published data obtained 

from the ASRT task. It has been reported that as few as N = 6-7 participants are sufficient to 

show a significant learning effect with 25 blocks of ASRT at p = .05 and power = .8050,51. Since 

in the current study, we used 45 blocks of ASRT, even a smaller sample is expected to be 

enough to show a significant learning effect.  

Nevertheless, as the main focus of the present study was to investigate the rewiring of 

the acquired knowledge, we conducted further calculations based on the data of Szegedi-

Hallgató et al.15 (Implicit-Implicit group) obtained in a similar task design but without the 

Go/No-go manipulation using G*Power 3.152. Based on the mean (13.9 ms) and standard 

deviation (8.59 ms) of the overall learning score of the new knowledge (‘LL minus LH’) 

measured over the 45 blocks of the Rewiring phase, the estimated effect size was Cohen’s d = 

1.62. The required sample size to show this effect at the level of α = .05 and with power = .80 

is N = 5.  

Next, we calculated learning scores corresponding to the old and new knowledge (‘LL 

minus HL’ and ‘LL minus LH’, respectively) measured in their corresponding context (A and 

B, respectively) in the Testing phase of the same dataset. Accordingly, to show that the old 

knowledge (M = 12.6 ms, SD = 16.44 ms, Cohen’s d = 0.77) was expressed (i.e., was 

significantly above zero) after rewiring, a sample of N = 12 is needed at p = .05 and power = 

.80. In a similar calculation, we found that to show that the new knowledge (M = 18.2 ms, SD 

= 17.18 ms, Cohen’s d = 1.06) was successfully exhibited in its context, a sample size of N = 8 

is required. Importantly, these estimates need to be treated with caution due to the task lacking 

the Go/No-go manipulation. Consequently, we performed the required sample size analysis 

with a more stringent criterion as well, expecting a medium effect size (Cohen’s d = 0.50) both 

for the old and new knowledge, with at p = .05 and power = .80. This calculation revealed that 

a sample with N = 27 is required to show significant effects for the old and new knowledge in 

the Testing phase. Thus, the sample size of our study meets the estimated criteria, including the 

more stringent one. 

Since there is no previous ASRT study with a Go vs. No-go manipulation, for direct 

comparison of performance on the Go vs. No-go trials within a given context or performance 
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on Go/No-go trials across contexts, we could not use estimates from previously published 

studies. However, using the same criteria as above (i.e., expecting a medium effect size of 0.5 

with p = .05 and power = .80) we found that N = 27 participants are required to show 

significantly better performance, for example, on the Go vs. the No-go trials (i.e., one-tailed 

paired-samples comparison), while allowing significant deviation in either direction (e.g., better 

performance on Go or on No-go trials, two-tailed comparison) resulted in a required sample 

size of N = 34. Thus, overall, based on our calculations, a sample size of N = 27-34 would be 

sufficient for our study. During the recruitment process, we managed to collect data of 33 

participants, and the final sample consisted of 31 participants (see Participants section in the 

main text).   

Finally, there are cases where near-zero performance could be expected (e.g., expressing 

old knowledge in the new context, or vice versa, expressing new knowledge in the old context). 

Calculating required sample size for these cases would be inappropriate as they would emerge 

as non-significant results during the analysis. For such non-significant results, Bayes factors 

could be used to see if there is sufficient evidence for the null-hypothesis (i.e., no difference 

from zero/non-significant result). At the same time, Bayes factors could also reveal if there is 

sufficient evidence in the data for the alternative hypothesis. These calculations could be used 

to confirm/provide further support for the interpretations of significant results. Therefore, we 

reported Bayes factors where appropriate both for non-significant and significant pair-wise 

comparisons. For more details on Bayes factors, see the Statistical analysis section in the main 

text. 

 

Task and procedure 

Learning phase. In the ASRT task22,53, the target stimulus (a dog’s head) appeared in one of 

the four horizontally arranged circles on the screen (see Figure 1 in the main text). Four buttons 

of a response box (Chronos, Psychology Software Tools) corresponded to the four locations. 

Participants were asked to press the corresponding button when the stimulus appeared on the 

screen as fast and as accurately as they could. Unbeknownst to the participants, the stimulus 

presentation order followed an eight-element sequence, in which predetermined pattern (P) 

trials alternated with random ones (e.g., 1 – r – 3 – r – 4 – r – 2 – r, where numbers denote the 

four predetermined locations on the screen from left to right, and rs denote the randomly chosen 

locations out of the possible four).  
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The task was organized into blocks. One block consisted of 85 trials. In the first five 

trials, randomly chosen locations were presented and served as a warm-up; this was followed 

by ten repetitions of the eight-element alternating sequence. Stimuli were presented on the 

screen until the correct response was provided, followed by a screen with the four empty circles 

for 120 ms (response-to-stimulus interval, RSI). After each block, participants received 

feedback about their average RT and accuracy presented for five seconds. If the average 

accuracy was lower than 80% (irrespective of the average RT), participants were instructed to 

answer more accurately. If the average accuracy was higher than 95% and the average RT was 

slower than 250 ms, participants were instructed to answer faster. These settings ensured a good 

balance between speed and accuracy while encouraging fast responses characteristic of 

automatic skills and habits54,55. After the feedback, a short self-paced break was administered 

before the next block started. Overall, the Learning phase consisted of 45 blocks (around 45 

min), divided into three periods of 15 blocks with five-min breaks in-between to reduce 

potential fatigue effects56. Thus, participants completed 450 repetitions of the sequence (3600 

trials, excluding the warm-up trials) in this phase. This extensive practice ensured the 

acquisition of sound knowledge of the stimulus regularities that has been shown to persist even 

after a one-year delay (without any further practice)24,25 and that could serve as a good 

experimental model for learning processes underlying automatic skills and habits15,24.  

Due to the alternating sequence of stimulus presentation, some runs of three consecutive 

trials (triplets) were more probable than others. For instance, in the 1 – r – 3 – r – 4 – r – 2 – r 

sequence, the 1 – x – 3, 3 – x – 4, 4 – x – 2, and 2 – x – 1 triplets (where x denotes the middle 

element of the triplet) occurred with a greater probability because they were presented in every 

sequence repetition and could also be formed by chance (see Figure S4). (Notably, since 

participants were unaware of the alternating regularity, triplets with identical stimuli but with 

the third element in different (P or r) position were indistinguishable to them22,53, and responses 

to them were therefore combined in the analyses.) Meanwhile, for instance, triplets 1 – x – 2 

and 4 – x – 3 occurred with a lower probability since they could only be formed by chance. The 

former triplets are referred to as high-probability triplets, while the latter ones are referred to as 

low-probability triplets. For all triplets, the third element (n) of a triplet was predictable by the 

first one (n-2) of that triplet with a higher or lower probability, while the middle element (n-1) 

did not have a predictive value. Triplets that had the same first and third elements but different 

middle elements (e.g., 1 – 1 – 3, 1 – 2 – 3, 1 – 3 – 3, and 1 – 4 – 3 for the triplet 1 – x – 3) were 

therefore treated as identical in all analyses. Importantly, triplets were identified using a moving 

window throughout the stimulus stream. Thus, each trial was categorized as the last element of 
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a high- or low-probability triplet, and this categorization was used for the RT and accuracy 

analyses; the same trial then served as the middle and the first element for the categorization of 

the following triplets.  

There were 64 unique triplets in the task, including all pattern-ending (50%) and 

random-ending (50%) triplets. Sixteen of these unique triplets were of high-probability and 48 

triplets were of low-probability. Since high-probability triplets could occur as pattern-ending 

triplets (50% of all trials) and by chance as random-ending triplets (12.5% of all trials), these 

triplets constituted 62.5% of all trials in a given session (Figure S4b). Low-probability triplets 

constituted the remaining 37.5% of the trials; these were all random-ending triplets. 

Consequently, on the level of unique triplets, high-probability triplets were five times more 

probable than the low-probability ones (approx. 4% [62.5% / 16] vs. 0.8% [37.5% / 48]). Note 

that within the low-probability triplets, trills (that is, triplets with the same stimulus as the first 

and third elements, such as 1 – x – 1), including repetitions (such as 1 – 1 – 1), were excluded 

from all analyses because participants typically show preexisting response tendencies to 

them24,25.  

 

 

Figure S4. Stimulus- and probability-structure of the task. (a) Stimulus presentation order followed an eight-

element sequence in which predetermined pattern (P) trials alternated with random (r) ones. In the example 

sequence on the figure, numbers correspond to the four possible locations on the screen from left to right, and the 

rs denote the randomly chosen locations out of the possible four. Due to the alternating sequence structure, some 

runs of three successive trials (triplets) occurred with a higher probability (light grey) than others (dark grey). 

These are referred to as high- and low-probability triplets, respectively. For all triplets, the third element (n) of a 

triplet was predictable by the first element (n-2) of that triplet with a higher or lower probability, while the middle 

element (n-1) did not have a predictive value. Importantly, triplets were identified using a moving window 
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throughout the stimulus stream. Thus, each trial was categorized as the last element of a high- or low-probability 

triplet, and this categorization was used for the RT and accuracy analyses; the same trial then served as the middle 

and the first element for the categorization of the following triplets. (b) Since high-probability triplets could occur 

as pattern-ending triplets (P – r – P structure; 50% of all trials in a given task session) and by chance as random-

ending triplets (r – P – r structure; 12.5% of the trials), these triplets constituted 62.5% of all trials. Low-probability 

triplets constituted the remaining 37.5% of the trials; these were all random-ending triplets. On the level of unique 

triplets, high-probability triplets were five times more probable than low-probability triplets. 

 

Rewiring phase. In this phase, a structural change was introduced to the task by replacing 

Sequence A with Sequence B to prompt the rewiring of old knowledge15. Additionally, 

participants were allowed to respond on some trials (Go trials) but were asked to suppress their 

response on other trials (No-go trials; see Figure 1 in the main text). 

For the Go trials, stimulus was presented until the correct response was provided, 

followed by a 120 ms RSI. For the No-go trials, stimulus was presented for 1000 ms, followed 

by a 120 ms delay. In case of a false alarm (i.e., when participants made a response on a No-go 

trial), the stimulus disappeared from the screen and a warning (a red exclamation mark) was 

presented for 700 ms, followed by the 120 ms delay. After each block, participants received 

feedback presented for five seconds. If the average accuracy on the Go trials was lower than 

80% (irrespective of the average RT), participants were instructed to answer more accurately. 

If the average accuracy was higher than 95% and the average RT was slower than 400 ms on 

the Go trials, participants were instructed to answer faster. Additionally, if participants made 

more than three false alarms on the No-go trials, they were instructed to follow the instructions 

more carefully and suppress their responses on these trials. These stimulus timing and feedback 

settings were determined based on pilot data and were used to ensure that inhibitory control 

processes were engaged during the No-go trials by providing sufficient time for the activation 

of the automatic response that then had to be suppressed. The fine-tuned feedback provided a 

good balance between speed and accuracy; specifically, allowing three false alarms encouraged 

an overall faster response speed (on the Go trials) to promote rewiring. After the feedback, a 

short self-paced break was administered before the next block started. As in the Learning phase, 

the task consisted of 45 blocks (around 45 min), divided into three periods of 15 blocks with 

five-min breaks in-between. Thus, participants completed 450 repetitions of Sequence B (3600 

trials, excluding the warm-up trials) in the Rewiring phase.  

Due to the introduction of Sequence B in the Rewiring phase, the probability of some 

triplets changed: 75% of triplets that were high-probability in the Learning phase became low-

probability (HL; thus, the first letter refers to the triplet probability in Sequence A, while the 
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second letter refers to the probability of the same triplet in Sequence B), and they were replaced 

by new high-probability triplets that were initially low-probability (LH). Meanwhile, 

occurrence probability of other triplets remained the same: either being low-probability (LL) or 

high-probability (HH) in both phases. The HL triplets allowed the assessment of initial 

acquisition and subsequent unlearning of old knowledge: participants could acquire that 

knowledge in the Learning phase and then had to unlearn it in the Rewiring phase when these 

triplets become low-probability. The LH triplets allowed the assessment of the acquisition of 

new knowledge as part of the rewiring process: as these triplets became high-probability in the 

Rewiring phase, knowledge about them could be acquired in this phase. The LL triplets served 

as a baseline to control for general (i.e., probability-independent) practice and/or fatigue effects 

(for further details on how the learning scores were calculated see Figure 2b and the Statistical 

analysis section in the main text). The HH triplets were not used in the analyses; these triplets 

were included in the design only to have largely but not completely different sequences for the 

Learning and Rewiring phases as explained above. 

An example sequence pair used in the Learning and Rewiring phases is shown on Figure 

2a. In this example, the 1 – x – 3 triplets (including all four variations with different middle 

elements, i.e., 1 – 1 – 3, 1 – 2 – 3, 1 – 3 – 3, and 1 – 4 – 3) were high-probability in both phases 

(HH). Triplets 3 – x – 4, 4 – x – 2, and 2 – x – 1 (12 triplets overall, including all four variations 

with different middle elements) were initially high-probability but they became low-probability 

(HL) because they could occur only by chance (i.e., r – P – r structure) in the Rewiring phase. 

Triplets 3 – x – 2, 4 – x – 1, and 2 – x – 4 triplets (12 triplets overall, including all four variations 

with different middle elements) that were initially low-probability became high-probability 

(LH) because they could occur both as part of the predetermined sequence (P – r – P structure) 

and by chance (r – P – r structure) in the Rewiring phase. The remaining triplets were low-

probability in both phases (LL). We chose sequence pairs that were largely but not completely 

different for the Learning and Rewiring phases because we believe this resembles everyday 

examples of changing habit-like behaviors more closely. Specifically, when we try to change 

our routines (e.g., starting to divide household waste into different bins depending on its 

material), some steps of the routines may remain unchanged (e.g., still collecting non-recyclable 

items the same way as before), while other steps need rewiring (e.g., putting items made of 

glass in a different bin).  

The assignment of triplets to Go vs. No-go trials was as follows: Two-thirds of HL 

triplets were No-go trials (e.g., the 4 – x – 2 and 2 – x – 1 triplets in the above example, including 

all four variations with different middle elements) to promote the use of inhibitory control 
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during the unlearning of those triplets that were initially high-probability but then became low-

probability in this phase. The remaining one-third of HL triplets were Go trials (e.g., the 3 – x 

– 4 triplets) to allow comparison of performance later in the Testing phase on those trials that 

were Go vs. No-go in the Rewiring phase. At the same time, two-thirds of LH triplets were Go 

trials (e.g., the 2 – x – 4 and 4 – x – 1 triplets in the example above) to promote the acquisition 

of new knowledge by actively responding on those trials that were initially low-probability and 

became high-probability in the Rewiring phase. The remaining one-third of LH triplets were 

No-go trials (e.g., the 3 – x – 2 triplets) for the same reason as above. The assignment of 

different proportions of HL vs. LH triplets to Go and No-go trials aimed to mimic assumptions 

about how habit-like behaviors would be rewired in everyday situations, that is, by largely 

inhibiting the old, unwanted behaviors (more No-go trials on HL triplets) and, at the same time, 

actively engaging in the new, preferred behaviors (more Go trials on LH triplets). Since 

performance on LL triplets was used as a baseline throughout the experiment, they were also 

split into Go and No-go trials following a 2:1 ratio. Finally, as the HH category included only 

one set of triplets (1 – x – 3 in the example above), they were all Go trials. The ratio of Go and 

No-go trials across triplet categories was about 50:50 (with some variability due to the randomly 

chosen locations) to control for general expectation biases.  

  Overall, eight sequence pairs were selected so that the change in triplet probabilities 

from the Learning to the Rewiring phase followed the details outlined above. These sequence 

pairs were used in a counterbalanced order to control for any potential idiosyncrasies in how 

participants may respond to a particular triplet irrespective of its probability. The allocation of 

triplets to Go and No-go trials was also counterbalanced across sequence pairs and, therefore, 

participants. This carefully counterbalanced design ensured that the obtained findings were 

generalizable across sequences and were not due to pre-existing tendencies on one particular 

sequence pair.  

    

Testing phase. In this phase, participants performed 20 blocks of the ASRT task (around 20 

min) with the same stimulus timing and feedback settings as in the Learning Phase. 

Unbeknownst to them, knowledge on both Sequence A and Sequence B was tested. In a 

counterbalanced order, participants completed five blocks containing one sequence (A or B), 

then five blocks containing the other sequence (B or A), then the whole procedure was repeated 

once more, resulting in altogether ten-ten task blocks with each sequence (in ABAB or BABA 

order; see Figure 1 in the main text). Participants responded on all trials, including the ones that 

were No-go in the Rewiring phase. This enabled the testing of how inhibitory control affected 
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(un)learning processes during rewiring. After completing the ASRT task, participants were 

debriefed and informed that the stimuli followed a predetermined order in the task. Then, a free 

generation task and a triplet sorting task were administered to probe whether participants 

acquired consciously accessible knowledge about the sequence and/or probability structure of 

the task (for details, see section ‘Supplementary results: Was the acquired knowledge 

consciously accessible?’). 
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APPENDIX V: THE RESULTS OBTAINED IN THE CORRELATIONAL ANALYSES OF STUDY 1-4. 

Table 1. Association between procedural learning ability and the performance on various neuropsychological tests in Study 1-4. 

 Study 1  

(N = 24) 

Study 2 

(NS = 25, NU = 25) 

Study 3 

(NC = 48, NU = 48) 

Study 4 

(N = 30) 

Procedural learning1 

Maximized 

learning 
Triplet learning (TL) TL updating 

Statistical 

learning (SL) 
SL expression TL TL rewiring 

 
Structured-

first group 

Unstructured-

first group 

Structured-

first group 

Unstructured-

first group 

Cued 

group 

Uncued 

group 

Cued 

group 

Uncued 

group 
 Old New 

r r r r r r r r r r r r 

E
x

ec
u

ti
v

e 
co

n
tr

o
l 

sy
st

em
2
 

Orienting 

attention 
– – – – – < .001 .189 -.130 .133 .326 .344 .092 

Alerting 

attention 
– – – – – .057# -.090 .314# -.120 .294 -.311 -.191 

Interference 

suppression 
– – – – – -.130# -.130# .071# .169# -.158 .082 -.148 

Response 

inhibition 
– .035 -.080 -.032 -.043 – – – – -.345 .245 .151 

Updating .218 .010 .054 -.068 -.030 .136# .011 .196# -.004 .082 -.155 .068 

Shifting -.672#* -.061 -.185 .037 .202 – – – – -.242 .009 .076 

Short-term 

memory 
-.119 – – – – -.120# .030# -.060# .147# .101# .103# .144# 

Note. * p < .05; r: Pearson’s correlation coefficient; # due to the violation of normality, Spearman’s rank correlation coefficient is presented. To control for Type I errors, FDR 

correction was applied to all tests. 1Aspects of procedural learning were measured slightly differently in each study, for more details, see the corresponding article. The updating 

score of Study 2 was calculated as the difference between performance showed at the end of the structured half and at the end of the unstructured half. The rewiring score of 

Study 4 was calculated as the difference between knowledge expressed on the corresponding and opposite contexts (sequence), separately for the old and the new knowledge, 

only on the Go trials. 2Components of the executive control system were measured by the following tasks: the orienting attention, alerting attention, and interference suppression 

were assessed by the Attention Network Test (Fan et al., 2002); response inhibition was assessed by the Go/No-go task (Gordon & Caramazza, 1982); updating was 

assessed by the Counting Span task (Case et al., 1982); and shifting was assessed by the Wisconsin Card Sorting Test (Berg, 1947). Short-term memory was measured by the 

Digit Span task (Isaacs & Vargha-Khadem, 1989). Where no correlation coefficient is indicated in the table, the given neuropsychological test was not assessed. None of 

these tests were administered in the Supplementary Study. 
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